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ABSTRACT 

 

This paper describes the new t-way strategy based the Late Acceptance based Hill Climbing 

algorithm, called LAHC, for constraints t-way test generation. Unlike earlier competing 

work, LAHC does not require significant tuning in order to have it working. In fact, LAHC 

merely requires minor adjustment of the common controlling parameters involving iteration 

and population size depending on the given system configuration. Our benchmarking results 

have been promising as LAHC gives competitive results in most constraints configurations 

considered. 

 

Keywords: Optimization Algorithms, Software Testing, Artificial Intelligent

 

 

INTRODUCTION 

 

Considering cost and resources constraints, exhaustive testing is practically infeasible. Many 

sampling based strategies have been proposed in the literature to help test engineers select a 

subset of test cases (i.e. from the exhaustive testing) and yet not sacrificing the fault detection 

capability of the testing process. In the field of combinatorial testing, researchers have turned 

into t-way strategies (Zamliet al., 2011) whereby t indicates the interaction strength. Here, all 

t-way strategies generate the t-way test suite with the aim to cover every possible combination 

produced by the interacting parameters (or also known as tuples).  

In the last 20 years, many t-way strategies have been proposed in literature (including 

that of GTWay (Klaib 2009; Zamli, Klaib et al. 2011), MIPOG(Younis, Zamli et al. 2008; 

Younis, Zamli et al. 2008; Younis 2010; Younis and Zamli 2010), TConfig(Williams 2000; 

Williams 2010), TCG(Tung and Aldiwan 2000), Jenny(Pallas 2003), TVG (Yu-Wen and 

Aldiwan 2000; Arshem 2010),  IRPS (Younis, Zamli et al. 2008), and TConfig(Williams 

2000; Williams 2010)).  Recently, researchers have also started to adopt meta-heuristics based 

strategies including that of Genetic Algorithm (GA) GA (Sthamer 1995; Shiba, Tsuchiya et 

al. 2004; Bryce and Colbourn 2007; Afzal, Torkar et al. 2009; Chen, Gu et al. 2009; 

McCaffrey 2010), Ant Colony (ACS) ACA (Harman and Jones 2001; Shiba, Tsuchiya et al. 

2004; Wang, Xu et al. 2008; Afzal, Torkar et al. 2009; Chen, Gu et al. 2009), Particle Swarm 

Optimization (PSTG) PSTG (Ahmed and Zamli 2010; Ahmed and Zamli 2010; Ahmed and 

Zamli 2011; Ahmed, Zamli et al. 2012), and Harmony Search Strategy (HSS) (Alsewari and 

Zamli 2012).  Although these aforementioned strategies are useful, many of them fall short in 
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term of the support for constraints (i.e. exclusion of impossible combinations) rendering the 

generation of potentially unusable test cases.  

Addressing these issues, this paper describes the new meta-heuristics t-way strategy 

based the Late Acceptance based Hill Climbing algorithm, called LAHC, for constraints t-

way test generation. Like competing meta-heuristics based strategies, LAHC gives 

sufficiently optimal results as compared to general computational based strategies. Unlike 

competing meta-heuristics based strategies, LAHC does not require significant tuning in order 

to have it working. In fact, LAHC merely requires minor adjustment of the common 

controlling parameters involving iteration and population size depending on the given system 

configuration. The development of LAHC serves as our research vehicle to investigate the use 

of variant of Hill Climbing for constraints t-way test generation. 

 

COVERING ARRAY NOTATIONS 
 

Any system under test (termed SUT) consists of number of parameters (or factors) with their 

associated values (or levels). Typically, t-way strategy aims to generate the most minimum 

test cases according to the coverage interaction criteria. 

Mathematically, t-way interaction test suite can be abstracted using the covering array 

(CA) notations. Normally, the CA has four parameters; N, t, p, and v (i.e., CA (N, t, vp).  Here, 

the symbols p, v, and t are used to refer to number of parameters, values, and interaction 

strength for the CA, respectively. For example, CA (9, 2, 34) represents a test suite consisting 

of 94 arrays (i.e., the rows represent the size of test cases (N), and the column represents the 

parameter (p)). In this case, the test suite also covers two-way interaction for a system with 

four 3-value parameters.  

