

International Journal of Software Engineering & Computer Sciences (IJSECS)

ISSN: 2289-8522 ,Volume 1, pp. 15-27, February 2015

©Universiti Malaysia Pahang

DOI: http://dx.doi.org/10.15282/ijsecs.1.2015.2.0002

15

COMPARATIVE BENCHMARKING OF CONSTRAINTS T-WAY TEST

GENERATION STRATEGY BASED ON LATE ACCEPTANCE HILL CLIMBING

ALGORITHM

Kamal Z. Zamli1, Abdul Rahman Alsewari2 and Basem Al-Kazemi3

1,2Faculty of Computer Systems and Software Engineering,

Universiti Malaysia Pahang, 26300 Kuantan, Pahang, Malaysia
3College of Computer and Information Systems,

Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
Email: kamalz@ump.edu.my

ABSTRACT

This paper describes the new t-way strategy based the Late Acceptance based Hill Climbing

algorithm, called LAHC, for constraints t-way test generation. Unlike earlier competing

work, LAHC does not require significant tuning in order to have it working. In fact, LAHC

merely requires minor adjustment of the common controlling parameters involving iteration

and population size depending on the given system configuration. Our benchmarking results

have been promising as LAHC gives competitive results in most constraints configurations

considered.

Keywords: Optimization Algorithms, Software Testing, Artificial Intelligent

INTRODUCTION

Considering cost and resources constraints, exhaustive testing is practically infeasible. Many

sampling based strategies have been proposed in the literature to help test engineers select a

subset of test cases (i.e. from the exhaustive testing) and yet not sacrificing the fault detection

capability of the testing process. In the field of combinatorial testing, researchers have turned

into t-way strategies (Zamliet al., 2011) whereby t indicates the interaction strength. Here, all

t-way strategies generate the t-way test suite with the aim to cover every possible combination

produced by the interacting parameters (or also known as tuples).

In the last 20 years, many t-way strategies have been proposed in literature (including

that of GTWay (Klaib 2009; Zamli, Klaib et al. 2011), MIPOG(Younis, Zamli et al. 2008;

Younis, Zamli et al. 2008; Younis 2010; Younis and Zamli 2010), TConfig(Williams 2000;

Williams 2010), TCG(Tung and Aldiwan 2000), Jenny(Pallas 2003), TVG (Yu-Wen and

Aldiwan 2000; Arshem 2010), IRPS (Younis, Zamli et al. 2008), and TConfig(Williams

2000; Williams 2010)). Recently, researchers have also started to adopt meta-heuristics based

strategies including that of Genetic Algorithm (GA) GA (Sthamer 1995; Shiba, Tsuchiya et

al. 2004; Bryce and Colbourn 2007; Afzal, Torkar et al. 2009; Chen, Gu et al. 2009;

McCaffrey 2010), Ant Colony (ACS) ACA (Harman and Jones 2001; Shiba, Tsuchiya et al.

2004; Wang, Xu et al. 2008; Afzal, Torkar et al. 2009; Chen, Gu et al. 2009), Particle Swarm

Optimization (PSTG) PSTG (Ahmed and Zamli 2010; Ahmed and Zamli 2010; Ahmed and

Zamli 2011; Ahmed, Zamli et al. 2012), and Harmony Search Strategy (HSS) (Alsewari and

Zamli 2012). Although these aforementioned strategies are useful, many of them fall short in

Comparative benchmarking of constraints t-way test generation strategy based on late acceptance hill climbing algorithm

16

term of the support for constraints (i.e. exclusion of impossible combinations) rendering the

generation of potentially unusable test cases.

Addressing these issues, this paper describes the new meta-heuristics t-way strategy

based the Late Acceptance based Hill Climbing algorithm, called LAHC, for constraints t-

way test generation. Like competing meta-heuristics based strategies, LAHC gives

sufficiently optimal results as compared to general computational based strategies. Unlike

competing meta-heuristics based strategies, LAHC does not require significant tuning in order

to have it working. In fact, LAHC merely requires minor adjustment of the common

controlling parameters involving iteration and population size depending on the given system

configuration. The development of LAHC serves as our research vehicle to investigate the use

of variant of Hill Climbing for constraints t-way test generation.

COVERING ARRAY NOTATIONS

Any system under test (termed SUT) consists of number of parameters (or factors) with their

associated values (or levels). Typically, t-way strategy aims to generate the most minimum

test cases according to the coverage interaction criteria.

Mathematically, t-way interaction test suite can be abstracted using the covering array

(CA) notations. Normally, the CA has four parameters; N, t, p, and v (i.e., CA (N, t, vp). Here,

the symbols p, v, and t are used to refer to number of parameters, values, and interaction

strength for the CA, respectively. For example, CA (9, 2, 34) represents a test suite consisting

of 94 arrays (i.e., the rows represent the size of test cases (N), and the column represents the

parameter (p)). In this case, the test suite also covers two-way interaction for a system with

four 3-value parameters.

When the CA gives the most optimal result, the covering array can be rewritten as

CAN (N, t, vp). Often, there is no exact formula to estimate the most optimal result of CA

(given the value of t,v, and p). However, the lower bound of a particular covering array can be

estimated. Here, no strategy can produce test size lower than the lower bound (Daich 2003).

