Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) February 26, 2021

Oat extract as a natural alkaline scale inhibitor for carbon steel in seawater: electrochemical (AC and DC) studies

  • Mohamed A. Deyab EMAIL logo and Mohsen Mohammed Al-Qhatani

Abstract

The controlling of alkaline scale deposition on carbon steel surface in seawater by Oat extract was probed by means of current/time transients, electrochemical impedance spectroscopy (EIS) tests and scanning electron microscopy (SEM), high-performance liquid chromatography (HPLC), Fourier-transform infrared (FT-IR), X-ray diffraction (XRD) examinations. Nucleation, scale formation and coverage of carbon steel with alkaline scales were detected by current/time curves. The results demonstrate that the retardation in alkaline scale formation is controlled by Oat extract, with 86% efficiency at the highest concentration. The scale growth inhibition is due to the adsorption of Oat extract components on the active growth sites of crystal surfaces.


Corresponding author: Mohamed A. Deyab, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, Egypt, E-mail:

Funding source: Taif University

Award Identifier / Grant number: TURSP - 2020/19

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Taif University Researchers Supporting Project number (TURSP – 2020/19), Taif University, Saudi Arabia.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bader, M. S. H. Desalination 2006, 201, 100–105; https://doi.org/10.1016/j.desal.2005.09.039.Search in Google Scholar

2. Deyab, M. A., Osman, M. M., Elkholy, A. E., El-Taib Heakal, F. RSC Adv. 2017, 7, 45241–45251; https://doi.org/10.1039/c7ra07979f.Search in Google Scholar

3. Walinsky, S. W., Morton, B. J. Desalination 1979, 31, 289–298; https://doi.org/10.1016/s0011-9164(00)88529-x.Search in Google Scholar

4. Al-Ahmad, M., Aleem, F. A. Desalination 1993, 93, 287–310; https://doi.org/10.1016/0011-9164(93)80110-9.Search in Google Scholar

5. Lèdion, J., Leroy, P., Labbè, J. P. T.S.M. L’eau 1985, 7-8, 323–328.Search in Google Scholar

6. Garcia, C., Courbin, G., Ropital, F., Fiaud, C. Electrochim. Acta 2001, 46, 973–985; https://doi.org/10.1016/s0013-4686(00)00671-x.Search in Google Scholar

7. Zhang, Y., Yin, H., Zhang, Q., Li, Y., Yao, P. Desalination 2016, 395, 92–98; https://doi.org/10.1016/j.desal.2016.05.020.Search in Google Scholar

8. Wang, L.-C., Cui, K., Wang, L.-B., Li, H.-X., Li, S.-F., Zhang, Q.-l., Liu, H.-B. Desalination 2016, 379, 75–84; https://doi.org/10.1016/j.desal.2015.11.002.Search in Google Scholar

9. Deyab, M. A., El Bali, B., Essehli, R., Ouarsal, R., Lachkar, M., Fuess, H. J. Mol. Liq. 2016, 216, 636–640; https://doi.org/10.1016/j.molliq.2016.01.075.Search in Google Scholar

10. Ou, H.-H., Chiang Hsieh, L.-H. Powder Technol. 2016, 302, 160–167; https://doi.org/10.1016/j.powtec.2016.08.037.Search in Google Scholar

11. Deyab, M. A. Desalination 2018, 439, 73–79; https://doi.org/10.1016/j.desal.2018.04.005.Search in Google Scholar

12. Zhao, Y., Jia, L., Liu, K., Gao, P., Ge, H., Fu, L. Desalination 2016, 392, 1–7; https://doi.org/10.1016/j.desal.2016.04.010.Search in Google Scholar

13. Stachel, N., Skopp, G. Forensic Sci. Int. 2016, 265, 61–64; https://doi.org/10.1016/j.forsciint.2016.01.009.Search in Google Scholar

14. Deyab, M. A. J. Mol. Liq. 2018, 255, 550–555; https://doi.org/10.1016/j.molliq.2018.02.019.Search in Google Scholar

15. Zhang, H., Wang, F., Jin, X., Zhu, Y. Desalination 2013, 326, 55–61; https://doi.org/10.1016/j.desal.2013.07.015.Search in Google Scholar

