Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) January 9, 2023

New imidazolium-based ionic liquids for mitigating carbon steel corrosion in acidic condition

  • Munira S. Shaaban , Kamal Shalabi , Abd El-Aziz S. Fouda EMAIL logo and Mohamed A. Deyab EMAIL logo

Abstract

Two environmentally friendly inhibitors of imidazolium-based ionic liquids namely 3-benzyl-1-hexadecyl-1H-imidazol-3-ium chloride (IL-H), and 3-(4-chlorobenzyl)-1-hexadecyl-1H-imidazol-3-ium chloride (IL-Cl) were manufactured and their chemical structures were confirmed by spectra tools (FT-IR, and 1H NMR). The utilizing of these two new ionic liquids as green corrosion inhibitors for low carbon steel (LCS) in 1.0 M HCl under altered experimental conditions. Mass loss (ML), potentiodynamic polarization (PP), AC impedance spectroscopy (EIS) and surface morphology are take place in this study. The protection performance found to increase with increasing ionic liquid dose and temperature, reaching 92.9% and 95.1% for IL-H and IL-Cl at 120 ppm, respectively. Based on the PP records, the investigated ionic liquids behave as mixed-type inhibitors, influencing both anodic and cathodic responses. The inhibitory activity from these explored ionic liquids was stimulated by their adsorption on the effective surfaces of the steel surface in accordance with the Langmuir adsorption isotherm. The Density Functional Theory (DFT) method is used to analyze the relationship between quantum chemical calculations and the protection efficiency of ionic liquids.


Corresponding authors: Mohamed A. Deyab, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, Egypt, E-mail: ; and Abd El-Aziz S. Fouda, Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt, E-mail:
Corresponding authors: Mohamed A. Deyab, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, Egypt, E-mail: hamadadeiab@yahoo.com; and Abd El-Aziz S. Fouda, Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt, E-mail: asfouda@hotmail.com

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

  4. Data availability: The datasets used and/or analyzed during the current study available from the corresponding author on reasonable request.

References

1. Deyab, M. A., Keera, S. T. Cyclic voltammetric studies of carbon steel corrosion in chloride-formation water solution and effect of some inorganic salts. Egypt. J. Pet. 2012, 21, 31–36; https://doi.org/10.1016/j.ejpe.2012.02.005.Search in Google Scholar

2. Quraishi, M. A., Sardar, R. Corrosion inhibition of mild steel in acid solutions by some aromatic oxadiazoles. Mater. Chem. Phys. 2003, 78, 425–431; https://doi.org/10.1016/s0254-0584(02)00299-7.Search in Google Scholar

3. El-Sherbini, E. E. F., Abd El-Wahab, S. M., Deyab, M. A. Electrochemical behavior of tin in sodium borate solutions and the effect of halide ions and some inorganic inhibitors. Corros. Sci. 2006, 48, 1885–1898; https://doi.org/10.1016/j.corsci.2005.08.002.Search in Google Scholar

4. Xing, D. Y., Dong, W. Y., Chung, T.-S. Effects of different ionic liquids as green solvents on the formation and ultrafiltration performance of CA hollow fiber membranes. Ind. Eng. Chem. Res. 2016, 55, 7505–7513; https://doi.org/10.1021/acs.iecr.6b01603.Search in Google Scholar

5. Verma, C., Ebenso, E. E., Quraishi, M. A. Ionic liquids as green corrosion inhibitors for industrial metals and alloys. In Green Chemistry; Saleh, H. E. M., Koller, M., Eds. IntechOpen. 2018. https://doi.org/10.5772/intechopen.70421.Search in Google Scholar

6. Drioli, E., Macedonio, F. Membrane engineering for water engineering. Ind. Eng. Chem. Res. 2012, 51, 10051–10056; https://doi.org/10.1021/ie2028188.Search in Google Scholar

7. Hart, W. E. S., Harper, J. B., Aldous, L. The effect of changing the components of an ionic liquid upon the solubility of lignin. Green Chem. 2015, 17, 214–218; https://doi.org/10.1039/c4gc01888e.Search in Google Scholar