Often, the lower bound for CA can be determined by the product of the values up to t, that is,

v1x v2xv1..vt=vtin descending order. Taking CA (9, 2, 34) as example, the lower bound is

3x3=9.

Similar to CA, mixed covering array (MCA) has three parameters; N, t, and

Configuration (C) (i.e., MCA (N, t, C)). In addition to N and t that carry the same meaning as

in CA, MCA adopts a new symbol, C. Consistent with earlier given notations, C represents

the parameters and values of each configuration in the following format: v1
p1 v2

p2… vn
pn

indicating that there are p1 parameters with v1values, p2 parameters with v2values, and so on.

For example, MCA (1265, 4, 102 41 32 27) indicates the test size of 1265 that covers four-way

interaction. Here, the configuration takes 12 parameters: two 10-value parameters, one 4-

value parameter, two 3-value parameters, and seven 2-value parameters.

Intuitively, lower bound estimate for MCA is similar to CA and can be determined by

the product of the values up to t in descending order. Considering MCA (N, 4, 102 41 32 27),

the estimated lower bound is 10x10x4x3=1200.

In the case of variable interaction strength covering array (VCA), the parameters

consist of N, t, C, and Set (CS) (i.e., VCA (N, t, C, CS)). Similar to MCA, N, t, and C carry

the same meaning. Set CS consists of a multiple set of disjoint (mixed) covering array with

strength larger than t (i.e., as sub-strength from the main strength). For example, VCA (N, 2,

32 22, {CA (3, 31 22)}) indicates the test size of 12 for pairwise interaction (with two 3-value

parameters and two 2-value parameters) as the main strength and three-way interaction (with

one 3-value parameters and two 2-value parameters) as the sub-strength.

Kamal Z. Zamli et.al/International Journal of Software Engineering and Computer Systems 1(2015) 15-27, February 2015

17

At a glance, the lower bound estimation of VCA is similar to that of MCA and CA. A

closer look reveals a subtle difference. Here, the lower bound is dependent on the VCA

involved. There are potentially 2 possible cases. In the first case, when the contribution of the

main strength is larger than that of the sub-strength, the lower bound can be estimated by

taking the product of the main strength values up to t in descending order. For example, the

estimated lower bound for VCA (N, 2, 10232 22, {CA (3, 31 22)}) is 10x10=100 instead of

3x2x2=12. In the second case, when the contribution of the sub-strength is larger than that of

the main strength, the lower bound can be estimated by taking the product of the sub-strength

values up to t in descending order. Considering the VCA (N, 2, 32 22, {CA (3, 31 22)}) as

example, the estimated lower bound is 3x2x2= 12.

Finally, to cater for constraints, a new variable called constraints (F) interaction is

introduced to represent the set of disallowed interactions (i.e. CCA (N, t, vp, F) or MCCA (N,

t, C, F) or VCCA (N, t, C, F)). Here, C takes the following format {ca,b} where a indicates the

pth parameter and b indicates the vth value are within the list of constraints. For example,

consider CCA (10, 2, 33, F) where F = {c1,1,c3,1}. In this case, the CCA indicates the test size

of 10 for pairwise interaction of three 3-value parameters with constraints pair interaction

elements from parameter 1 and value 1, as well as parameter 3 and value 1. It should be

noted that the lower bound estimation may not hold true in the presence of constraints (i.e. as

constraints forbid some combination, hence, allowing much less generated test size).

RELATED WORK

In general, existing t-way strategies can be categorized into two categories, that is, algebraic

approaches or computational approaches respectively (Lei, Kacker et al. 2007).

Algebraic approaches construct test sets using pre-defined rules or mathematical

function (Lei, Kacker et al. 2007). Often, the computations involved in algebraic approaches

are typically lightweight, and in some cases, algebraic approaches can produce the most

optimal test sets. However, the applicability of algebraic approaches is often restricted to

small configurations (Yan and Zhang 2006; Lei, Kacker et al. 2007). Orthogonal Arrays (OA)

(Hedayat, Sloane et al. 1999; Hartman and Raskin 2004), MOA (Mandl 1985) and TConfig

(Williams 2002) are typical example of the strategies that are based on algebraic approach.

Unlike algebraic approaches, computational approaches often rely on the generation of

the all pair combinations. Based on all pair combinations, the computational approaches

iteratively search the combinations space to generate the required test case until all pairs have

been covered. In this manner, computational approaches can ideally be applicable even in

large system configurations. However, in the case where the number of pairs to be considered

is significantly large, adopting computational approaches can be expensive due to the need to

consider explicit enumeration from all the combination space. Example strategies that adopt

this approach includes An Automatic Efficient Test Generator (AETG) (Cohen, Dalal et al.

1996; Cohen, Dalal et al. 1997), its variant (mAETG) (Cohen 2004), PICT [8, 36], IPOG

(Lei, Kacker et al. 2007), Jenny(Pallas 2003), TVG (Yu-Wen and Aldiwan 2000; Arshem

2010), IRPS (Younis, Zamli et al. 2008), GTWay(Klaib 2009; Zamli, Klaib et al. 2011),

MIPOG(Younis, Zamli et al. 2008; Younis, Zamli et al. 2008; Younis 2010; Younis and

Zamli 2010), TConfig(Williams 2000; Williams 2010), TCG(Tung and Aldiwan 2000)).

