Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T13:18:13.185Z Has data issue: false hasContentIssue false

An archaeological radiocarbon database for southern Africa

Published online by Cambridge University Press:  08 July 2019

Emma Loftus*
Affiliation:
McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge CB2 3ER, UK
Peter J. Mitchell
Affiliation:
School of Archaeology, University of Oxford, 36 Beaumont Street, Oxford OX1 2PG, UK School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, PO Wits 2050, South Africa
Christopher Bronk Ramsey
Affiliation:
Research Laboratory for Archaeology and the History of Art, University of Oxford, 1 South Parks Road, Oxford OX1 3TS, UK
*
*Author for correspondence (Email: el485@cam.ac.uk)

Abstract

The Southern African Radiocarbon Database (SARD) is a new online, open-access database of published radiocarbon dates from southern African archaeological contexts. Compatible with the calibration, Bayesian modelling and mapping functionality of the OxCal software, the SARD will greatly assist in the documentation and analysis of chronological trends across the subcontinent. This article introduces the database and presents two case studies that demonstrate its utility and its integration with OxCal, comparing the temporal distribution of radiocarbon dates in two archaeologically well-investigated regions, and assessing the timing of Middle to Later Stone Age technological developments across the African subcontinent.

Type
Research
Copyright
Copyright © Antiquity Publications Ltd, 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arthur, C. 2008. The archaeology of indigenous herders in the Western Cape of South Africa. Southern African Humanities 20: 205–20.Google Scholar
Barberena, R., McDonald, J., Mitchell, P.J. & Veth, P.. 2017. Archaeological discontinuities in the Southern Hemisphere: a working agenda. Journal of Anthropological Archaeology 46: 111. https://doi.org/10.1016/j.jaa.2016.08.007Google Scholar
Beaumont, P.B. & Vogel, J.C.. 1972. On a new radiocarbon chronology for Africa south of the Equator: part 2. African Studies 31: 155–82. https://doi.org/10.1080/00020187208707381Google Scholar
Bousman, C.B. & Brink, J.S.. 2017. The emergence, spread, and termination of the early Later Stone Age event in South Africa and southern Namibia. Quaternary International 495: 116–35. https://doi.org/10.1016/j.quaint.2017.11.033Google Scholar
Bronk Ramsey, C. 1995. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37: 425–30. https://doi.org/10.1017/S0033822200030903Google Scholar
Bronk Ramsey, C. 2001. Development of the radiocarbon calibration program. Radiocarbon 43(2A): 355–63. https://doi.org/10.1017/S0033822200038212Google Scholar
Bronk Ramsey, C. 2009. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51: 1023–45. https://doi.org/10.1017/S0033822200034093Google Scholar
Bronk Ramsey, C. 2017. Methods for summarizing radiocarbon datasets. Radiocarbon 59: 1809–33. https://doi.org/10.1017/RDC.2017.108Google Scholar
Bronk Ramsey, C. & Lee, S.. 2013. Recent and planned developments of the program OxCal. Radiocarbon 55: 720–30. https://doi.org/10.1017/S0033822200057878Google Scholar
Bronk Ramsey, C., Dee, M.W., Rowland, J.M., Higham, T.F.G., Harris, S.A., Brock, F., Quiles, A., Wild, E.M., Marcus, E.S. & Shortland, A.J.. 2010. Radiocarbon-based chronology for dynastic Egypt. Science 328: 1554–57. https://doi.org/10.1126/science.1189395Google Scholar
Bronk Ramsey, C., Albert, P., Blockley, S., Hardiman, M., Lane, C., Macleod, A., Matthews, I.P., Muscheler, R., Palmer, A. & Staff, R.A.. 2014. Integrating timescales with time-transfer functions: a practical approach for an INTIMATE database. Quaternary Science Reviews 106: 6780. https://doi.org/10.1016/j.quascirev.2014.05.028Google Scholar
Bronk Ramsey, C., Lane, C.S., Smith, V.C. & Pollard, A.M.. 2015. The RESET tephra database and associated analytical tools. Quaternary Science Reviews 118: 3347. https://doi.org/10.1016/j.quascirev.2014.11.008Google Scholar
Compton, J.S. 2011. Pleistocene sea-level fluctuations and human evolution on the southern coastal plain of South Africa. Quaternary Science Reviews 30: 506–27. https://doi.org/10.1016/j.quascirev.2010.12.012Google Scholar
