Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) August 6, 2021

Vildagliptin plasticized hydrogel film in the control of ocular inflammation after topical application: study of hydration and erosion behaviour

  • Souvik Nandi , Abinash Ojha , Ashirbad Nanda , Rudra Narayan Sahoo , Rakesh Swain , Krushna Prasad Pattnaik and Subrata Mallick EMAIL logo

Abstract

Vildagliptin (VID) is a dipeptidyl peptidase-4 (DPP-4) inhibitor used in controlling blood glucose level in type 2 diabetes. Vildagliptin improves beta cells function and is also suggested to effectively control the inflammation. The possible ocular anti-inflammatory property of vildagliptin has been explored using topically applied plasticized ocular film formulation. Film formulation was prepared by solvent cast and evaporation method using triethanolamine (TEA), dimethyl sulphoxide (DMSO), and polyethylene glycol 400 (PEG 400) as the plasticizer in HPMC hydrogel matrix base. Anti-inflammatory study was carried out in the carrageenan induced ocular rabbit model. Analytical methods confirmed that the drug was present almost in completely amorphized form in the film formulation. Level of hydration, swelling and erosion rate of the film played the controlling factor in the process of drug release, ocular residence and permeation. Maximum swelling rate of 363 h−1 has been shown by VHT compared to other formulation of VHD and VHP (174 and 242 h−1 respectively). Film containing DMSO exhibited highest in vitro release as well as ex vivo ocular permeation. Film formulation has shown a fast recovery of ocular inflammation in contrast to the untreated eye after inducing inflammation. Plasticized vildagliptin hydrogel film formulation could be utilized in the management and control of ocular inflammation particularly with diabetic retinopathy after proper clinical studies in higher animal and human individuals.


Corresponding author: Subrata Mallick, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar 751003, India, E-mail:

Acknowledgments

The authors are grateful to the Department of Science & Technology, Ministry of Science & Technology, New Delhi, India, for providing INSPIRE fellowship to Souvik Nandi (IF 180534). The authors are also very much grateful to the President, Siksha O Anusandhan (Deemed to be University) for providing other facilities. The authors are also grateful to Glenmark Pharmaceutical Ltd. For the gift sample of vildagliptin.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflict of interest.

References

1. Shimodaira, M., Niwa, T., Nakajima, K., Kobayashi, M. Beneficial effects of vildagliptin on metabolic parameters in patients with type 2 diabetes. Endocr. Metab. Immune Disord. – Drug Targets 2015,15, 223–228; https://doi.org/10.2174/1871530315666150324114149.Search in Google Scholar PubMed

2. Wang, X., Hausding, M., Weng, S. Y., Kim, Y. O., Steven, S., Klein, T., Daiber, A., Schuppan, D. Gliptins suppress inflammatory macrophage activation to mitigate inflammation, fibrosis, oxidative stress, and vascular dysfunction in models of nonalcoholic steatohepatitis and liver fibrosis. Antioxidants Redox Signal. 2018, 28, 87–109; https://doi.org/10.1089/ars.2016.6953.Search in Google Scholar PubMed

3. Sudhakaran, C., Kishore, U., Anjana, R. M., Unnikrishnan, R., Mohan, V. Effectiveness of sitagliptin in Asian Indian patients with type 2 diabetes—an Indian tertiary diabetes care center experience. Diabetes Technol. Therapeut. 2011, 13, 27–32; https://doi.org/10.1089/dia.2010.0120.Search in Google Scholar PubMed

4. Kalra, S. Emerging role of dipeptidyl peptidase-IV (DPP-4): inhibitor vildagliptin in the management of type 2 diabetes. J. Assoc. Phys. India. 2011, 59, 237–245.Search in Google Scholar

5. Yazbeck, R., Howarth, G. S., Abbott, C. A. Dipeptidyl peptidase inhibitors, an emerging drug class for inflammatory disease. Trends Pharmacol. Sci. 2009, 30, 600–607; https://doi.org/10.1016/j.tips.2009.08.003.Search in Google Scholar PubMed