When the CA gives the most optimal result, the covering array can be rewritten as 

CAN (N, t, vp).  Often, there is no exact formula to estimate the most optimal result of CA 

(given the value of t,v, and p). However, the lower bound of a particular covering array can be 

estimated. Here, no strategy can produce test size lower than the lower bound (Daich 2003). 

Often, the lower bound for CA can be determined by the product of the values up to t, that is, 

v1x v2xv1..vt=vtin descending order. Taking CA (9, 2, 34) as example, the lower bound is 

3x3=9. 

Similar to CA, mixed covering array (MCA) has three parameters; N, t, and 

Configuration (C) (i.e., MCA (N, t, C)).  In addition to N and t that carry the same meaning as 

in CA, MCA adopts a new symbol, C. Consistent with earlier given notations, C represents 

the parameters and values of each configuration in the following format: v1 
p1 v2 

p2… vn
pn 

indicating that there are p1 parameters with v1values, p2 parameters with v2values, and so on. 

For example, MCA (1265, 4, 102 41 32 27) indicates the test size of 1265 that covers four-way 

interaction. Here, the configuration takes 12 parameters: two 10-value parameters, one 4-

value parameter, two 3-value parameters, and seven 2-value parameters.   

Intuitively, lower bound estimate for MCA is similar to CA and can be determined by 

the product of the values up to t in descending order.  Considering MCA (N, 4, 102 41 32 27), 

the estimated lower bound is 10x10x4x3=1200.   

In the case of variable interaction strength covering array (VCA), the parameters 

consist of N, t, C, and Set (CS) (i.e., VCA (N, t, C, CS)). Similar to MCA, N, t, and C carry 

the same meaning. Set CS consists of a multiple set of disjoint (mixed) covering array with 

strength larger than t (i.e., as sub-strength from the main strength). For example, VCA (N, 2, 

32 22, {CA (3, 31 22)}) indicates the test size of 12 for pairwise interaction (with two 3-value 

parameters and two 2-value parameters) as the main strength and three-way interaction (with 

one 3-value parameters and two 2-value parameters) as the sub-strength.  
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At a glance, the lower bound estimation of VCA is similar to that of MCA and CA. A 

closer look reveals a subtle difference. Here, the lower bound is dependent on the VCA 

involved.  There are potentially 2 possible cases. In the first case, when the contribution of the 

main strength is larger than that of the sub-strength, the lower bound can be estimated by 

taking the product of the main strength values up to t in descending order.   For example, the 

estimated lower bound for VCA (N, 2, 10232 22, {CA (3, 31 22)}) is 10x10=100 instead of 

3x2x2=12. In the second case, when the contribution of the sub-strength is larger than that of 

the main strength, the lower bound can be estimated by taking the product of the sub-strength 

values up to t in descending order. Considering the VCA (N, 2, 32 22, {CA (3, 31 22)}) as 

example, the estimated lower bound is 3x2x2= 12. 

Finally, to cater for constraints, a new variable called constraints (F) interaction is 

introduced to represent the set of disallowed interactions (i.e. CCA (N, t, vp, F) or MCCA (N, 

t, C, F) or VCCA (N, t, C, F)). Here, C takes the following format {ca,b} where a indicates the 

pth parameter and b indicates the vth value are within the list of constraints. For example, 

consider CCA (10, 2, 33, F) where F = {c1,1,c3,1}. In this case, the CCA indicates the test size 

of 10 for pairwise interaction of three 3-value parameters with constraints pair interaction 

elements from parameter 1 and value 1, as well as parameter 3 and value 1.  It should be 

noted that the lower bound estimation may not hold true in the presence of constraints (i.e. as 

constraints forbid some combination, hence, allowing much less generated test size). 

 

RELATED WORK 

 

In general, existing t-way strategies can be categorized into two categories, that is, algebraic 

approaches or computational approaches respectively (Lei, Kacker et al. 2007).  