8. Cevasco, G., Chiappe, C. Are ionic liquids a proper solution to current environmental challenges? Green Chem. 2014, 16, 2375–2385; https://doi.org/10.1039/c3gc42096e.Search in Google Scholar

9. Gu, Y., Jerome, F. Bio-based solvents: an emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry. Chem. Soc. Rev. 2013, 42, 9550–9570; https://doi.org/10.1039/c3cs60241a.Search in Google Scholar PubMed

10. Huang, P., Latham, J.-A., MacFarlane, D. R., Howlett, P. C., Forsyth, M. A review of ionic liquid surface film formation on Mg and its alloys for improved corrosion performance. Electrochim. Acta 2013, 110, 501–510; https://doi.org/10.1016/j.electacta.2013.03.097.Search in Google Scholar

11. Uerdingen, M., Treber, C., Balser, M., Schmitt, G., Werner, C. Corrosion behaviour of ionic liquids. Green Chem. 2005, 7, 321–325; https://doi.org/10.1039/b419320m.Search in Google Scholar

12. Galiński, M., Lewandowski, A., Stępniak, I. Ionic liquids as electrolytes. Electrochim. Acta 2006, 51, 5567–5580; https://doi.org/10.1016/j.electacta.2006.03.016.Search in Google Scholar

13. Howlett, P. C., Brack, N., Hollenkamp, A. F., Forsyth, M., Macfarlane, D. R. Characterization of the lithium surface in N-methyl-N-alkylpyrrolidinium bis (trifluoromethanesulfonyl) amide room-temperature ionic liquid electrolytes. J. Electrochem. Soc. 2006, 153, A595; https://doi.org/10.1149/1.2164726.Search in Google Scholar

14. Forsyth, M., Howlett, P. C., Tan, S. K., MacFarlane, D. R., Birbilis, N. An ionic liquid surface treatment for corrosion protection of magnesium alloy AZ31. Electrochem. Solid State Lett. 2006, 9, B52; https://doi.org/10.1149/1.2344826.Search in Google Scholar

15. Quraishi, M. A., Rafiquee, M. Z. A., Khan, S., Saxena, N. Corrosion inhibition of aluminium in acid solutions by some imidazoline derivatives. J. Appl. Electrochem. 2007, 37, 1153–1162; https://doi.org/10.1007/s10800-007-9379-0.Search in Google Scholar

16. Likhanova, N. V., Domínguez-Aguilar, M. A., Olivares-Xometl, O., Nava-Entzana, N., Arce, E., Dorantes, H. The effect of ionic liquids with imidazolium and pyridinium cations on the corrosion inhibition of mild steel in acidic environment. Corros. Sci. 2010, 52, 2088–2097; https://doi.org/10.1016/j.corsci.2010.02.030.Search in Google Scholar

17. Zhang, Q. B., Hua, Y. X. Corrosion inhibition of mild steel by alkylimidazolium ionic liquids in hydrochloric acid. Electrochim. Acta 2009, 54, 1881–1887; https://doi.org/10.1016/j.electacta.2008.10.025.Search in Google Scholar

18. Tseng, C.-H., Chang, J.-K., Chen, J.-R., Tsai, W. T., Deng, M.-J., Sun, I.-W. Corrosion behaviors of materials in aluminum chloride–1-ethyl-3-methylimidazolium chloride ionic liquid. Electrochem. Commun. 2010, 12, 1091–1094; https://doi.org/10.1016/j.elecom.2010.05.036.Search in Google Scholar

19. Zaky, M. T., Nessim, M. I., Deyab, M. A. Synthesis of new ionic liquids based on dicationic imidazolium and their anti-corrosion performances. J. Mol. Liq. 2019, 290, 111230; https://doi.org/10.1016/j.molliq.2019.111230.Search in Google Scholar

20. Deyab, M. A., Zaky, M. T., Nessim, M. I. Inhibition of acid corrosion of carbon steel using four imidazolium tetrafluoroborates ionic liquids. J. Mol. Liq. 2017, 229, 396–404; https://doi.org/10.1016/j.molliq.2016.12.092.Search in Google Scholar