Deacon, J. 1974. Patterning in the radiocarbon dates for the Wilton/Smithfield complex in southern Africa. South African Archaeological Bulletin 29(113–114): 318. https://doi.org/10.2307/3887932Google Scholar
D'Errico, F., Backwell, L., Villa, P., Degano, I., Lucejko, J.J., Bamford, M.K., Higham, T.F.G. & Beaumont, P.B.. 2012. Early evidence of San material culture represented by organic artifacts from Border Cave, South Africa. Proceedings of the National Academy of Sciences of the USA 109: 13214–19. https://doi.org/10.1073/pnas.1204213109Google Scholar
Dewar, G.I., Reimer, P.J., Sealy, J.C. & Woodborne, S.. 2012. Late Holocene marine radiocarbon reservoir correction ({Delta}R) for the west coast of South Africa. The Holocene 22: 1481–89. https://doi.org/10.1177/0959683612449755Google Scholar
Fagan, B.M. 1961. Radiocarbon dates for sub-Saharan Africa. Journal of African History 2: 137–39. https://doi.org/10.1017/S002185370000219XGoogle Scholar
Fagan, B.M. 1969. Radiocarbon dates for sub-Saharan Africa: VI. Journal of African History 10: 149–69. https://doi.org/10.1017/S0021853700009336Google Scholar
Fick, S.E. & Hijmans, R.J.. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37: 4302–15. https://doi.org/10.1002/joc.5086Google Scholar
Gayo, E.M., Latorre, C. & Santoro, C.M.. 2015. Timing of occupation and regional settlement patterns revealed by time-series analyses of an archaeological radiocarbon database for the South-central Andes (16°–25°S). Quaternary International 356: 414. https://doi.org/10.1016/j.quaint.2014.09.076Google Scholar
Green, C. 2011. It's about time: temporality and intra-site GIS, in Jerem, E., Redo, F. & Szeverenyi, V. (ed.) Proceedings of the 36th CAA Conference 2008: 213–18. Budapest: Archaeolingua.Google Scholar
Hall, M. & Vogel, J.C.. 1980. Some recent radiocarbon dates from southern Africa. Journal of African History 21: 431–55. https://doi.org/10.1017/S0021853700018673Google Scholar
Hogg, A.G., Hua, Q., Blackwell, P.G., Niu, M., Buck, C.E., Guilderson, T.P., Heaton, T.J., Palmer, J.G., Reimer, P.J., Reimer, R.W., Turney, C.S.M. & Zimmerman, S.R.H.. 2013. SHCal13 southern hemisphere calibration, 0–50 000 years cal BP. Radiocarbon 55: 18891903. https://doi.org/10.2458/azu_js_rc.55.16783Google Scholar
Huffman, T.N. 2007. Handbook to the Iron Age: the archaeology of pre-colonial farming societies in southern Africa. Pietermaritzburg: University of KwaZulu-Natal Press.Google Scholar
Linick, T.W., Damon, P.E., Donahue, D.J. & Jull, A.J.T.. 1989. Accelerator mass spectrometry: the new revolution in radiocarbon dating. Quaternary International 1: 16. https://doi.org/10.1016/1040-6182(89)90004-9Google Scholar
Loftus, E., Sealy, J.C. & Lee-Thorp, J.A.. 2016. New radiocarbon dates and Bayesian models for Nelson Bay Cave and Byneskranskop 1: implications for the South African Later Stone Age sequence. Radiocarbon 58: 365–81. https://doi.org/10.1017/RDC.2016.12Google Scholar
Lombard, M., Wadley, L., Deacon, J., Wurz, S., Parsons, I., Mohapi, M., Swart, J. & Mitchell, P.J.. 2012. South African and Lesotho Stone Age sequence updated (I). South African Archaeological Bulletin 67(195): 120–44.Google Scholar
Maggs, T. 1977. Some recent radiocarbon dates from Eastern and Southern Africa. Journal of African History 18: 161–91. https://doi.org/10.1017/S0021853700015486Google Scholar
Martindale, A., Morlan, R., Betts, M., Blake, M., Gajewski, K., Chaput, M., Mason, A. & Vermeersch, P.M.. 2016. Canadian Archaeological Radiocarbon Database (CARD 2.1). Available at: http://www.canadianarchaeology.ca/help (accessed 25 April 2019).Google Scholar
Mason, R.J., Klapwijk, M., Welbourne, R.G., Sandelowsky, B.H. & Maggs, T.. 1973. Early Iron Age settlement of southern Africa. South African Journal of Science 69: 324–26.Google Scholar
Mitchell, P.J. 1997. Holocene Later Stone Age hunter-gatherers south of the Limpopo River, ca. 10,000–2000 B.P. Journal of World Prehistory 11: 359424. https://doi.org/10.1007/BF02220555Google Scholar
Mitchell, P.J. 2008. Developing the archaeology of Marine Isotope Stage 3. South African Archaeological Society Goodwin Series 10: 5265.Google Scholar