Algebraic approaches construct test sets using pre-defined rules or mathematical 

function (Lei, Kacker et al. 2007). Often, the computations involved in algebraic approaches 

are typically lightweight, and in some cases, algebraic approaches can produce the most 

optimal test sets. However, the applicability of algebraic approaches is often restricted to 

small configurations (Yan and Zhang 2006; Lei, Kacker et al. 2007). Orthogonal Arrays (OA) 

(Hedayat, Sloane et al. 1999; Hartman and Raskin 2004), MOA (Mandl 1985) and TConfig 

(Williams 2002) are typical example of the strategies that are based on algebraic approach.  

Unlike algebraic approaches, computational approaches often rely on the generation of 

the all pair combinations. Based on all pair combinations, the computational approaches 

iteratively search the combinations space to generate the required test case until all pairs have 

been covered. In this manner, computational approaches can ideally be applicable even in 

large system configurations. However, in the case where the number of pairs to be considered 

is significantly large, adopting computational approaches can be expensive due to the need to 

consider explicit enumeration from all the combination space. Example strategies that adopt 

this approach includes An Automatic Efficient Test Generator (AETG) (Cohen, Dalal et al. 

1996; Cohen, Dalal et al. 1997),  its variant (mAETG) (Cohen 2004), PICT [8, 36], IPOG 

(Lei, Kacker et al. 2007), Jenny(Pallas 2003), TVG (Yu-Wen and Aldiwan 2000; Arshem 

2010),  IRPS (Younis, Zamli et al. 2008), GTWay(Klaib 2009; Zamli, Klaib et al. 2011), 

MIPOG(Younis, Zamli et al. 2008; Younis, Zamli et al. 2008; Younis 2010; Younis and 

Zamli 2010), TConfig(Williams 2000; Williams 2010), TCG(Tung and Aldiwan 2000)). 

Another variant of the computational based approach is based on meta-heuristics algorithm 

including that of GA (Shiba, Tsuchiya et al. 2004), HSS (Alsewari and Zamli 2012), PSTG 

(Ahmed and Zamli 2010; Ahmed and Zamli 2010; Ahmed and Zamli 2011; Ahmed, Zamli et 

al. 2012), SA(Stardom 2001; Cohen, Colbourn et al. 2008), and ACA (Shiba, Tsuchiya et al. 

2004)).  Although useful to help test engineers sample combinatorial test suite, the support for 
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constraints within the aforementioned strategies have not been sufficiently considered. In fact, 

there has been only a handful of strategies address the constraints support including that of 

IPOG (Lei, Kacker et al. 2007), PICT [8, 36], TestCover(Sherwood. 2006), HSS (Alsewari 

and Zamli 2012), SA_SAT (Cohen, Dwyer et al. 2007), mAETG_SAT(Cohen, Dwyer et al. 

2007) and GVS_CONST(R.R. Othman, N. Khamis et al.). In line with the focus of this paper, 

what follows is the survey of the constraints supporting strategies. A comprehensive recent 

survey for t-way strategies is beyond the scope of this paper and can be found in Cohen 

(Cohen 2004), Grindal(Grindal, Offutt et al. 2005), and Nie(Nie and Leung 2011). 

IPOG (Lei, Kacker et al. 2007) starts the generation process by generating an 

exhaustive test suite for the first t parameters (in the case of variable interaction strength (t), 

the highest t will be chosen) as the initial test suite. Later, IPOG relies on two processes called 

horizontal extension and vertical extension. Horizontal extension is a process of adding one 

parameter to the initial test suite. This process is repeated until all parameters are covered by 

the test suite. Vertical extension is a complementary process for horizontal extension in order 

to ensure that all tuples are covered. During horizontal extension, there is a possibility that 

several tuples cannot be covered by the initial test suite. In this case, the initial test suite will 

be extended vertically by adding several new test cases to the initial test suite. In the case of 

constraints, IPOG defines a number of Boolean operators allowing the defined constraints to 

be specified as the rules for selecting the test cases during the vertical and horizontal 

extension. 