21. Deyab, M. A. Efficiency of cationic surfactant as microbial corrosion inhibitor for carbon steel in oilfield saline water. J. Mol. Liq. 2018, 255, 550–555; https://doi.org/10.1016/j.molliq.2018.02.019.Search in Google Scholar

22. El-Taib Heakal, F., Deyab, M. A., Osman, M. M., Nessim, M. I., Elkholy, A. E. Synthesis and assessment of new cationic Gemini surfactants as inhibitors for carbon steel corrosion in oilfield water. RSC Adv. 2017, 7, 47335–47352; https://doi.org/10.1039/c7ra07176k.Search in Google Scholar

23. Deyab, M. A., Fouda, A. S., Abdel-Fattah, S. New heterocyclic derivative to stop carbon steel corrosion. Z. Phys. Chem. 2020, 234, 63–73; https://doi.org/10.1515/zpch-2019-1399.Search in Google Scholar

24. Fouda, A. S., El-Hossiany, A., Ramadan, H. Calotropis Procera plant extract as green corrosion inhibitor for 304 stainless steel in hydrochloric acid solution. Zast. Mater. 2017, 58, 541–555; https://doi.org/10.5937/zasmat1704541f.Search in Google Scholar

25. Fouda, A. S., Shalabi, K., E-Hossiany, A. Moxifloxacin antibiotic as green corrosion inhibitor for carbon steel in 1 M HCl. J. Bio- Tribo-Corros. 2016, 2, 1–13; https://doi.org/10.1007/s40735-016-0048-x.Search in Google Scholar

26. Fouda, A. S., El-Wakeel, A. M., Shalabi, K., El-Hossiany, A. Corrosion inhibition for carbon steel by levofloxacin drug in acidic medium. Elixir Corros. Day 2015, 83, 33086–33094.Search in Google Scholar

27. Nessim, M. I., Zaky, M. T., Deyab, M. A. Three new gemini ionic liquids: synthesis, characterizations and anticorrosion applications. J. Mol. Liq. 2018, 266, 703–710; https://doi.org/10.1016/j.molliq.2018.07.001.Search in Google Scholar

28. Deyab, M. A., Hamdi, N., Lachkar, M., El Bali, B. Clay/phosphate/epoxy nanocomposites for enhanced coating activity towards corrosion resistance. Prog. Org. Coating 2018, 123, 232–237; https://doi.org/10.1016/j.porgcoat.2018.07.017.Search in Google Scholar

29. Deyab, M. A., Mele, G. Stainless steel bipolar plate coated with polyaniline/Zn-Porphyrin composites coatings for proton exchange membrane fuel cell. Sci. Rep. 2020, 10, 3277; https://doi.org/10.1038/s41598-020-60288-9.Search in Google Scholar PubMed PubMed Central

30. Fouda, A. S., Ahmed, R. E., El-Hossiany, A. Chemical, electrochemical and quantum chemical studies for famotidine drug as a safe corrosion inhibitor for α-brass in HCl solution. Prot. Met. Phys. Chem. Surf. 2021, 57, 398–411; https://doi.org/10.1134/s207020512101010x.Search in Google Scholar

31. Khaled, M. A., Ismail, M. A., Fouda, A. S. Novel pyrimidine-bichalcophene derivatives as corrosion inhibitors for copper in 1 M nitric acid solution. RSC Adv. 2021, 11, 25314–25333. https://doi.org/10.1039/d1ra03603c.Search in Google Scholar PubMed PubMed Central

32. Deyab, M. A., Eddahaoui, K., Essehli, R., Benmokhtar, S., Rhadfi, T., De Riccardis, A., Mele, G. Influence of newly synthesized titanium phosphates on the corrosion protection properties of alkyd coating. J. Mol. Liq. 2016, 216, 699–703; https://doi.org/10.1016/j.molliq.2016.01.092.Search in Google Scholar

33. Deyab, M. A., Mele, G., Al-Sabagh, A. M., Bloise, E., Lomonaco, D., Mazzetto, S. E., Clemente, C. D. S. Synthesis and characteristics of alkyd resin/M-Porphyrins nanocomposite for corrosion protection application. Prog. Org. Coating 2017, 105, 286–290; https://doi.org/10.1016/j.porgcoat.2017.01.008.Search in Google Scholar