6. Wu, Z., Wang, S., Jin, X., Bi, Y., Ma, S., Liu, T. MiR-29a protects against cerebral ischemia injury by targeting DPP4 through TGF-β signaling pathway. J. Neurosurg. Sci. 2020, 64, 586–587; https://doi.org/10.23736/S0390-5616.19.04856-2.Search in Google Scholar PubMed

7. Chaudhuri, A., Dandona, P., Fonseca, V. Cardiovascular benefits of exogenous insulin. J. Clin. Endocrinol. Metab. 2012, 97, 3079–3091; https://doi.org/10.1210/jc.2012-1112.Search in Google Scholar PubMed

8. Forouhi, N. G., Wareham, N. J. Epidemiology of diabetes. Medicine 2010, 38, 602–606; https://doi.org/10.1016/j.mpmed.2010.08.007.Search in Google Scholar

9. Cho, N., Shaw, J. E., Karuranga, S., Huang, Y., da Rocha Fernandes, J. D., Ohlrogge, A. W., Malanda, B. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 2018, 138, 271–281; https://doi.org/10.1016/j.diabres.2018.02.023.Search in Google Scholar PubMed

10. Donath, M. Y., Ehses, J. A., Maedler, K., Schumann, D. M., Ellingsgaard, H., Eppler, E., Reinecke, M. Mechanisms of β-cell death in type 2 diabetes. Diabetes 2005, 54(Suppl. 2), S108–S113; https://doi.org/10.2337/diabetes.54.suppl_2.s108.Search in Google Scholar PubMed

11. Ferreira, L., Teixeira-de-Lemos, E., Pinto, F., Parada, B., Mega, C., Vala, H., Pinto, R., Garrido, P., Sereno, J., Fernandes, R., Santos, P. Effects of sitagliptin treatment on dysmetabolism, inflammation, and oxidative stress in an animal model of type 2 diabetes (ZDF rat). Mediat. Inflamm. 2010, 2010; https://doi.org/10.1155/2010/592760.Search in Google Scholar PubMed PubMed Central

12. Pollack, R. M., Donath, M. Y., LeRoith, D., Leibowitz, G. Anti-inflammatory agents in the treatment of diabetes and its vascular complications. Diabetes Care 2016, 39(Suppl. 2), S244–S252; https://doi.org/10.2337/dcS15-3015.Search in Google Scholar PubMed

13. Dobrian, A. D., Ma, Q., Lindsay, J. W., Leone, K. A., Ma, K., Coben, J., Galkina, E. V., Nadler, J. L. Dipeptidyl peptidase IV inhibitor sitagliptin reduces local inflammation in adipose tissue and in pancreatic islets of obese mice. Am. J. Physiol. Endocrinol. Metab. 2011, 300, E410–E421; https://doi.org/10.1152/ajpendo.00463.2010.Search in Google Scholar PubMed PubMed Central

14. Panina, G. The DPP‐4 inhibitor vildagliptin: robust glycaemic control in type 2 diabetes and beyond. Diabetes Obes. Metabol. 2007, (Suppl. 1), 32–39; https://doi.org/10.1111/j.1463-1326.2007.00763.x.Search in Google Scholar PubMed

15. Katara, R., Sachdeva, S., Majumdar, D. K. Aceclofenac oil drops: characterization and evaluation against ocular inflammation. Pharmaceut. Dev. Technol. 2017, 23, 240–246; https://doi.org/10.1080/10837450.2017.1337794.Search in Google Scholar PubMed

16. Wirostko, B., Mann, B. K., Williams, D. L., Prestwich, G. D. Ophthalmic uses of a thiol-modified hyaluronan-based hydrogel. Adv. Wound Care 2014, 3, 708–716; https://doi.org/10.1089/wound.2014.0572.Search in Google Scholar PubMed PubMed Central

17. Rocha, E. D., Ferreira, M. R. S., dos Santos Neto, E., Barbosa, E. J., Löbenberg, R., Lourenço, F. R., Bou-Chacra, N. Enhanced in vitro antimicrobial activity of polymyxin B–coated nanostructured lipid carrier containing dexamethasone acetate. J. Pharm. Innov. 2020, 16, 125–135; https://doi.org/10.1007/s12247-020-09427-3.Search in Google Scholar