PICT [8, 36] generates all specified interaction tuples and randomly selects their 

corresponding interaction combinations to form the test cases as part of the complete test 

suite. In case a particular test case matches a specified constraint, PICT randomly generates a 

new combination for covering the interaction tuples. Constraints are supported in PICT 

through its Boolean constraints definition that avoids forbidden tuple.   

TestCover(Sherwood. 2006) is a commercial software tool. Not much information can 

be gathered regarding TestCover apart from its commercial availability and some benchmark 

configurations on constraints that can be obtained from its website.  

HSS (Alsewari and Zamli 2012) is a meta-heuristic strategy based on the Harmony 

Search Algorithm. Intuitively, HSS mimics the musician trying to compose good music from 

improvisation form the best tune from his memory or from random. In doing so, HSS 

iteratively exploits the Harmony memory to store the best found solution through a number of 

defined improvisations within its local and global search process. In each improvisation, one 

test case will be selected to the final test suite (i.e. provided that no constraints are detected) 

until all the required interaction tuples are covered.   

SA_SAT (Cohen, Dwyer et al. 2007) is a variant strategy based on earlier work based 

on Simulated Annealing, SA (Stardom 2001; Cohen, Colbourn et al. 2008). Using the metal 

re-heat and cooling methaphor, SA_SAT relies on a large random search space for generating 

a t-way test suite. Using probability-based transformation equations, SA_SAT adopts binary 

search algorithm to find the best test case per iteration to be added to the final test suite. Here, 

the selection of the best test case per iteration also takes into account the presence of 

constraints (i.e. upon finding one, the iteration will generated new candidate). In the reported 

work, SA merely addresses small values of interaction strength(i.e., t≤ 3). Another variant of 

SA, called CASA (Garvin, Cohen et al. 2011), has been developed by to address the support 

for constraints. Empirical evidences suggest its successful use for software product lines 

testing. 

Similar to SA_SAT, mAETG_SAT(Cohen, Dwyer et al. 2007) is also a variant of an 

existing strategy called AETG (Cohen, Dalal et al. 1996; Cohen, Dalal et al. 1997). Similar to 

its predecessor, mAETG_SAT generates one final test case for every cycle of iteration. For 
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each cycle, AETG generates a number of test case candidates, and from these candidates, one 

is greedily selected as the final test case (i.e., covering the most uncovered tuples). 

mAETG_SAT provides the support for constraints through its forbidden tuple 

implementation. 

GVS_CONST (Othman and Zamli 2011) is perhaps the newest strategy that addresses 

t-way test generation and constraints. In general, GVS_CONST generates several test case 

candidates and selects the best candidates (one that covered the most uncovered tuples) as 

final test case. Basically, GVS_CONST adopts iterative and random heuristics for test case 

selection. GVS_CONST only generates new test case candidates when there is a tie situation 

(i.e. when more than one value can cover the most uncovered tuples or in the presence of 

constraints).  
 

LATE ACCEPTANCE HILL CLIMBING ALGORITHM 

 

As the name suggest, Late Acceptance Hill Climbing (LAHC) algorithm is derived from Hill 

Climbing (HC). The main feature of LAHC is the fact that it is capable of avoiding the local 

optimum associated with HC. Unlike HC which decides on the best next move based on one-

to-one comparison between the current and neighbour candidate, LAHC compares with all the 

randomly generated potential solutions captured in to the LAHC memory (in the form of list 

with fixed length). In fact, LAHC generates a current neighbour to be compared with all the 

corresponding value from the LAHC memory one-at-a-time.  LAHC also maintains the 

previous cost function in the memory to allow selection of the best fit value. Ideally, the 

candidate cost is compared with the selected ith cost from the memory. If the cost is not worse, 

the candidate will be accepted (as the current local best). Upon acceptance, the cost of the 

new current solution will be made to replace the original ith cost from the memory. Here, the 

list keeps the fitness array Fa of length Lfa (Fa = {f0, f1,f2..fLfa-1}). The position v, at the ith 

iteration can be calculated via: 

 

   𝑣 = i mod 𝐿𝑓𝑎                                                              (1) 

 

where mod represents the remainder of the integer division 

 

 Assuming minimization problem, the final acceptance condition at ith iteration can be 

expressed as: 

 

𝐶𝑖 ≤   𝐶𝑖−𝐿𝑓𝑎     or    𝐶𝑖 ≤   𝐶𝑖−1                                         (2) 

 

where𝐶𝑖 = the candidate cost;𝐶𝑖−1 = the current cost;𝐶𝑖−𝐿𝑓𝑎= the cost of the current 

Lfaiteration before 

 

The main template for the LAHC tailored for constraints t-way generation is given in 

Figure 1. 