34. Deyab, M. A., Essehli, R., El Bali, B. Performance evaluation of phosphate NaCo(H2PO3)3·H2O as a corrosion inhibitor for aluminum in engine coolant solutions. RSC Adv. 2015, 5, 48868–48874; https://doi.org/10.1039/c5ra06611e.Search in Google Scholar

35. Deyab, M. A., Keera, S. T., El Sabagh, S. M. Chlorhexidine digluconate as corrosion inhibitor for carbon steel dissolution in emulsified diesel fuel. Corros. Sci. 2011, 53, 2592–2597; https://doi.org/10.1016/j.corsci.2011.04.018.Search in Google Scholar

36. Deyab, M. A. Anticorrosion properties of nanocomposites coatings: a critical review. J. Mol. Liq. 2020, 313, 113533; https://doi.org/10.1016/j.molliq.2020.113533.Search in Google Scholar

37. Fouda, A. S., El-Ghaffar, M. A. A., Sherif, M. H., El-Habab, A. T., El-Hossiany, A. Novel anionic 4-tert-octyl phenol ethoxylate phosphate surfactant as corrosion inhibitor for C-steel in acidic media. Prot. Met. Phys. Chem. Surf. 2020, 56, 189–201. https://doi.org/10.1134/S2070205120010086.Search in Google Scholar

38. Abd El-Rehim, S. S., Hassan, H. H., Deyab, M. A., Abd El Moneim, A. Experimental and theoretical investigations of adsorption and inhibitive properties of Tween 80 on corrosion of aluminum alloy (A5754) in alkaline media. Z. Phys. Chem. 2016, 230, 67–78; https://doi.org/10.1515/zpch-2015-0614.Search in Google Scholar

39. Deyab, M. A. The influence of different variables on the electrochemical behavior of mild steel in circulating cooling water containing aggressive anionic species. J. Solid State Electrochem. 2009, 13, 1737–1742; https://doi.org/10.1007/s10008-009-0848-8.Search in Google Scholar

40. Deyab, M. A., El Bali, B., Essehli, R., Ouarsal, R., Lachkar, M., Fuess, H. NaNi (H2PO3)3·H2O as a novel corrosion inhibitor for X70-steel in saline produced water. J. Mol. Liq. 2016, 216, 636–640; https://doi.org/10.1016/j.molliq.2016.01.075.Search in Google Scholar

41. Fouda, A. S., Abd El-Maksoud, S. A., El-Hossiany, A., Ibrahim, A. Evolution of the corrosion-inhibiting efficiency of novel hydrazine derivatives against corrosion of stainless steel 201 in acidic medium. Int. J. Electrochem. Sci. 2019, 14, 6045–6064; https://doi.org/10.20964/2019.07.65.Search in Google Scholar

42. Deyab, M. A., Fouda, A. S., Osman, M. M., Abdel-Fattah, S. Mitigation of acid corrosion on carbon steel by novel pyrazolone derivatives. RSC Adv. 2017, 7, 45232–45240; https://doi.org/10.1039/c7ra08761f.Search in Google Scholar

43. Fouda, A. S., Ibrahim, H., Rashwaan, S., El-Hossiany, A., Ahmed, R. M. Expired drug (pantoprazole sodium) as a corrosion inhibitor for high carbon steel in hydrochloric acid solution. Int. J. Electrochem. Sci. 2018, 13, 6327–6346. https://doi.org/10.20964/2018.07.33.Search in Google Scholar

44. Motawea, M. M., El-Hossiany, A., Fouda, A. S. Corrosion control of copper in nitric acid solution using chenopodium extract. Int. J. Electrochem. Sci. 2019, 14, 1372–1387; https://doi.org/10.20964/2019.02.29.Search in Google Scholar

45. Caignan, G. A., Metcalf, S. K., Holt, E. M. Thiophene substituted dihydropyridines. J. Chem. Crystallogr. 2000, 30, 415–422; https://doi.org/10.1023/a:1009538107356.10.1023/A:1009538107356Search in Google Scholar

