Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) January 31, 2022

On the CaF2-BaF2 interface

  • Rotraut Merkle and Joachim Maier EMAIL logo

Abstract

Ionic redistribution at solid interfaces in ionic materials is the keystone of nanoionics. An experimental master piece has been provided by CaF2-BaF2 heterolayers. Meanwhile this system and the involved heterojunctions are extraordinarily well-understood. The present paper gives an account of this model system by reviewing not only transport experiments and defect-chemical modeling as a function of temperature and spacing of the individual layers, but also transition from semi-infinite to mesoscopic conditions, transition from Mott–Schottky to Gouy–Chapman behavior as well as the impact of ionic redistribution on the electronic minority carriers. Owing to the availability of bulk transport data, the analysis works well for in-plane and out-of-plane measurements with only the space charge potential as fit parameter. Space charge effects are able to provide an interpretation of the annealing behavior, too. The experiments are corroborated by molecular dynamics simulations. Extrapolating the ionic redistribution effects down to the atomic level may even explain homovalent doping effects in non-equilibrium mixtures of the two fluorides.


Corresponding author: Joachim Maier, Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany, E-mail:
Dedicated to Paul Heitjans on the occasion of his 75th birthday.

Acknowledgment

We thank Giuliano Gregori and Davide Moia for helpful discussions.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Maier, J. Nat. Mater. 2005, 4, 805–815; https://doi.org/10.1038/nmat1513.Search in Google Scholar PubMed

2. Maier, J. Phys. Chem. Chem. Phys. 2009, 11, 3011–3022; https://doi.org/10.1039/b902586n.Search in Google Scholar PubMed

3. Maier, J. Chem. Mater. 2014, 26, 348–360; https://doi.org/10.1021/cm4021657.Search in Google Scholar

4. Ruprecht, B., Wilkening, M., Steuernagel, S., Heitjans, P. J. Mater. Chem. 2008, 18, 5412–5416; https://doi.org/10.1039/b811453f.Search in Google Scholar

5. Ruprecht, B., Wilkening, M., Feldhoff, A., Steuernagel, S., Heitjans, P. Phys. Chem. Chem. Phys. 2009, 11, 3071–3081; https://doi.org/10.1039/b901293a.Search in Google Scholar PubMed

6. Duevel, A., Ruprecht, B., Heitjans, P., Wilkening, M. J. Phys. Chem. C 2011, 115, 23784–23789.10.1021/jp208472fSearch in Google Scholar

7. Sata, N., Eberman, K., Eberl, K., Maier, J. Nature 2000, 408, 946–949; https://doi.org/10.1038/35050047.Search in Google Scholar PubMed

8. Guo, X. X., Matei, I., Jamnik, J., Lee, J.-S., Maier, J. Phys. Rev. B 2007, 76, 125429; https://doi.org/10.1103/physrevb.76.125429.Search in Google Scholar

9. Guo, X. X., Maier, J. Adv. Funct. Mater. 2009, 19, 96–101; https://doi.org/10.1002/adfm.200800805.Search in Google Scholar

10. Barsis, E., Taylor, A. J. Chem. Phys. 1968, 48, 4362–4367; https://doi.org/10.1063/1.1668000.Search in Google Scholar

11. Bollmann, W., Henniger, H. Phys. Status Solidi 1972, A11, 367–371; https://doi.org/10.1002/pssa.2210110139.Search in Google Scholar

12. Zahn, D., Hochrein, O., Guo, X. X., Maier, J. J. Phys. Chem. C 2009, 113, 1315–1319; https://doi.org/10.1021/jp808658g.Search in Google Scholar

13. Guo, X. X., Matei, I., Jin-Phillipp, N. Y., van Aken, P. A., Maier, J. J. Appl. Phys. 2009, 105, 114321; https://doi.org/10.1063/1.3143623.Search in Google Scholar

14. Zahn, D., Heitjans, P., Maier, J. Chem. Eur J. 2012, 18, 6225–6229; https://doi.org/10.1002/chem.201102410.Search in Google Scholar

15. Jin-Phillipp, N. Y., Sata, N., Maier, J., Scheu, C., Hahn, K., Kelsch, M., Rühle, M. J. Chem. Phys. 2004, 120, 2375–2381; https://doi.org/10.1063/1.1635809.Search in Google Scholar

16. Sata, N., Jin-Phillipp, N. Y., Eberl, K., Maier, J. Solid State Ionics 2002, 154, 497–502; https://doi.org/10.1016/s0167-2738(02)00488-5.Search in Google Scholar

17. Guo, X. X., Matei, I., Lee, J. S., Maier, J. Appl. Phys. Lett. 2007, 91, 103102; https://doi.org/10.1063/1.2779254.Search in Google Scholar

18. Guo, X. X., Sata, N., Maier, J. Electrochim. Acta 2004, 49, 1091–1096; https://doi.org/10.1016/j.electacta.2003.10.020.Search in Google Scholar

19. Poole, R., Williams, D., Riley, J., Jenkin, J., Liesegang, J., Leckey, R. Chem. Phys. Lett. 1975, 36, 401–403; https://doi.org/10.1016/0009-2614(75)80267-3.Search in Google Scholar

20. Maier, J. Angew. Chem. Int. Ed. 1993, 32, 313–335; https://doi.org/10.1002/anie.199303133.Search in Google Scholar

21. Moia, D., Gregori, G., Maier, J., in preparation.Search in Google Scholar

22. Wagemaker, M., Singh, D. P., Borghols, W. J. H., Lafont, U., Haverkate, L., Peterson, V. K., Mulder, F. M. J. Am. Chem. Soc. 2011, 133, 10222–10228; https://doi.org/10.1021/ja2026213.Search in Google Scholar PubMed

23. Zhu, C. B., Mu, X. K., Popovic, J., Weichert, K., van Aken, P. A., Yu, Y., Maier, J. Nano Lett. 2014, 14, 5342–5349; https://doi.org/10.1021/nl5024063.Search in Google Scholar PubMed

24. Gualdron-Reyes, A. F., Yoon, S. J., Barea, E. M., Agouram, S., Munoz-Sanjose, V., Melendez, A. M., Nino-Gomez, M. E., Mora-Sero, I. ACS Energy Lett. 2019, 4, 54–62; https://doi.org/10.1021/acsenergylett.8b02207.Search in Google Scholar PubMed PubMed Central

25. Hu, L., Guan, X., Chen, W., Yao, Y., Wan, T., Lin, C.-H., Pham, N. D., Yuan, L., Geng, X., Wang, F., Huang, C.-Y., Yuan, J., Cheong, S., Tilley, R. D., Wen, X., Chu, D., Huang, S., Wu, T. ACS Energy Lett. 2021, 6, 1649–1658; https://doi.org/10.1021/acsenergylett.1c00213.Search in Google Scholar

Received: 2021-12-02
Accepted: 2022-01-11
Published Online: 2022-01-31
Published in Print: 2022-06-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 17.5.2024 from https://www.degruyter.com/document/doi/10.1515/zpch-2021-3173/html
Scroll to top button