 

Here, the internal M iteration loop will iteratively update Lfa with the local best value. 

Here, an index of the worst solution in Lfa is kept internally to facilitate the update of Lfa. 

Upon completion of the M iteration, the local best solution (with the best Cs) will be taken 

into the final test suite. Here, LAHC maintains the list of constraints as forbidden list in order 

to make sure that the local best solution does not contain the constraints tuple. If so, new test 



Comparative benchmarking of constraints t-way test generation strategy based on late acceptance hill climbing algorithm 

 
 

20 

 

value will be generated accordingly. The main iteration loop will stop when all the 

interactions are covered. 
 

Define the constraints list, F 

Generate interactions IL (excluding constraints defined in F) 

Produce an initial solution s  

Calculate initial cost function C(s)  

Specify Lfa, and iteration M 

while L is not empty 

begin 

     /////////////////// Diversification ///////////////////  

for all k ϵ {0...Lfa-1} do randomize fk:=s,C(s)  

 

Assign the initial number of iteration I:= 0;  

  do until I=M 

Construct a candidate solution s* based on at  

     least 1 uncovered pair  

     Calculate its cost function C(s*)  

v :=I mod Lfa 

if C(s*)≤ fv or C(s*)≤ C(s) 

then accept candidate (s :=s*) 

 

      /////////////////// Intensification ///////////////////  

s:=pertubate (s) 

if C(s)>fworst 

      Replace the worst solution in Lfa , fworst:= s,C(s)  

 Increment the number of iteration I:= I+1  

  end do 

Pick the best s  from Lfa not in F 

    If exist best s not violating F 

        Add best s  to the final suite 

    Reset Lfafor the next iteration 

 End 

 

Figure 1. LAHC Strategy 
 

 
OBJECTIVE FUNCTION AND PARAMETER SETTING 

 

 The t-way optimization problem of concerned can be specified using Equation 3 and 4.  

 

Maximize 𝑓(𝑥) =  ∑ 𝑥𝑖

𝑁

1
                                                           (3) 

 Subject to   

 

𝑥 ∈  𝑥𝑖   , 𝑖 =  1,2, … . , 𝑁                                                          (4) 

where 𝑓(𝑥) is an objective function capturing the weight of the test case in terms of 

the number of covered interactions; x is the set of each decision variable 𝑥𝑖   ;  𝑥𝑖   is the set of 

possible range of values for each decision variable, that is,𝑥𝑖  = {𝑥i(1), 𝑥𝑖(2), . . . , 𝑥𝑖(𝐾)}  for 

discrete decision variables (𝑥i(1) < 𝑥𝑖(2) <. . . < 𝑥𝑖(𝐾)); N is the number of decision 

parameters; and 𝐾 is the number of possible values for the discrete variables. 

Addressing the aforementioned optimization problem, the main consideration for our 

LAHC strategy is as follows. 
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A. PARAMETER INITIALIZATION 
 

Firstly, the LAHC accepts the input parameters and their corresponding values. To do so, 

LAHC needs to initialize the size of Lfa as well as the number of iteration, M. As estimates, 

we use adopt Equation 4 and 5 to generate  𝐿𝑓𝑎 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 as well as 𝑀𝑚𝑖𝑛𝑖𝑚𝑢𝑚. 
 

