DOI QR코드

DOI QR Code

A study of dose and image quality with Convergence FFDM and DBT using tissue-equivalent phantom in digital mammography

유방조직등가 팬텀을 이용한 디지털유방촬영장치의 FFDM과 DBT의 선량과 영상품질에 대한 융합 연구

  • 유영신 (삼성서울병원 영상의학과 방사선학과) ;
  • 한동균 (을지대학교 방사선학과)
  • Received : 2018.11.02
  • Accepted : 2019.02.20
  • Published : 2019.02.28

Abstract

In this study, we measure dose against various density and thickness using phantom to compare FFDM to DBT of Digital mammography equipment and evaluate usefulness of DBT through compare the image quality of FFDM and DBT. We use mammography equipment, Selenia Dimensions ; this is able to examine breast by both FFDM and DBT, The results are that when the thickness of phantom is 6cm or more and density is 70% or more and the thickness of phantom is 7cm or more and density is 50% or more, AGD of DBT is lower than that of FFDM. The evaluation results of image quality are that in the tumor and small calcification group that composed by mammary tissue and fat, FFDM is great and in fibrin, DBT is great. But in the all thicknesses of BR3D phantom that reflected overlapped tissue of breasts, DBT is great in calcification group, fibrin and tumor. DBT is greater image quality and lower dose more than FFDM in Thick and high density breast, Therefore, DBT is more useful in Korean women's breast that is characterized dense breast than FFDM.

본 연구는 디지털 유방촬영장치의 DBT(Digital Breast Tomosynthesis)와 FFDM(Full Field DigitalMammography)의 비교를 위해 유방조직등가팬텀을 이용하여 두께와 밀도를 변화시켜 선량 및 화질을 평가하여 DBT의 유용성을 평가하였다. 측정 결과 평균유선선량은 팬텀 두께 6 cm이상 밀도 70% 이상일 때, 두께 7 cm이상 밀도 50% 이상일 때 FFDM 보다 DBT가 낮은 것을 알 수 있었다. 영상 측정 결과, 섬유소는 DBT에서 우수하다고 측정 되었고, 작은 석회화 그룹과 종양에서는 FFDM 이 우수하였다. 유방의 복잡한 조직과 유사한 BR3D 팬텀에서는 모든 두께와 섬유소, 석회화 및 종양 그룹 모두 DBT 가 우수하다고 측정 되었다. DBT는 FFDM보다밀도가 높고 두께가 두꺼운 두께가 두껍고 밀도가 높은 유방에서 영상 품질 우수하고 낮은 선량을 제공함으로서, 한국 여성의 많은 분포를 차지하는 치밀유방에 더 유용할 수 있을 것이라 사료된다.

Keywords

OHHGBW_2019_v10n2_29_f0001.png 이미지

Fig. 1. Used Device. (A: Mammography, B: Dosimeter)

OHHGBW_2019_v10n2_29_f0002.png 이미지

Fig. 2. Used mammo graphy phantom. (A: BR3070, BR5050, BR7030 phantom, B: 010A, 010B, 010C phantom, C: BR3D phantom, D: 010A, 010B, 010C target map of phantom, E: BR3D target map of phantom)

OHHGBW_2019_v10n2_29_f0003.png 이미지

Fig. 3. Position of phantom and dosimeter for measurement of AGD

OHHGBW_2019_v10n2_29_f0004.png 이미지

Fig. 4. Experimental process (A: 010A, 010B, 010C, B:Mammography image of 010A, 010B,010C C: BR3D D: Mammography image of BR3D

Table 1. AGD of phantom (mGy)

OHHGBW_2019_v10n2_29_t0001.png 이미지

Table 2. AGD of thickness as phantom (mGy)

OHHGBW_2019_v10n2_29_t0002.png 이미지

Table 3. ASD of FFDM and DBT as demsity of phantom (mGy)

OHHGBW_2019_v10n2_29_t0003.png 이미지

Table 4. Assessment of image quality in 010A, 010B, 010Cv phantom

OHHGBW_2019_v10n2_29_t0004.png 이미지

References

  1. B. Y. Sim. (2016). Cancer Screening Guidelines in Korea. The Korean Journal of Medicine, 90(3), 224-230. DOI : 10.3904/kjm.2016.90.3.224
  2. M. M. Jang. & H. S. Kim. (2017). Analysis of Factors Related to Pain Relief on Modified Mammography. Journal of the Korean Society of Radiology,11(5), 413-421 DOI : 10.7742/jksr.2017.11.5.413
  3. The Korea Central Cancer Registry. (2013). Annual report of cancer statistics in Korea in 2011. Ministry of Health and Welfare. http://ncc.re.kr/manage/manage03_033_list.jsp
  4. M. H. Kim. & G. S. Cheon. (2016). Changes in Spatial Resolution at Position of the Detector in Digital Mammography System. Journal of the Korean Society of Radiology,10(3), 215-222 DOI : 10.7742/jksr.2016.10.3.215
  5. The Korea Central Cancer Registry. (2017). Annual report of cancer statistics in Korea in 2015. Ministry of Health and Welfare. http://ncc.re.kr/cancerStatsList.ncc?searchKey=total&searchValue=&pageNum=1)
  6. T. W. Won. (2017). Ductal carcinoma in situ arising within a fibroadenoma of breas. Journal of Korea Academia-Industrial cooperation Society, 18(11), 454-458 DOI : 10.5762/KAIS.2017.18.11.454
  7. H. O. Y. Jeong. & P. G. JO. (2018). Quality Management for Mammography Equipment and Mammography. Journal of the Korean Society of Radiology, 12(5), 683-692 DOI : 10.7742/jksr.2018.12.5.683
  8. H. J. Shin. & A. Lee. (2015). Breast Cancer Screening in Korean Woman with Dense Breast Tissue. The Korean Society of Radiology, 73(5), 279-286. DOI : 10.3348/jksr.2015.73.5.279
  9. S. H. Lee. & B. J. Kang (2018). Breast Cancer in Women Younger than 35-Years-Old: Correlation of MRI Findings with Clinicopathological Features and Immunohistochemical Subtypes Journal of the Korean Society of Radiology, 79(4), 196-203 DOI : 10.3348/jksr.2018.79.4.196
  10. Etta D. Pisano. & Constantine Gatsonis. (2005). Diagnostic Performance of Digital versus Film Mammography for Breast-Cancer Screening. The New England Journal of Medicine, 353(17), 1773-1783. DOI : 10.1056/NEJMoa052911
  11. Skaane. P. & Bandos. Al. (2013). Comparison of digital mammography alone and digital mammography plus tomosynthesis in a population-based screening program. Radiology, 267(1), 47-56. DOI : 10.1148/radiol.12121373
  12. Friedewald. SM. & Rafferty. EA. (2014). Breast cancer screening using tomosynthesis in combination with digital mammography. The journal of the American Medical Association, 311(24), 2499-2507. DOI : 10.1001/jama.2014.6095
  13. Randell L. K. & Beth A. S. (2001). A survey of clinical factors and patient dose in mammography. The International journal of Medical Physics Research and Practice, 28(7), 1449-1454. DOI : 10.1118/1.1382606
  14. Ioannis. S.& Sankararaman. S. (2007). Computation of the glandular radiation dose in digital tomosynthesis of the breast. NIH Public Access, 34(1), 221-232 DOI : 10.1118/1.2400836
  15. Olgar. T. & Kahn. T. (2012). Average Glandular Dose in Digital Mammography and Breast Tomosynthesis. The journal of Thieme, 184(10), 911-918 DOI : 10.1055/s-0032-1312877