16. Demadis, K. D., Stathoulopoulou, A. Mater. Perform. 2005, 45, 40–44.Search in Google Scholar

17. Quraishi, M. A., Farooqi, I. H., Saini, P. A. Corrosion 1999, 55, 493–497; https://doi.org/10.5006/1.3284011.Search in Google Scholar

18. Verraest, D. L., Peters, J. A., Batelaan, J. G., van Bekkum, H. Carbohydr. Res. 1995, 271, 101–112; https://doi.org/10.1016/0008-6215(95)00028-r.Search in Google Scholar

19. Deyab, M. A. Electrochim. Acta 2017, 244, 178–183; https://doi.org/10.1016/j.electacta.2017.05.116.Search in Google Scholar

20. Deyab, M. A., Abd El-Rehim, S. S. Corrosion Sci. J. 2012, 65, 309–316; https://doi.org/10.1016/j.corsci.2012.08.032.Search in Google Scholar

21. Deyab, M. A. J. Power Sources 2018, 390, 176–180; https://doi.org/10.1016/j.jpowsour.2018.04.053.Search in Google Scholar

22. Deyab, M. A. Electrochim. Acta 2016, 202, 262–268; https://doi.org/10.1016/j.electacta.2015.11.075.Search in Google Scholar

23. Deyab, M. A. J. Taiwan Inst. Chem. Eng. 2016, 60, 369–375; https://doi.org/10.1016/j.jtice.2015.10.035.Search in Google Scholar

24. Deslouis, C., Gabrielli, C., Keddam, M., Khalil, A., Rosset, R., Tribollet, B., Zidoune, M. Electrochim. Acta 1997, 42, 1219–1233; https://doi.org/10.1016/s0013-4686(96)00290-3.Search in Google Scholar

25. Deslouis, C., Festy, D., Gil, O., Maillot, V., Touzain, S., Tribollet, B. Electrochim. Acta 2000, 45, 1837–1845; https://doi.org/10.1016/s0013-4686(99)00403-x.Search in Google Scholar

26. Deyab, M. A., De Riccardis, A., Mele, G. J. Mol. Liq. 2016, 220, 513–517; https://doi.org/10.1016/j.molliq.2016.04.115.Search in Google Scholar

27. Deyab, M. A., Ouarsal, R., Al-Sabagh, A. M., Lachkar, M., El Bali, B. Prog. Org. Coating 2017, 107, 37–42; https://doi.org/10.1016/j.porgcoat.2017.03.014.Search in Google Scholar

28. Marín-Cruz, J., Cabrera-Sierra, R., Pech-Canul, M. A., González, I. Electrochim. Acta 2006, 51, 1847–1854; https://doi.org/10.1016/j.electacta.2005.02.104.Search in Google Scholar

29. Marín-Cruz, J., Cabrera-Sierra, R., Pech-Canul, M. A., González, I. J. Appl. Electrochem. 2004, 34, 337–343; https://doi.org/10.1023/b:jach.0000015648.68779.c6.10.1023/B:JACH.0000015648.68779.c6Search in Google Scholar

30. Deyab, M. A., Nada, A. A., Hamdy, A. Prog. Org. Coating 2017, 105, 245–251; https://doi.org/10.1016/j.porgcoat.2016.12.026.Search in Google Scholar

31. Deyab, M. A., Abd El-Rehim, S. S., Keera, S. T. Colloid. Surface. Physicochem. Eng. Aspect. 2009, 348, 170–176; https://doi.org/10.1016/j.colsurfa.2009.07.016.Search in Google Scholar

32. Demadis, K. D., Öner, M. Inhibitory Effects of “Green” Additives on the Crystal Growth of Sparingly Soluble Salts; Nova Science Publishers, Inc., 2009; pp 265–287.Search in Google Scholar

33. Ahamad, I., Prasad, R., Quraishi, M. A. Corrosion Sci. 2010, 52, 1472–1481; https://doi.org/10.1016/j.corsci.2010.01.015.Search in Google Scholar

34. Abd El-Rehim, S. S., Hassan, H. H., Deyab, M. A. M., Abd ElMoneim, A. Z. Phys. Chem. 2016, 230, 67–78; https://doi.org/10.1515/zpch-2015-0614.Search in Google Scholar

Received: 2021-01-06
Accepted: 2021-02-18
Published Online: 2021-02-26
Published in Print: 2021-12-20

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.5.2024 from https://www.degruyter.com/document/doi/10.1515/zpch-2021-3007/html
Scroll to top button