𝐿𝑓𝑎 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 =  2 × lower bound estimate at t = 2                             (4) 
 

𝑀𝑚𝑖𝑛𝑖𝑚𝑢𝑚 =  10 × lower bound estimate at t = 2                             (5) 
 

Using the same CA (N, 2, 4 6) for tuning as proposed by Stardom (Stardom 2001), we 

perform a number of experiments with our LAHC strategy. Specifically, we vary L and M 

and t to see the effects that they give on the generated test suite size. For all L and M values, 

we vary them as a multiple of 2𝑛𝑥𝐿𝑓𝑎 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 and 2𝑛𝑥𝑀𝑚𝑖𝑛𝑖𝑚𝑢𝑚for  𝑛 = 0 𝑡𝑖𝑙𝑙 5  (i.e. based 

on the lower bound=16 at t=2) respectively. For t values, we vary them from t=2 till t=5 for 

the obvious reason (i.e. t=6 already gives exhaustive CA (4096; 6, 4 6)). We run all the 

experiments 20 times to ensure statistical significance in terms of the average and the best test 

suite size. 

 

Table 1. Effect of L and M on test suite size 
 

CA (N, t, 4 6) Lfa min =32,  

Mmin =160 

Lfa=64, M=320 Lfa=128,  

M =640 

Lfa=256,  

M =1280 

Lfa=512,  

M =2560 

Lfa=1024,  

M =5120 

Avg.  Bst. Avg. Bst. Avg. Bst. Avg. Bst. Avg. Bst. Avg. Bst. 

t=2 24.15 22 24.1 23 23.6 22 23.7 23 23.75 22 23.75 22 

t=3 106.25 104 105.85 102 104.25 102 104.5 98 104.8 101 104.4 101 

t=4 418.55 413 416.65 411 416.8 410 415.8 410 416.25 412 416.4 409 

t=5 1352.2 1339 1350.2 1329 1351.7 1333 1351.1 1334 1352.05 1337 1352.5 1337 

 

From Table 1, we observe that Lfa=128 and M=640 give the best result as compared to 

other settings. As such, these values will be used throughout this paper. 
 

INTERACTION GENERATION (IL) AND HANDLING OF CONSTRAINTS 

 

LAHC generates the interactions list IL containing all interactions tuple combinations for each 

pair which later forms the objective function described earlier. For the example given earlier, 

the 2-way parameter interaction has six possible combinations. For combination 1001, 

whereby P1 and P4 are available, there are 3×2 possible interaction elements between P1 and 

P4. For each parameter in the combination number (i.e. with two ones), the value of the 

corresponding parameter is included in the interaction elements. Here, the excluded values are 

marked as “don’t care”. This process is iteratively repeated for the other five interactions, i.e., 

(P1, P2), (P1, P3), (P2, P3), (P2, P4), and (P3, P4). Here, if the interaction elements capture the 

constraints specified in F, then they will be removed individually. The complete algorithm is 

illustrated in Figure 2. 

 

A. DIVERSIFICATION AND INTENSIFICATION  
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To achieve optimal solution, there is a need for sufficiently elaborate local and global search 

via exploiting the diversification and intensification property of the algorithm of interest.   

Within the general purpose LAHC algorithm, diversification for global search 

isappropriately addressed by the generation of random initial solution within the Lfa list. 

However, the intensification element within the local search is missing.  

 
Let ps = t-interaction elements 

Let m= max number of defined parameters 

Let p = {p0 ..pj}, where p represents the sets of values defined for each parameter 

 for index=0  to 2 m - 1 

begin 

Let b = binary number 

b = convert to binary 

if (the no of  ‘1’s in b = t) 

Add the representitave interaction value for p[index] in Ps 

     else 

Add don’t care value for p[index] in Ps 

 

     //////////////////// Remove Constraints/////////////////////// 

if (Ps in the constraint list F) 

Remove Ps 

   End 

Figure 2. Interaction Element Generation and Constraints Removal 

 

Addressing this intensification issue, there is a need for a good perturbation function 

which can “slightly” modify the current local best solution to get better solution (see Figure 

3). For instance, consider a solution candidate, 𝑆(𝑥𝑛𝑒𝑤): 

 