Another variant of the computational based approach is based on meta-heuristics algorithm

including that of GA (Shiba, Tsuchiya et al. 2004), HSS (Alsewari and Zamli 2012), PSTG

(Ahmed and Zamli 2010; Ahmed and Zamli 2010; Ahmed and Zamli 2011; Ahmed, Zamli et

al. 2012), SA(Stardom 2001; Cohen, Colbourn et al. 2008), and ACA (Shiba, Tsuchiya et al.

2004)). Although useful to help test engineers sample combinatorial test suite, the support for

Comparative benchmarking of constraints t-way test generation strategy based on late acceptance hill climbing algorithm

18

constraints within the aforementioned strategies have not been sufficiently considered. In fact,

there has been only a handful of strategies address the constraints support including that of

IPOG (Lei, Kacker et al. 2007), PICT [8, 36], TestCover(Sherwood. 2006), HSS (Alsewari

and Zamli 2012), SA_SAT (Cohen, Dwyer et al. 2007), mAETG_SAT(Cohen, Dwyer et al.

2007) and GVS_CONST(R.R. Othman, N. Khamis et al.). In line with the focus of this paper,

what follows is the survey of the constraints supporting strategies. A comprehensive recent

survey for t-way strategies is beyond the scope of this paper and can be found in Cohen

(Cohen 2004), Grindal(Grindal, Offutt et al. 2005), and Nie(Nie and Leung 2011).

IPOG (Lei, Kacker et al. 2007) starts the generation process by generating an

exhaustive test suite for the first t parameters (in the case of variable interaction strength (t),

the highest t will be chosen) as the initial test suite. Later, IPOG relies on two processes called

horizontal extension and vertical extension. Horizontal extension is a process of adding one

parameter to the initial test suite. This process is repeated until all parameters are covered by

the test suite. Vertical extension is a complementary process for horizontal extension in order

to ensure that all tuples are covered. During horizontal extension, there is a possibility that

several tuples cannot be covered by the initial test suite. In this case, the initial test suite will

be extended vertically by adding several new test cases to the initial test suite. In the case of

constraints, IPOG defines a number of Boolean operators allowing the defined constraints to

be specified as the rules for selecting the test cases during the vertical and horizontal

extension.

PICT [8, 36] generates all specified interaction tuples and randomly selects their

corresponding interaction combinations to form the test cases as part of the complete test

suite. In case a particular test case matches a specified constraint, PICT randomly generates a

new combination for covering the interaction tuples. Constraints are supported in PICT

through its Boolean constraints definition that avoids forbidden tuple.

TestCover(Sherwood. 2006) is a commercial software tool. Not much information can

be gathered regarding TestCover apart from its commercial availability and some benchmark

configurations on constraints that can be obtained from its website.

HSS (Alsewari and Zamli 2012) is a meta-heuristic strategy based on the Harmony

Search Algorithm. Intuitively, HSS mimics the musician trying to compose good music from

improvisation form the best tune from his memory or from random. In doing so, HSS

iteratively exploits the Harmony memory to store the best found solution through a number of

defined improvisations within its local and global search process. In each improvisation, one

test case will be selected to the final test suite (i.e. provided that no constraints are detected)

until all the required interaction tuples are covered.

SA_SAT (Cohen, Dwyer et al. 2007) is a variant strategy based on earlier work based

on Simulated Annealing, SA (Stardom 2001; Cohen, Colbourn et al. 2008). Using the metal

re-heat and cooling methaphor, SA_SAT relies on a large random search space for generating

a t-way test suite. Using probability-based transformation equations, SA_SAT adopts binary

search algorithm to find the best test case per iteration to be added to the final test suite. Here,

the selection of the best test case per iteration also takes into account the presence of

constraints (i.e. upon finding one, the iteration will generated new candidate). In the reported

work, SA merely addresses small values of interaction strength(i.e., t≤ 3). Another variant of

SA, called CASA (Garvin, Cohen et al. 2011), has been developed by to address the support

for constraints. Empirical evidences suggest its successful use for software product lines

testing.

Similar to SA_SAT, mAETG_SAT(Cohen, Dwyer et al. 2007) is also a variant of an

existing strategy called AETG (Cohen, Dalal et al. 1996; Cohen, Dalal et al. 1997). Similar to

its predecessor, mAETG_SAT generates one final test case for every cycle of iteration. For

Kamal Z. Zamli et.al/International Journal of Software Engineering and Computer Systems 1(2015) 15-27, February 2015

19

each cycle, AETG generates a number of test case candidates, and from these candidates, one

is greedily selected as the final test case (i.e., covering the most uncovered tuples).

mAETG_SAT provides the support for constraints through its forbidden tuple

implementation.

GVS_CONST (Othman and Zamli 2011) is perhaps the newest strategy that addresses

t-way test generation and constraints. In general, GVS_CONST generates several test case

candidates and selects the best candidates (one that covered the most uncovered tuples) as

final test case. Basically, GVS_CONST adopts iterative and random heuristics for test case

selection. GVS_CONST only generates new test case candidates when there is a tie situation

(i.e. when more than one value can cover the most uncovered tuples or in the presence of

constraints).