46. Boumhara, K., Tabyaoui, M., Jama, C., Bentiss, F. Artemisia Mesatlantica essential oil as green inhibitor for carbon steel corrosion in 1 M HCl solution: electrochemical and XPS investigations. J. Ind. Eng. Chem. 2015, 29, 146–155; https://doi.org/10.1016/j.jiec.2015.03.028.Search in Google Scholar

47. El Hamdani, N., Fdil, R., Tourabi, M., Jama, C., Bentiss, F. Alkaloids extract of Retama monosperma (L.) Boiss. seeds used as novel eco-friendly inhibitor for carbon steel corrosion in 1 M HCl solution: electrochemical and surface studies. Appl. Surf. Sci. 2015, 357, 1294–1305; https://doi.org/10.1016/j.apsusc.2015.09.159.Search in Google Scholar

48. Gao, X., Liu, S., Lu, H., Gao, F., Ma, H. Corrosion inhibition of iron in acidic solutions by monoalkyl phosphate esters with different chain lengths. Ind. Eng. Chem. Res. 2015, 54, 1941–1952; https://doi.org/10.1021/ie503508h.Search in Google Scholar

49. Droulas, J. L., Duc, T. M., Jugnet, Y. Etude des propiétés interfaciales des dépôts par évaporation et pulvérisation d’aluminium sur polyéthylène téréphtalate. Vide, Le. Les. Couches Minces 1991, 258, 39–41.Search in Google Scholar

50. Goldberg, M. J., Clabes, J. G., Kovac, C. A. Metal–polymer chemistry. II. Chromium–polyimide interface reactions and related organometallic chemistry. J. Vac. Sci. Technol. A 1988, 6, 991–996; https://doi.org/10.1116/1.575006.Search in Google Scholar

51. Gu, T., Chen, Z., Jiang, X., Zhou, L., Liao, Y., Duan, M., Wang, H., Pu, Q. Synthesis and inhibition of N-alkyl-2-(4-hydroxybut-2-ynyl) pyridinium bromide for mild steel in acid solution: Box–Behnken design optimization and mechanism probe. Corros. Sci. 2015, 90, 118–132; https://doi.org/10.1016/j.corsci.2014.10.004.Search in Google Scholar

52. Elgyar, O. A., Ouf, A. M., El-Hossiany, A., Fouda, A. S. The inhibition action of viscum album extract on the corrosion of carbon steel in hydrochloric acid solution. Biointerface Res. Appl. Chem. 2021, 11, 14344–14358.10.33263/BRIAC116.1434414358Search in Google Scholar

53. Yadav, M., Kumar, S., Sinha, R. R., Bahadur, I., Ebenso, E. E. New pyrimidine derivatives as efficient organic inhibitors on mild steel corrosion in acidic medium: electrochemical, SEM, EDX, AFM and DFT studies. J. Mol. Liq. 2015, 211, 135–145; https://doi.org/10.1016/j.molliq.2015.06.063.Search in Google Scholar

54. Meneguzzi, A., Ferreira, C. A., Pham, M. C., Delamar, M., Lacaze, P. C. Electrochemical synthesis and characterization of poly (5-amino-1-naphthol) on mild steel electrodes for corrosion protection. Electrochim. Acta 1999, 44, 2149–2156; https://doi.org/10.1016/s0013-4686(98)00323-5.Search in Google Scholar

55. Feng, Y., Chen, S., Guo, W., Zhang, Y., Liu, G. Inhibition of iron corrosion by 5, 10, 15, 20-tetraphenylporphyrin and 5, 10, 15, 20-tetra-(4-chlorophenyl) porphyrin adlayers in 0.5 M H2SO4 solutions. J. Electroanal. Chem. 2007, 602, 115–122; https://doi.org/10.1016/j.jelechem.2006.12.016.Search in Google Scholar

56. Abdallah, Y. M., Shalabi, K., Bayoumy, N. M. Eco-friendly synthesis, biological activity and evaluation of some new pyridopyrimidinone derivatives as corrosion inhibitors for API 5L X52 carbon steel in 5% sulfamic acid medium. J. Mol. Struct. 2018, 1171, 658–671; https://doi.org/10.1016/j.molstruc.2018.06.045.Search in Google Scholar