𝑆(𝑥𝑛𝑒𝑤) = ( 𝑥1,
𝑛𝑒𝑤𝑥2

𝑛𝑒𝑤, … 𝑥𝑖
𝑛𝑒𝑤, … . 𝑥𝑁

𝑛𝑒𝑤), (𝐶𝑠 )                                (6) 

 

Here, only one value of 𝑥𝑖 to be pertubated is randomly selected. If 𝑥𝑖 range values is 

{0, 1, 2, 3, 4, 5}, and the new 𝑥𝑖
𝑛𝑒𝑤in the Lfa has the value of {3} then this value can be 

moved to the neighbouring value from -5 to 5. 
 

function Perturbate (solution s) 

 

 begin 

 Let old_s =s; 

    Let i = random {0...length (s)} 

move_size = random between (-max value range of xi , max value range of  xi)       

     xi:= xi+ move_size; 

 

if   xi>max value range 

               xi:= 0 

 

   if xi< 0 max value range 

              xi:=max_value_range 

 

  update s(xi) 

if (s contain constraints in F) 

    S = old S; 

 

  return (s);   

 end  

 

Figure 3. Function Perturbation 
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Although IL containing constraints have been dealt with during interaction elements 

generation, constraint may reappear due to the diversified solution generated by perturbation 

function.  In this case, the perturbation function re-takes the old solution value. 

 

EVALUATION EXPERIMENTS 

 

Our goal is to evaluate the performance of LAHC against other competing strategies. Here, 

we have adopted two main experiments as conducted in (Alsewari and Zamli 2012) and (R.R. 

Othman, N. Khamis et al.) respectively. In the first experiment, we are considering 9 CCAs to 

be benchmarked with LAHC (i.e. involving HSS, SA_SAT, mAETG_SAT, PICT and Test 

Cover). For the second experiment, we are considering additional 7 CCAs to be benchmarked 

with LAHC (i.e. involving GVS_CONST, IPOG, and PICT). For our experiments, we have 

used Lfa = 128, and M iteration =640 for all the experiments. Here, we report the best results 

after 20 runs for statistical significance. Table . : II and III summarize the results. Here, the 

best generated results are highlighted in bold font.  

From the result in Table . : I, LAHC give competitive results overall.  Specifically, 

HSS performs the best with the most numbers of optimal cases (i.e. 8 cases). SA_SAT comes 

in second with 7 cases.  LAHC comes in third overall with 6 cases. PICT gives the poorest 

results overall (i.e. no single optimal test case size).  
 

Table 2. Benchmarking Results Based On T-Way As In (Alsewari And Zamli 2012) 
 

System 

Configuration 
Forbidden Constraints LAHC HSS SA_SAT mATEG_SAT PICT 

Test 

Cover 

CCA(N, 2,33,F) F={(C2,3,C3,1),(C2,2,C3,1),(C1,1,C3,2), 

(C1,3,C2,4)(C1,3,C3,3),(C1,3,C2,3,C3,3)} 
9 

 