18. Nanda, A., Sahoo, R. N., Pramanik, A., Mohapatra, R., Pradhan, S. K., Thirumurugan, A., Das, D., Mallick, S. Drug-in-mucoadhesive type film for ocular anti-inflammatory potential of amlodipine: effect of sulphobutyl-ether-beta-cyclodextrin on permeation and molecular docking characterization. Colloids Surf. B Biointerfaces 2018, 172, 555–564; https://doi.org/10.1016/j.colsurfb.2018.09.011.Search in Google Scholar PubMed

19. Ariturk, N. S., Oge, I., Erkan, D., Süllü, Y., Şahin, M. The effects of nasolacrimal canal blockage on topical medications for glaucoma. Acta Ophthalmol. Scand. 1996, 74, 411–413; https://doi.org/10.1111/j.1600-0420.1996.tb00720.x.Search in Google Scholar PubMed

20. Agrawal, A. K., Das, M., Jain, S. In situ gel systems as ‘smart’carriers for sustained ocular drug delivery. Expet Opin. Drug Deliv. 2012, 9, 383–402; https://doi.org/10.1517/17425247.2012.665367.Search in Google Scholar PubMed

21. El-Sousi, S., Nácher, A., Mura, C., Catalán‐Latorre, A., Merino, V., Merino‐Sanjuán, M., Díez‐Sales, O. Hydroxypropylmethylcellulose films for the ophthalmic delivery of diclofenac sodium. J. Pharm. Pharmacol. 2012, 65, 193–200; https://doi.org/10.1111/j.2042-7158.2012.01587.x.Search in Google Scholar PubMed

22. Mohapatra, R., Senapati, S., Sahoo, C., Mallick, S. Thermodynamic properties of ocular permeation of diclofenac: effect of triethanolamine. FARMACIA 2016, 64, 72–81.Search in Google Scholar

23. Bazuin, C. G., Eisenberg, A. Dynamic mechanical properties of plasticized polystyrene-based ionomers. I. Glassy to rubbery zones. J. Polym. Sci., Part B: Polym. Phys. 1986, 24, 1137–1153; https://doi.org/10.1002/polb.1986.090240514.Search in Google Scholar

24. Oh, H. J., McGrath, J. E., Paul, D. R. Kinetics of poly(ethylene glycol) extraction into water from plasticized disulfonated poly(arylene ether sulfone) desalination membranes prepared by solvent-free melt processing. J. Membr. Sci. 2017, 524, 257–264; https://doi.org/10.1016/j.memsci.2016.11.036.Search in Google Scholar

25. Panda, B., Parihar, A. S., Mallick, S. Effect of plasticizer on drug crystallinity of hydroxypropyl methylcellulose matrix film. Int. J. Biol. Macromol. 2014, 67, 295–302; https://doi.org/10.1016/j.ijbiomac.2014.03.033.Search in Google Scholar PubMed

26. Hamid, A., Khan, M., Hussain, F., Zada, A., Li, T., Alei, D., Ali, A. Synthesis and physiochemical performances of PVC-sodium polyacrylate and PVC-sodium polyacrylate-graphite composite polymer membrane. Z. Phys. Chem. 2021, 235, 1791, https://doi.org/10.1515/zpch-2020-1763.Search in Google Scholar

27. Swain, K., Pattnaik, S., Sahu, S. C., Patnaik, K. K., Mallick, S. Drug in adhesive type transdermal matrix systems of ondansetron hydrochloride: optimization of permeation pattern using response surface methodology. J. Drug Target. 2010, 18, 106–114; https://doi.org/10.3109/10611860903225727.Search in Google Scholar PubMed

28. Preis, M., Woertz, C., Kleinebudde, P., Breitkreutz, J. Oromucosal film preparations: classification and characterization methods. Expet Opin. Drug Deliv. 2013, 10, 1303–1317; https://doi.org/10.1517/17425247.2013.804058.Search in Google Scholar PubMed