Mucina, L. & Rutherford, M.. 2006. The vegetation of South Africa, Lesotho and Swaziland. Pretoria: South African National Biodiversity Institute.Google Scholar
Pargeter, J., MacKay, A., Mitchell, P.J., Shea, J.J. & Stewart, B.A.. 2016. Primordialism and the ‘Pleistocene San’ of southern Africa. Antiquity 90: 1072–79. https://doi.org/10.15184/aqy.2016.100Google Scholar
Pargeter, J., Loftus, E. & Mitchell, P.J.. 2017. New ages from Sehonghong rock shelter: implications for the Late Pleistocene occupation of highland Lesotho. Journal of Archaeological Science: Reports 12: 307–15. https://doi.org/10.1016/j.jasrep.2017.01.027Google Scholar
Pargeter, J., Loftus, E., MacKay, A., Mitchell, P.J. & Stewart, B.A.. 2018. New ages from Boomplaas Cave, South Africa, provide increased resolution on Late/Terminal Pleistocene human behavioural variability. Azania: Archaeological Research in Africa 53: 156–84. https://doi.org/10.1080/0067270X.2018.1436740Google Scholar
Parkington, J.E. & Hall, M.. 1987. Patterning in recent radiocarbon dates from southern Africa as a reflection of prehistoric settlement and interaction. Journal of African History 28: 125. https://doi.org/10.1017/S002185370002939XGoogle Scholar
Reimer, P.J. et al. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50 000 years cal BP. Radiocarbon 55: 1869–87. https://doi.org/10.2458/azu_js_rc.55.16947Google Scholar
Russell, T., Silva, F. & Steele, J.. 2014. Modelling the spread of farming in the Bantu-speaking regions of Africa: an archaeology-based phylogeography. PLoS ONE 9: e87854. https://doi.org/10.1371/journal.pone.0087854Google Scholar
Sadr, K. 2015. Livestock first reached southern Africa in two separate events. PLoS ONE 10: e0134215. https://doi.org/10.1371/journal.pone.0134215Google Scholar
Sadr, K. & Sampson, C.G.. 2006. Through thick and thin: early pottery in southern Africa. Journal of African Archaeology 4: 235–52. https://doi.org/10.3213/1612-1651-10074Google Scholar
Sealy, J.C. 2016. Cultural change, demography, and the archaeology of the last 100 kyr in southern Africa, in Jones, S. & Stewart, B.A. (ed.) Africa from MIS 6-2: population dynamics and paleoenvironments. Dordrecht: Springer. https://doi.org/10.1007/978-94-017-7520-5_4Google Scholar
Stewart, B.A. & Mitchell, P.J.. 2018. Late Quaternary palaeoclimates and human-environment dynamics of the Maloti-Drakensberg region, southern Africa. Quaternary Science Reviews 196: 120. https://doi.org/10.1016/j.quascirev.2018.07.014Google Scholar
Villa, P., Soriano, S., Tsanova, T., Degano, I., Higham, T.F.G., D'Errico, F., Backwell, L., Lucejko, J.J., Comas, D. & Beaumont, P.B.. 2012. Border Cave and the beginning of the Later Stone Age in South Africa. Proceedings of the National Academy of Sciences of the USA 109: 13208–13. https://doi.org/10.1073/pnas.1202629109Google Scholar
Vogel, J.C. 1995. The temporal distribution of radiocarbon dates for the Iron Age in southern Africa. South African Archaeological Bulletin 50: 106109. https://doi.org/10.2307/3889059Google Scholar
Vogel, J.C. & Beaumont, P.B.. 1972. Revised radiocarbon chronology for the Stone Age in South Africa. Nature 237: 5051. https://doi.org/10.1038/237050a0Google Scholar
Vogel, J.C. & Fuls, A.. 1999. Spatial distribution of radiocarbon dates for the Iron Age in southern Africa. South African Archaeological Bulletin 54(170): 97101. https://doi.org/10.2307/3889287Google Scholar
Vogel, J.C. & Marais, M.. 1971. Pretoria radiocarbon dates I. Radiocarbon 13: 378–94. https://doi.org/10.1017/S003382220000850XGoogle Scholar
Vogel, J.C. & Visser, E.. 1981. Pretoria radiocarbon dates II. Radiocarbon 23: 4380. https://doi.org/10.1017/S0033822200037462Google Scholar
Vogel, J.C., Fuls, A. & Visser, E.. 1986. Pretoria radiocarbon dates III. Radiocarbon 28: 1133–72. https://doi.org/10.1017/S003382220002018XGoogle Scholar
Wadley, L. 1993. The Pleistocene Later Stone Age south of the Limpopo River. Journal of World Prehistory 7: 243–96. https://doi.org/10.1007/BF00974721Google Scholar
Williams, A. & Smith, M.. 2013. AustArch3: a database of 14C and luminescence ages from archaeological sites in southern Australia. Australian Archaeology 76: 102.Google Scholar