LATE ACCEPTANCE HILL CLIMBING ALGORITHM

As the name suggest, Late Acceptance Hill Climbing (LAHC) algorithm is derived from Hill

Climbing (HC). The main feature of LAHC is the fact that it is capable of avoiding the local

optimum associated with HC. Unlike HC which decides on the best next move based on one-

to-one comparison between the current and neighbour candidate, LAHC compares with all the

randomly generated potential solutions captured in to the LAHC memory (in the form of list

with fixed length). In fact, LAHC generates a current neighbour to be compared with all the

corresponding value from the LAHC memory one-at-a-time. LAHC also maintains the

previous cost function in the memory to allow selection of the best fit value. Ideally, the

candidate cost is compared with the selected ith cost from the memory. If the cost is not worse,

the candidate will be accepted (as the current local best). Upon acceptance, the cost of the

new current solution will be made to replace the original ith cost from the memory. Here, the

list keeps the fitness array Fa of length Lfa (Fa = {f0, f1,f2..fLfa-1}). The position v, at the ith

iteration can be calculated via:

 𝑣 = i mod 𝐿𝑓𝑎 (1)

where mod represents the remainder of the integer division

 Assuming minimization problem, the final acceptance condition at ith iteration can be

expressed as:

𝐶𝑖 ≤ 𝐶𝑖−𝐿𝑓𝑎 or 𝐶𝑖 ≤ 𝐶𝑖−1 (2)

where𝐶𝑖 = the candidate cost;𝐶𝑖−1 = the current cost;𝐶𝑖−𝐿𝑓𝑎= the cost of the current

Lfaiteration before

The main template for the LAHC tailored for constraints t-way generation is given in

Figure 1.

Here, the internal M iteration loop will iteratively update Lfa with the local best value.

Here, an index of the worst solution in Lfa is kept internally to facilitate the update of Lfa.

Upon completion of the M iteration, the local best solution (with the best Cs) will be taken

into the final test suite. Here, LAHC maintains the list of constraints as forbidden list in order

to make sure that the local best solution does not contain the constraints tuple. If so, new test

Comparative benchmarking of constraints t-way test generation strategy based on late acceptance hill climbing algorithm

20

value will be generated accordingly. The main iteration loop will stop when all the

interactions are covered.

Define the constraints list, F

Generate interactions IL (excluding constraints defined in F)

Produce an initial solution s

Calculate initial cost function C(s)

Specify Lfa, and iteration M

while L is not empty

begin

 /////////////////// Diversification ///////////////////

for all k ϵ {0...Lfa-1} do randomize fk:=s,C(s)

Assign the initial number of iteration I:= 0;

 do until I=M

Construct a candidate solution s* based on at

 least 1 uncovered pair

 Calculate its cost function C(s*)

v :=I mod Lfa

if C(s*)≤ fv or C(s*)≤ C(s)

then accept candidate (s :=s*)

 /////////////////// Intensification ///////////////////

s:=pertubate (s)

if C(s)>fworst

 Replace the worst solution in Lfa , fworst:= s,C(s)

 Increment the number of iteration I:= I+1

 end do

Pick the best s from Lfa not in F

 If exist best s not violating F

 Add best s to the final suite

 Reset Lfafor the next iteration

 End

Figure 1. LAHC Strategy

OBJECTIVE FUNCTION AND PARAMETER SETTING

 The t-way optimization problem of concerned can be specified using Equation 3 and 4.

Maximize 𝑓(𝑥) = ∑ 𝑥𝑖

𝑁

1
 (3)

 Subject to

𝑥 ∈ 𝑥𝑖 , 𝑖 = 1,2, … . , 𝑁 (4)

where 𝑓(𝑥) is an objective function capturing the weight of the test case in terms of

the number of covered interactions; x is the set of each decision variable 𝑥𝑖 ; 𝑥𝑖 is the set of

possible range of values for each decision variable, that is,𝑥𝑖 = {𝑥i(1), 𝑥𝑖(2), . . . , 𝑥𝑖(𝐾)} for

discrete decision variables (𝑥i(1) < 𝑥𝑖(2) <. . . < 𝑥𝑖(𝐾)); N is the number of decision

parameters; and 𝐾 is the number of possible values for the discrete variables.

Addressing the aforementioned optimization problem, the main consideration for our

LAHC strategy is as follows.

Kamal Z. Zamli et.al/International Journal of Software Engineering and Computer Systems 1(2015) 15-27, February 2015

21

A. PARAMETER INITIALIZATION

Firstly, the LAHC accepts the input parameters and their corresponding values. To do so,

LAHC needs to initialize the size of Lfa as well as the number of iteration, M. As estimates,

we use adopt Equation 4 and 5 to generate 𝐿𝑓𝑎 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 as well as 𝑀𝑚𝑖𝑛𝑖𝑚𝑢𝑚.

𝐿𝑓𝑎 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 = 2 × lower bound estimate at t = 2 (4)

𝑀𝑚𝑖𝑛𝑖𝑚𝑢𝑚 = 10 × lower bound estimate at t = 2 (5)

Using the same CA (N, 2, 4 6) for tuning as proposed by Stardom (Stardom 2001), we

perform a number of experiments with our LAHC strategy. Specifically, we vary L and M

and t to see the effects that they give on the generated test suite size. For all L and M values,

we vary them as a multiple of 2𝑛𝑥𝐿𝑓𝑎 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 and 2𝑛𝑥𝑀𝑚𝑖𝑛𝑖𝑚𝑢𝑚for 𝑛 = 0 𝑡𝑖𝑙𝑙 5 (i.e. based

on the lower bound=16 at t=2) respectively. For t values, we vary them from t=2 till t=5 for

the obvious reason (i.e. t=6 already gives exhaustive CA (4096; 6, 4 6)). We run all the

experiments 20 times to ensure statistical significance in terms of the average and the best test

suite size.