29. Tanuma, H., Saito, T., Nishikawa, K., Dong, T., Yazawa, K., Inoue, Y. Preparation and characterization of PEG-cross-linked chitosan hydrogel films with controllable swelling and enzymatic degradation behavior. Carbohydr. Polym. 2010, 80, 260–265; https://doi.org/10.1016/j.carbpol.2009.11.022.Search in Google Scholar

30. Pramanik, A., Sahoo, R. N., Nanda, A., Mohapatra, R., Singh, R., Mallick, S. Ocular permeation and sustained anti-inflammatory activity of dexamethasone from kaolin nanodispersion hydrogel system. Curr. Eye Res. 2018, 43, 828–838; https://doi.org/10.1080/02713683.2018.1446534.Search in Google Scholar PubMed

31. Kesarwani, A., Yadav, A. K., Singh, S., Gautam, H., Singh, H. N., Sharma, A., Yadav, C. Theoretical aspects of transdermal drug delivery system. Bull. Pharmaceut. Res. 2013, 3, 78–89.Search in Google Scholar

32. Abdelrahman, A. A., Salem, H. F., Khallaf, R. A., Ali, A. M. Modeling, optimization, and in vitro corneal permeation of chitosan-lomefloxacin HCl nanosuspension intended for ophthalmic delivery. J. Pharm. Innov. 2015, 10, 254–268; https://doi.org/10.1007/s12247-015-9224-7.Search in Google Scholar

33. Xu, Y., Zhang, C., Zhu, X., Wang, X., Wang, H., Hu, G., Fu, Q., He, Z. Chloramphenicol/sulfobutyl ether-β-cyclodextrin complexes in an ophthalmic delivery system: prolonged residence time and enhanced bioavailability in the conjunctival sac. Expet Opin. Drug Deliv. 2019, 16, 657–666; https://doi.org/10.1080/17425247.2019.1609447.Search in Google Scholar PubMed

34. Abd-Elal, R. M., Elosaily, G. H., Gad, S., Khafagy, E. S., Mostafa, Y. Full factorial design, optimization, in vitro and ex vivo studies of ocular timolol-loaded microsponges. J. Pharm. Innov. 2020, 15, 651–663; https://doi.org/10.1007/s12247-019-09418-z.Search in Google Scholar

35. Fujishima, H., Toda, I., Yamada, M., Sato, N., Tsubota, K. Corneal temperature in patients with dry eye evaluated by infrared radiation thermometry. Br. J. Ophthalmol. 1996, 80, 29–32; https://doi.org/10.1136/bjo.80.1.29.Search in Google Scholar PubMed PubMed Central

36. Mohapatra, R., Mallick, S., Nanda, A., Sahoo, R. N., Pramanik, A., Bose, A., Das, D., Pattnaik, L. Analysis of steady state and non-steady state corneal permeation of diclofenac. RSC Adv. 2016, 6, 31976–31987; https://doi.org/10.1039/c6ra03604j.Search in Google Scholar

37. Kato, M., Hagiwara, Y., Oda, T., Imamura-Takai, M., Aono, H., Nakamura, M. Beneficial pharmacological effects of selective glucocorticoid receptor agonist in external eye diseases. J. Ocul. Pharmacol. 2011, 27, 353–360; https://doi.org/10.1089/jop.2010.0177.Search in Google Scholar PubMed

38. Fehrenbacher, J. C., Vasko, M. R., Duarte, D. B. Models of inflammation: carrageenan or complete freund's adjuvant (CFA) induced edema and hypersensitivity in the rat. Curr. Protoc. Pharmacol. 2012, 56, 5.4.1–5.4.7; https://doi.org/10.1002/0471141755.ph0504s56.Search in Google Scholar PubMed PubMed Central

39. Pattanaik, S., Nandi, S., Sahoo, R. N., Nanda, A., Swain, R., Das, S. Budesonide-cyclodextrin in hydrogel system: impact of quaternary surfactant on in vitro-in vivo assessment of mucosal drug delivery. Rev. Chim. (Bucharest) 2020, 71, 332–345; https://doi.org/10.37358/rc.20.6.8200.Search in Google Scholar