57. Gece, G., Bilgiç, S. Quantum chemical study of some cyclic nitrogen compounds as corrosion inhibitors of steel in NaCl media. Corros. Sci. 2009, 51, 1876–1878; https://doi.org/10.1016/j.corsci.2009.04.003.Search in Google Scholar

58. Palaniappan, N., Cole, I. S., Kuznetsov, A. E. Experimental and computational studies of graphene oxide covalently functionalized by octylamine: electrochemical stability, hydrogen evolution, and corrosion inhibition of the AZ13 Mg alloy in 3.5% NaCl. RSC Adv. 2020, 10, 11426–11434; https://doi.org/10.1039/c9ra10702a.Search in Google Scholar PubMed PubMed Central

59. Obot, I. B., Macdonald, D. D., Gasem, Z. M. Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: an overview. Corros. Sci. 2015, 99, 1–30; https://doi.org/10.1016/j.corsci.2015.01.037.Search in Google Scholar

60. Lukovits, I., Kalman, E., Zucchi, F. Corrosion inhibitors—correlation between electronic structure and efficiency. Corrosion 2001, 57, 3–8; https://doi.org/10.5006/1.3290328.Search in Google Scholar

61. Obot, I. B., Kaya, S., Kaya, C., Tüzün, B. Density Functional Theory (DFT) modeling and Monte Carlo simulation assessment of inhibition performance of some carbohydrazide Schiff bases for steel corrosion. Phys. E Low-Dimens. Syst. Nanostruct. 2016, 80, 82–90; https://doi.org/10.1016/j.physe.2016.01.024.Search in Google Scholar

62. Shalabi, K., Nazeer, A. A. Ethoxylates nonionic surfactants as promising environmentally safe inhibitors for corrosion protection of reinforcing steel in 3.5% NaCl saturated with Ca(OH)2 solution. J. Mol. Struct. 2019, 1195, 863–876; https://doi.org/10.1016/j.molstruc.2019.06.033.Search in Google Scholar

63. Shalabi, K., El-Gammal, O. A., Abdallah, Y. M. Adsorption and inhibition effect of tetraaza-tetradentate macrocycle ligand and its Ni (II), Cu (II) complexes on the corrosion of Cu10Ni alloy in 3.5% NaCl solutions. Colloids Surf. A Physicochem. Eng. Asp. 2021, 609, 125653; https://doi.org/10.1016/j.colsurfa.2020.125653.Search in Google Scholar

64. Deyab, M. A. Understanding the anti-corrosion mechanism and performance of ionic liquids in desalination, petroleum, pickling, de-scaling, and acid cleaning applications. J. Mol. Liq. 2020, 309, 113107; https://doi.org/10.1016/j.molliq.2020.113107.Search in Google Scholar

65. Ramalingam, S., Babu, P. D. S., Periandy, S., Fereyduni, E. Vibrational investigation, molecular orbital studies and molecular electrostatic potential map analysis on 3-chlorobenzoic acid using hybrid computational calculations. Spectrochim. Acta Mol. Biomol. Spectrosc. 2011, 84, 210–220; https://doi.org/10.1016/j.saa.2011.09.030.Search in Google Scholar PubMed

66. Deyab, M. A., Abd El-Rehim, S. S., Keera, S. T. Study of the effect of association between anionic surfactant and neutral copolymer on the corrosion behaviour of carbon steel in cyclohexane propionic acid. Colloids Surf. A Physicochem. Eng. Asp. 2009, 348, 170–176; https://doi.org/10.1016/j.colsurfa.2009.07.016.Search in Google Scholar

67. Deyab, M. A. M. Corrosion inhibition and adsorption behavior of sodium lauryl ether sulfate on l80 carbon steel in acetic acid solution and its synergism with ethanol. J. Surfactants Deterg. 2015, 18, 405–411; https://doi.org/10.1007/s11743-015-1671-0.Search in Google Scholar

Received: 2022-10-27
Accepted: 2022-12-22
Published Online: 2023-01-09
Published in Print: 2023-03-28

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.5.2024 from https://www.degruyter.com/document/doi/10.1515/zpch-2022-0155/html
Scroll to top button