Table 1. Effect of L and M on test suite size

CA (N, t, 4 6) Lfa min =32,

Mmin =160

Lfa=64, M=320 Lfa=128,

M =640

Lfa=256,

M =1280

Lfa=512,

M =2560

Lfa=1024,

M =5120

Avg. Bst. Avg. Bst. Avg. Bst. Avg. Bst. Avg. Bst. Avg. Bst.

t=2 24.15 22 24.1 23 23.6 22 23.7 23 23.75 22 23.75 22

t=3 106.25 104 105.85 102 104.25 102 104.5 98 104.8 101 104.4 101

t=4 418.55 413 416.65 411 416.8 410 415.8 410 416.25 412 416.4 409

t=5 1352.2 1339 1350.2 1329 1351.7 1333 1351.1 1334 1352.05 1337 1352.5 1337

From Table 1, we observe that Lfa=128 and M=640 give the best result as compared to

other settings. As such, these values will be used throughout this paper.

INTERACTION GENERATION (IL) AND HANDLING OF CONSTRAINTS

LAHC generates the interactions list IL containing all interactions tuple combinations for each

pair which later forms the objective function described earlier. For the example given earlier,

the 2-way parameter interaction has six possible combinations. For combination 1001,

whereby P1 and P4 are available, there are 3×2 possible interaction elements between P1 and

P4. For each parameter in the combination number (i.e. with two ones), the value of the

corresponding parameter is included in the interaction elements. Here, the excluded values are

marked as “don’t care”. This process is iteratively repeated for the other five interactions, i.e.,

(P1, P2), (P1, P3), (P2, P3), (P2, P4), and (P3, P4). Here, if the interaction elements capture the

constraints specified in F, then they will be removed individually. The complete algorithm is

illustrated in Figure 2.

A. DIVERSIFICATION AND INTENSIFICATION

Comparative benchmarking of constraints t-way test generation strategy based on late acceptance hill climbing algorithm

22

To achieve optimal solution, there is a need for sufficiently elaborate local and global search

via exploiting the diversification and intensification property of the algorithm of interest.

Within the general purpose LAHC algorithm, diversification for global search

isappropriately addressed by the generation of random initial solution within the Lfa list.

However, the intensification element within the local search is missing.

Let ps = t-interaction elements

Let m= max number of defined parameters

Let p = {p0 ..pj}, where p represents the sets of values defined for each parameter

 for index=0 to 2 m - 1

begin

Let b = binary number

b = convert to binary

if (the no of ‘1’s in b = t)

Add the representitave interaction value for p[index] in Ps

 else

Add don’t care value for p[index] in Ps

 //////////////////// Remove Constraints///////////////////////

if (Ps in the constraint list F)

Remove Ps

 End

Figure 2. Interaction Element Generation and Constraints Removal

Addressing this intensification issue, there is a need for a good perturbation function

which can “slightly” modify the current local best solution to get better solution (see Figure

3). For instance, consider a solution candidate, 𝑆(𝑥𝑛𝑒𝑤):

𝑆(𝑥𝑛𝑒𝑤) = (𝑥1,
𝑛𝑒𝑤𝑥2

𝑛𝑒𝑤, … 𝑥𝑖
𝑛𝑒𝑤, … . 𝑥𝑁

𝑛𝑒𝑤), (𝐶𝑠) (6)

Here, only one value of 𝑥𝑖 to be pertubated is randomly selected. If 𝑥𝑖 range values is

{0, 1, 2, 3, 4, 5}, and the new 𝑥𝑖
𝑛𝑒𝑤in the Lfa has the value of {3} then this value can be

moved to the neighbouring value from -5 to 5.

function Perturbate (solution s)

 begin

 Let old_s =s;

 Let i = random {0...length (s)}

move_size = random between (-max value range of xi , max value range of xi)

 xi:= xi+ move_size;

if xi>max value range

 xi:= 0

 if xi< 0 max value range

 xi:=max_value_range

 update s(xi)

if (s contain constraints in F)

 S = old S;

 return (s);

 end

Figure 3. Function Perturbation

Kamal Z. Zamli et.al/International Journal of Software Engineering and Computer Systems 1(2015) 15-27, February 2015

23

Although IL containing constraints have been dealt with during interaction elements

generation, constraint may reappear due to the diversified solution generated by perturbation

function. In this case, the perturbation function re-takes the old solution value.

EVALUATION EXPERIMENTS

Our goal is to evaluate the performance of LAHC against other competing strategies. Here,

we have adopted two main experiments as conducted in (Alsewari and Zamli 2012) and (R.R.

Othman, N. Khamis et al.) respectively. In the first experiment, we are considering 9 CCAs to

be benchmarked with LAHC (i.e. involving HSS, SA_SAT, mAETG_SAT, PICT and Test

Cover). For the second experiment, we are considering additional 7 CCAs to be benchmarked

with LAHC (i.e. involving GVS_CONST, IPOG, and PICT). For our experiments, we have

used Lfa = 128, and M iteration =640 for all the experiments. Here, we report the best results

after 20 runs for statistical significance. Table . : II and III summarize the results. Here, the

best generated results are highlighted in bold font.