40. Mohapatra, R., Senapati, S., Sahoo, C., Mallick, S. Transcorneal permeation of diclofenac as a function of temperature from film formulation in presence of triethanolamine and benzalkonium chloride. Colloids Surf. B Biointerfaces 2014, 123, 170–180; https://doi.org/10.1016/j.colsurfb.2014.09.012.Search in Google Scholar PubMed

41. Waghulde, M., Naik, J. Comparative study of encapsulated vildagliptin microparticles produced by spray drying and solvent evaporation technique. Dry. Technol. 2017, 35, 1644–1654; https://doi.org/10.1080/07373937.2016.1273230.Search in Google Scholar

42. Nisar, J., Iqbal, M., Iqbal, M., Shah, A., Akhter, M. S., Khan, R. A., Uddin, I., Shah, L. A., Khan, M. S. Decomposition kinetics of levofloxacin: drug-excipient interaction. Z. Phys. Chem. 2020, 234, 117–128; https://doi.org/10.1515/zpch-2018-1273.Search in Google Scholar

43. Kapor, A., Nikolić, V., Nikolić, L., Stanković, M., Cakić, M., Stanojević, L., Ilić, D. Inclusion complexes of amlodipine besylate and cyclodextrins. Cent. Eur. J. Chem. 2010, 8, 834–841; https://doi.org/10.2478/s11532-010-0061-8.Search in Google Scholar

44. Kumar, Y. M., Bhagyasree, K., Gopal, N. O., Ramu, C., Nagabhushana, H. Structural, thermal and optical properties of Mn2+ doped methacrylic acid–ethyl acrylate (MAA: EA) copolymer films. Z. Phys. Chem. 2017, 231, 1039–1055; https://doi.org/10.1515/zpch-2016-0800.Search in Google Scholar

45. Baig, M. M., Khan, S., Naeem, M. A., Khan, G. J., Ansari, M. T. Vildagliptin loaded triangular DNA nanospheres coated with eudragit for oral delivery and better glycemic control in type 2 diabetes mellitus. Biomed. Pharmacother. 2018, 97, 1250–1258; https://doi.org/10.1016/j.biopha.2017.11.059.Search in Google Scholar

46. Castro‐Hermida, J. A., GóMez‐Couso, H., Ares‐Mazás, M. E., Gonzalez‐Bedia, M. M., CastañEda‐Cancio, N., Otero‐Espinar, F. J., Blanco‐Mendez, J. Anticryptosporidial activity of furan derivative G1 and its inclusion complex with beta‐cyclodextrin. J. Pharm. Sci. 2004, 93, 197–206; https://doi.org/10.1002/jps.v93:3.10.1002/jps.10528Search in Google Scholar

47. Mura, P., Zerrouk, N., Faucci, M. T., Maestrelli, F., Chemtob, C. Comparative study of ibuproxam complexation with amorphous β-cyclodextrin derivatives in solution and in the solid state. Eur. J. Pharm. Biopharm. 2002, 54, 181–191; https://doi.org/10.1016/s0939-6411(02)00075-9.Search in Google Scholar

48. Londhe, V. Y., Umalkar, K. B. Formulation development and evaluation of fast dissolving film of telmisartan. Indian J. Pharmaceut. Sci. 2012, 74, 122–126; https://doi.org/10.4103/0250-474x.103842.Search in Google Scholar

49. Caccavo, D., Cascone, S., Lamberti, G., Barba, A. A., Larsson, A. Swellable hydrogel-based systems for controlled drug delivery. IntechOpen 2016, 10, 237–303; https://doi.org/10.5772/61792.Search in Google Scholar

Received: 2021-06-25
Accepted: 2021-07-25
Published Online: 2021-08-06
Published in Print: 2022-02-23

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.5.2024 from https://www.degruyter.com/document/doi/10.1515/zpch-2021-3081/html
Scroll to top button