9 9 9 10 9 

CCA(N, 2,43,F) F={(C1,1,C2,2),(C1,3,C3,4), 

(C1,4,C2,4,C3,1)(C1,3,C2,2)} 
10 10 10 10 10 10 

CCA(N, 2,53,F) F={(C1,2,C2,2),(C1,5,C3,3),(C1,5,C3,5), 

(C1,5,C2,4,C3,2),(C1,5,C2,3),(C1,2,C2,4)} 
16 16 16 16 17 16 

CCA(N, 2,63,F) F={(C1,4,C2,6),(C2,4,C3,5),(C1,3,C2,1), 

(C2,2,C3,3),(C1,4,C3,2),(C2,4,C3,2), 

(C1,6,C2,5,C3,5)} 

17 16 17 17 19 17 

CCA(N, 2,73,F) F={(C2,1,C3,6),(C1,6,C2,6,C3,4),(C1,5,C3,1), 

(C1,7,C2,5),(C1,2,C2,5),(C1,7,C2,4)} 
25 25 25 25 26 25 

CCA(N, 3,54,F) F={(C1,4,C3,3,C4,2),(C2,2,C4,4), 

(C1,3,C2,4),(C1,2,C3,4)} 
25 26 26 26 27 30 

CCA(N, 3,64,F) F={(C1,5,C4,3),(C3,4,C4,2), 

(C2,3,C4,3),(C2,2,C3,3)} 

38 36 36 37 39 36 

CCA(N, 3,74,F) F={(C2,3,C3,7),(C2,6,C3,7),(C2,5,C3,3), 

(C4,2,C4,6)(C3,3,C4,5),(C1,3,C3,7)} 
36 36 36 37 39 38 

CCA(N, 4,35,F) F={(C1,2,C2,2,C3,2,C4,2),(C2,1,C3,1,C4,1,C5,1)} 51 49 49 52 55 49 
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Table 3. Benchmarking Results Based on Variable Strength T-Way As in  
 

System Configuration Forbidden Constraints  LAHC GVS_CONST IPOG PICT 

VCCA(N,3,37,CA(4,35),F) F=({C1,2,C4,1,C7,1},{C2,1, 

C6,2,C7,2},{C3,1,C4,1,C5,3},{C2,3,C4,2,C6,3}, 

{C2,2,C4,1,C7,3}, {C1,1,C2,2,C5,3,C6,2}) 
105 112 116 765 

VCCA(N, 

3,47,CA(4,45),F) 

F=({C3,2,C5,3}, {C2,2,C6,4,C7,4}, 

{C1,3,C5,3,C6,2,C7,1}, {C5,2,C6,2,C7,3}, 

{C1,4,C2,4,C3,1,C4,1}) 
325 344 355 4958 

VCCA(N, 

3,57,CA(4,55),F) 

F=({C1,5,C2,2,C3,1,C7,5}, 

{C1,2,C2,3,C3,4}, 

{C2,1,C4,1,C5,3,C6,4}, 

{C2,2,C4,2,C6,4,C7,1}, 

{C3,1,C6,5,C7,2}, 

{C4,2,C6,1,C7,3}) 

811 819 935 19994 

VCCA(N, 

4,39,CA(5,36),F) 

F=({C1,3,C4,1,C7,2,C9,1}, 

{C2,2,C3,3,C6,1}, 

{C4,1,C5,1,C6,3,C8,2}, 

{C5,2,C6,2,C8,2}) 

348 357 378 8101 

VCCA(N, 

4,49,CA(5,46),F) 

F=({C1,1,C5,3,C6,4,C8,2}, 

{C2,2,C3,4,C4,1,C7,2,C9,1}, 

{C1,2,C2,1,C8,4,C9,4}, 

{C3,2,C4,3,C6,1,C7,4}, 

{C1,3,C2,4,C3,1,C4,3,C5,2}) 

1434 1500 1471 87886 

VCCA(N, 

4,59,CA(5,56),F) 

F=({C2,2,C3,4,C8,5,C9,5}, 

{C3,3,C4,3,C7,4,C8,2}, 

{C2,1,C5,3,C6,5,C7,4,C8,1}, 

{C6,2,C7,1,C8,4,C9,1}) 

4403 4413 5186 534168 

VCCA(N, 4,233343, 

CA(5,223242),F) 

F=({C1,2,C2,1,C3,2,C9,4}, 

{C4,2,C5,3,C7,4,C8,1}, 

{C2,2,C7,2,C8,3,C9,2}, 

{C1,1,C2,1,C3,2,C5,3,C7,3}, 

{C6,2,C7,1,C8,2,C9,3}) 

329 345 387 6938 

 

As for Table 3, LAHC outperforms all against GVS_CONST, IPOG, and PICT. 

Putting LAHC aside, GVS_CONST appear to outperform IPOG and PICT. Finally, similar to 

earlier experiments in Table 2, PICT gives the poorest result overall. 

 

CONCLUSIONS 
 

In short, this paper has elaborated a new strategy, called LAHC, based on Late Acceptance 

Hill Climbing Algorithm for constraints covering array construction. Our experience with 

LAHC has been promising. As the scope for future work, we are looking to extend the 

capability of LAHC in terms of supporting high parameters (i.e. p>500) to be used for 

software product line testing.  
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