From the result in Table . : I, LAHC give competitive results overall. Specifically,

HSS performs the best with the most numbers of optimal cases (i.e. 8 cases). SA_SAT comes

in second with 7 cases. LAHC comes in third overall with 6 cases. PICT gives the poorest

results overall (i.e. no single optimal test case size).

Table 2. Benchmarking Results Based On T-Way As In (Alsewari And Zamli 2012)

System

Configuration
Forbidden Constraints LAHC HSS SA_SAT mATEG_SAT PICT

Test

Cover

CCA(N, 2,33,F) F={(C2,3,C3,1),(C2,2,C3,1),(C1,1,C3,2),

(C1,3,C2,4)(C1,3,C3,3),(C1,3,C2,3,C3,3)}
9

9 9 9 10 9

CCA(N, 2,43,F) F={(C1,1,C2,2),(C1,3,C3,4),

(C1,4,C2,4,C3,1)(C1,3,C2,2)}
10 10 10 10 10 10

CCA(N, 2,53,F) F={(C1,2,C2,2),(C1,5,C3,3),(C1,5,C3,5),

(C1,5,C2,4,C3,2),(C1,5,C2,3),(C1,2,C2,4)}
16 16 16 16 17 16

CCA(N, 2,63,F) F={(C1,4,C2,6),(C2,4,C3,5),(C1,3,C2,1),

(C2,2,C3,3),(C1,4,C3,2),(C2,4,C3,2),

(C1,6,C2,5,C3,5)}

17 16 17 17 19 17

CCA(N, 2,73,F) F={(C2,1,C3,6),(C1,6,C2,6,C3,4),(C1,5,C3,1),

(C1,7,C2,5),(C1,2,C2,5),(C1,7,C2,4)}
25 25 25 25 26 25

CCA(N, 3,54,F) F={(C1,4,C3,3,C4,2),(C2,2,C4,4),

(C1,3,C2,4),(C1,2,C3,4)}
25 26 26 26 27 30

CCA(N, 3,64,F) F={(C1,5,C4,3),(C3,4,C4,2),

(C2,3,C4,3),(C2,2,C3,3)}

38 36 36 37 39 36

CCA(N, 3,74,F) F={(C2,3,C3,7),(C2,6,C3,7),(C2,5,C3,3),

(C4,2,C4,6)(C3,3,C4,5),(C1,3,C3,7)}
36 36 36 37 39 38

CCA(N, 4,35,F) F={(C1,2,C2,2,C3,2,C4,2),(C2,1,C3,1,C4,1,C5,1)} 51 49 49 52 55 49

Comparative benchmarking of constraints t-way test generation strategy based on late acceptance hill climbing algorithm

24

Table 3. Benchmarking Results Based on Variable Strength T-Way As in

System Configuration Forbidden Constraints LAHC GVS_CONST IPOG PICT

VCCA(N,3,37,CA(4,35),F) F=({C1,2,C4,1,C7,1},{C2,1,

C6,2,C7,2},{C3,1,C4,1,C5,3},{C2,3,C4,2,C6,3},

{C2,2,C4,1,C7,3}, {C1,1,C2,2,C5,3,C6,2})
105 112 116 765

VCCA(N,

3,47,CA(4,45),F)

F=({C3,2,C5,3}, {C2,2,C6,4,C7,4},

{C1,3,C5,3,C6,2,C7,1}, {C5,2,C6,2,C7,3},

{C1,4,C2,4,C3,1,C4,1})
325 344 355 4958

VCCA(N,

3,57,CA(4,55),F)

F=({C1,5,C2,2,C3,1,C7,5},

{C1,2,C2,3,C3,4},

{C2,1,C4,1,C5,3,C6,4},

{C2,2,C4,2,C6,4,C7,1},

{C3,1,C6,5,C7,2},

{C4,2,C6,1,C7,3})

811 819 935 19994

VCCA(N,

4,39,CA(5,36),F)

F=({C1,3,C4,1,C7,2,C9,1},

{C2,2,C3,3,C6,1},

{C4,1,C5,1,C6,3,C8,2},

{C5,2,C6,2,C8,2})

348 357 378 8101

VCCA(N,

4,49,CA(5,46),F)

F=({C1,1,C5,3,C6,4,C8,2},

{C2,2,C3,4,C4,1,C7,2,C9,1},

{C1,2,C2,1,C8,4,C9,4},

{C3,2,C4,3,C6,1,C7,4},

{C1,3,C2,4,C3,1,C4,3,C5,2})

1434 1500 1471 87886

VCCA(N,

4,59,CA(5,56),F)

F=({C2,2,C3,4,C8,5,C9,5},

{C3,3,C4,3,C7,4,C8,2},

{C2,1,C5,3,C6,5,C7,4,C8,1},

{C6,2,C7,1,C8,4,C9,1})

4403 4413 5186 534168

VCCA(N, 4,233343,

CA(5,223242),F)

F=({C1,2,C2,1,C3,2,C9,4},

{C4,2,C5,3,C7,4,C8,1},

{C2,2,C7,2,C8,3,C9,2},

{C1,1,C2,1,C3,2,C5,3,C7,3},

{C6,2,C7,1,C8,2,C9,3})

329 345 387 6938

As for Table 3, LAHC outperforms all against GVS_CONST, IPOG, and PICT.

Putting LAHC aside, GVS_CONST appear to outperform IPOG and PICT. Finally, similar to

earlier experiments in Table 2, PICT gives the poorest result overall.

CONCLUSIONS

In short, this paper has elaborated a new strategy, called LAHC, based on Late Acceptance

Hill Climbing Algorithm for constraints covering array construction. Our experience with

LAHC has been promising. As the scope for future work, we are looking to extend the

capability of LAHC in terms of supporting high parameters (i.e. p>500) to be used for

software product line testing.

ACKNOWLEDGMENT

This research work involves collaborative efforts between Universiti Malaysia Pahang and

Umm Al-Qura University. The work is funded by grant number 11-INF1674-10 from the

Long-Term National Plan for Science, Technology and Innovation (LT-NPSTI), the King

Abdul-Aziz City for Science and Technology (KACST), Kingdom of Saudi Arabia. We thank

the Innovation Office, Universiti Malaysia Pahang and the Science and Technology Unit at

Umm Al-Qura University for their continued logistics support.

Kamal Z. Zamli et.al/International Journal of Software Engineering and Computer Systems 1(2015) 15-27, February 2015

25

REFERENCES

Afzal, W., R. Torkar, et al. (2009). "A Systematic Review of Search-Based Testing for Non-

Functional System Properties." Information and Software Technology 51 (6): 957-

976.

Ahmed, B. S. and K. Z. Zamli (2010). PSTG: A T-Way Strategy Adopting Particle Swarm

Optimization. Proceedings of the 4th Asia International Conference on Mathematical

/Analytical Modelling and Computer Simulation, IEEE Computer Society.

Ahmed, B. S. and K. Z. Zamli (2010). T-Way Test Data Generation Strategy Based on

Particle Swarm Optimization. Proceedings of the 2nd International Conference on

Computer Research and Development, IEEE Computer Society.

Ahmed, B. S. and K. Z. Zamli (2011). "The Development of a Particle Swarm Based

Optimization Strategy for Pairwise Testing." Journal of Artificial Intelligence 4 (2):

156-165.

Ahmed, B. S., K. Z. Zamli, et al. (2012). "Constructing a T-Way Interaction Test Suite Using

the Particle Swarm Optimization Approach." International Journal of Innovative

Computing, Information and Control 8 (1): 431-452.

Alsewari, A. R. A. and K. Z. Zamli (2012). "Design and Implementation of a Harmony-

Search-based Variable-Strength t-way Testing Strategy with Constraints Support."

Information and Software Technology 54 : 553-568.

Arshem, J. (2010). "TVG." Retrieved 16 June, 2010, from

http://sourceforge.net/projects/tvg.

Bryce, R. and C. Colbourn (2007). One-Test-at-a-Time Heuristic Search for Interaction Test

Suites. Proceedings of the 9th Annual Conference on Genetic and Evolutionary

Computation, London, England.

Chen, X., Q. Gu, et al. (2009). Variable Strength Interaction Testing with an Ant Colony

System Approach. Proceedings of the 16th Asia-Pacific Software Engineering

Conference, IEEE Computer Society.

Cohen, D. M., S. R. Dalal, et al. (1997). "The AETG System: An Approach to Testing Based

on Combinatorial Design." IEEE Transactions on Software Engineering 23 (7): 437-

444.

Cohen, D. M., S. R. Dalal, et al. (1996). "The Combinatorial Design Approach to Automatic

Test Generation." IEEE software 13 (5): 83-88.

Cohen, M. B. (2004). Designing Test Suites For Software Interaction Testing. PhD,

University of Auckland.

Cohen, M. B. (2004). Designing Test Suites for Software Interaction Testing. Ph.D,

University of Auckland.

Cohen, M. B., C. J. Colbourn, et al. (2008). "Constructing Strength Three Covering Arrays

with Augmented Annealing." Discrete Mathematics 308 (13): 2709-2722.

Cohen, M. B., M. B. Dwyer, et al. (2007). Interaction Testing of Highly-Configurable

Systems in the Presence of Constraints. Proceeding of International Symposium on

Software Testing and Analysis, London, UK, ACM.

Daich, G. T. (2003). Testing Combinations of Parameters Made Easy. Proceedings of the

IEEE Systems Readiness Technology Conference (AUTOTESTCON 2003), CA,

USA, IEEE Computer Society.

Garvin, B. J., M. B. Cohen, et al. (2011). "Evaluating Improvements to a Meta-Heuristic

Search for Constrained Interaction Testing." Empirical Software Engineering(16): 61-

102.

Comparative benchmarking of constraints t-way test generation strategy based on late acceptance hill climbing algorithm

26

Grindal, M., J. Offutt, et al. (2005). "Combination Testing Strategies: A Survey." Journal of

Software Testing, Verification and Reliability 15 (3): 167-199.

Harman, M. and B. F. Jones (2001). "Search-Based Software Engineering." Information and

Software Technology 43v(14): 833-839.

Hartman, A. and L. Raskin (2004). "Problems and Algorithms for Covering Arrays." Discrete

Mathematics 284 (1-3): 149-156.

Hedayat, A. S., N. J. A. Sloane, et al. (1999). Orthogonal Arrays: Theory and Applications.

New York, Springer Verlag.

Klaib, M. F. J. (2009). Development Of An Automated Test Data Generation And Execution

Strategy Using Combinatorial Approach. PhD, Universiti Sains Malaysia.

Lei, Y., R. Kacker, et al. (2007). IPOG: A General Strategy for T-Way Software Testing.

Proceedings of the 14th Annual IEEE International Conference and Workshops on the

Engineering of Computer-Based Systems, Tucson, AZ U.S.A, IEEE Computer

Society.

Mandl, R. (1985). "Orthogonal Latin Squares: An Application of Experiment Design to

Compiler Testing." Communications of the ACM 28 (10): 1054-1058.

McCaffrey, J. (2010). An Empirical Study of Pairwise Test Set Generation Using a Genetic

Algorithm. Proceedings of the 7th International Conference on Information

Technology, IEEE Computer Society.

Nie, C. and H. Leung (2011). "A Survey of Combinatorial Testing." ACM Computing

Surveys 43 (2).

Othman, R. R. and K. Z. Zamli (2011). "ITTDG: Integrated T-way Test Data Generation

Strategy for Interaction Testing." Scientific Research and Essays 6 (17): 3638-3648.

Pallas, D. (2003). "Jenny." Retrieved 16 June 2010, 2010, from

http://www.burtleburtle.net/bob/math.

R.R. Othman, N. Khamis, et al. "Variable Strength T-Way Test Suite Generator with

Constraints Support." Malaysia Journal of Computer Science 27 (3): 204-217.

Sherwood., G. (2006). "TestCover." Retrieved 15 June, 2011, from

http://testcover.com/pub/constex.php.

Shiba, T., T. Tsuchiya, et al. (2004). Using Artificial Life Techniques to Generate Test Cases

for Combinatorial Testing. Proceedings of the 28th Annual International Computer

Software and Applications Conference, IEEE Computer Society.

Stardom, J. (2001). Metaheuristics and The Search for Covering and Packing Array Master

of Scienc Master thesis, Simon Fraser University.

Sthamer, H. (1995). The Automatic Generation of Software Test Data Using Genetic

Algorithms. PhD thesis, Universityof Glamorgan,Pontyprid, Wales.

Tung, Y. W. and W. S. Aldiwan (2000). Automatic Test Case Generation For The New

Generation Mission Software System. Proceedings of IEEE Aerospace Conference,

Big Sky, MT, USA.

Wang, Z. Y., B. W. Xu, et al. (2008). Greedy Heuristic Algorithms to Generate Variable

Strength Combinatorial Test Suite. Proceedings of the 8th International Conference on

Quality Software, IEEE Computer Society.

Williams, A. W. (2000). Determination of Test Configurations for Pair-wise Interaction

Coverage. Proceedings of the 13th International Conference on Testing of

Communicating System, Ottawa, Canada.

Williams, A. W. (2002). "TConfigure" Retrieved 16 June 2010, 2010, from

http://www.site.uottawa.ca/~awilliam.

Williams, A. W. (2010). "TConfigure" Retrieved February, 2012, from

http://www.site.uottawa.ca/~awilliam/.

Kamal Z. Zamli et.al/International Journal of Software Engineering and Computer Systems 1(2015) 15-27, February 2015

27

Yan, J. and J. Zhang (2006). Backtracking Algorithms And Search Heuristics To Generate

Test Suites For Combinatorial Testing. Proceeding of the 30th Annual International

Computer Software and Applications Conference, IEEE Computer Society.

Younis, M. I. (2010). MIPOG: A Parallel T-Way Minimization Strategy For Combinatorial

Testing. PhD, Universiti Sains Malaysia.

Younis, M. I. and K. Z. Zamli (2010). "MC-MIPOG: A Parallel T-Way Test Generation

Strategy for Multicore Systems." ETRI Journal 32 (1): 73-83.

Younis, M. I., K. Z. Zamli, et al. (2008). IRPS --- An Efficient Test Data Generation Strategy

for Pairwise Testing. Proceedings of the 12th international conference on Knowledge-

Based Intelligent Information and Engineering Systems, Part I, Zagreb, Croatia,

Springer-Verlag.

Younis, M. I., K. Z. Zamli, et al. (2008). MIPOG - Modification Of The IPOG Strategy For

T-Way Software Testing. Proceeding of The Distributed Frameworks and

Applications (DFmA), Penang, Malaysia.

Younis, M. I., K. Z. Zamli, et al. (2008). A Strategy For Grid Based T-Way Test Data

Generation. Proceedings the 1st IEEE International Conference on Distributed

Frameworks and Application (DFmA '08), Penang, Malaysia.

Yu-Wen, T. and W. S. Aldiwan (2000). Automating Test Case Generation for the New

Generation Mission Software System. Proceedings of the IEEE Aerospace

Conference, Big Sky, MT, USA, IEEE Computer Society.

Zamli, K. Z., M. F. J. Klaib, et al. (2011). "Design And Implementation Of A T-Way Test

Data Generation Strategy With Automated Execution Tool Support." Information

Sciences 181(9): 1741-1758

