Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) August 6, 2020

Chemically modified Quercus dilatata plant leaves for Pb (II), Cd (II), and Cr (VI) ions remediation from aqueous solution

  • Syed Muhammad Salman , Muhammad Zahoor EMAIL logo , Durre Shahwar , Amara Nisar , Asad Ali , Hizbullah Khan and Farman Ali

Abstract

The current investigation deals with the removal of Pb (II), Cd (II), and Cr (VI) ions by using chemically modified Quercus dilatata leaves (CMQDL) treated with nitric acid (HNO3), and calcium chloride (CaCl2). Batch biosorption experiments were performed to determine the optimal conditions of pH, biomass dose, temperature, contact time, and initial metal concentration for the utmost removal of heavy metals from water. The structural morphology and functionalities were explained by SEM and FTIR analysis. The maximum biosorption capacities for remediation of Pb (II), Cd (II), and Cr (VI) ions via CMQDL were 17.54, 20.408, 20.83 mg g−1, respectively at the optimal conditions. The Langmuir and Freundlich isotherm were applied to explore the equilibrium data however Freundlich isotherm model best evaluate the equilibrium data with high regression correlation coefficient (R2) values of 0.985, 0.826, and 0.919 for the elimination of Pb (II) Cd (II), and Cr (VI) ions, respectively. The kinetic study proposed that the remediation operation best obeyed the kinetic pseudo 2nd order model. The calculated thermodynamics functions like change in entropy (ΔS°), change in enthalpy (ΔH°) and Gibbs free energy (ΔG°) revealed that the removal of Pb (II) ions via the CMQDL was viable, exothermic and spontaneous, Cd (II) was endothermic and spontaneous and Cr (VI) was endothermic and non-spontaneous. The current study explored that CMQDL can be used for the remediation of Pb (II), Cd (II), and Cr (VI) ions, respectively.


Corresponding author: Muhammad Zahoor, Department of Biochemistry, University of Malakand, Chakdara Dir Lower, 18800, Khyber Pakhtunkhwa, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflict of interest regarding this article.

  4. Data availability statement: All the data associated with this research has been presented in this paper.

References

1. Indhumathi, P., Sathiyaraj, S., Koelmel, J. P., Shoba, S. U., Jayabalakrishnan, C., Saravanabhavan, M., Zeitschrift Fur Physikalische Chemie 2018, 232, 527.10.1515/zpch-2016-0900Search in Google Scholar

2. Naseem, K., Huma, R., Shahbaz, A., Jamal, J., Ur Rehman, M. Z., Sharif, A., Ahmed, E., Begum, R., Irfan, A, Al-Sehemi, A. G., Farooqi, Z. H. Zeitschrift fur Physikalische Chemie 2019, 233, 201; https://doi.org/10.1515/zpch-2018-1182.Search in Google Scholar

3. Ata, S., Tabassum, A., Bibi, I., Ghafoor, S., Ahad, A., Bhatti, M. A., Islam, A., Rizvi, H., Iqbal, M. Zeitschrift fur Physikalische Chemie 2019, 233, 995; https://doi.org/10.1515/zpch-2018-1203.Search in Google Scholar

4. Vinod, V. T. P., Sashidhar, R. B., Sreedhar, B. J. Hazard. Mater. 2010, 178, 851; https://doi.org/10.1016/j.jhazmat.2010.02.016.Search in Google Scholar

5. Reddy, D. H. K., Harinath, Y., Seshaiah, K., Reddy, A. V. R. Chem. Eng. J. 2010, 162, 626; https://doi.org/10.1016/j.cej.2010.06.010.Search in Google Scholar

6. Jang, Y., Shapiro, A., Horani, F., Kauffmann, Y., Lifshitz, E. Zeitschrift fur Physikalische Chemie 2018, 232, 1443; https://doi.org/10.1515/zpch-2018-1148.Search in Google Scholar

7. Kumar, U., Bandyopadhyay, M. Bioresour. Technol. 2006, 97, 104; https://doi.org/10.1016/j.biortech.2005.02.027.Search in Google Scholar

8. Wang, Y. H., Lin, S. H., Juang, R. S. J. Hazard. Mater. 2003, 102, 291; https://doi.org/10.1016/s0304-3894(03)00218-8.10.1016/S0304-3894(03)00218-8Search in Google Scholar

9. Yang, J., Volesky, B. Water Res. 1999, 33, 3357; https://doi.org/10.1016/s0043-1354(99)00043-3.10.1016/S0043-1354(99)00043-3Search in Google Scholar

10. Khokhar, A., Siddique, Z. J. Chem. Environ. Eng. 2015, 3, 944; https://doi.org/10.1016/j.jece.2015.03.009.Search in Google Scholar

11. Edokpayi, J., Odiyo, J., Msagati, T., Popoola, E. Sustainability 2015, 7, 14026; https://doi.org/10.3390/su71014026.Search in Google Scholar

12. Wang, G., Zhang, S., Yao, P., Chen, Y., Xu, X., Li, T., Gong, G. Arabian J. Chem. 2018, 11, 99; https://doi.org/10.1016/j.arabjc.2015.06.011.Search in Google Scholar

13. Cimá-Mukul, C., Abdellaoui, Y., Abatal, M., Vargas, J., Santiago, A. A., Barrón-Zambrano, J. A., Bioinorg. Chem. Appl. 2019, 1. https://doi.org/10.1155/2019/2814047.10.1155/2019/2814047Search in Google Scholar PubMed PubMed Central

14. Salman, S. M., Ali, A., Khan, B., Iqbal, M., Alamzeb, M., Environ. Sci. Pollut. Res. 2019, 1. https://doi.org/10.1007/s11356-019-04611-6.Search in Google Scholar PubMed

15. Adelaja, O. A., Bankole, A. C., Oladipo, M. E., Lene, D. B. Int. J. Energy Water Resour. 2019 3, 1; https://doi.org/10.1007/s42108-019-00012-0.Search in Google Scholar

16. Priyantha, N., Kotabewatta, P. J. Appl. Water Sci. 2019, 9, 37; https://doi.org/10.1007/s13201-019-0911-2.Search in Google Scholar

17. Gupta, S., Sharma, S., Kumar, A. J. W. S., Water Sci. Eng. 2019, 27. https://doi.org/10.1016/j.wse.2019.04.003.Search in Google Scholar

18. Ahmed, M., Fatima, H., Qasim, M., Gul, B., Ihsan-ul-Haq. BMC Complement. Altern. Med. 2017, 17, 386; https://doi.org/10.1186/s12906-017-1894-x.Search in Google Scholar PubMed PubMed Central

19. Jamil, M., ul Haq, I., Mirza, B., Qayyum, M. Ann. Clin. Microbiol. Antimicrobials 2012, 11, 11; https://doi.org/10.1186/1476-0711-11-11.Search in Google Scholar PubMed PubMed Central

20. Ngah, W. S. W., Hanafiah, M. A. K. M., Bioresour. Technol. 2008, 99, 3935. https://doi.org/10.1016/j.biortech.2007.06.011.Search in Google Scholar PubMed

21. Xu, G. F., Shen, Z. X., Guo, R. X. The kinetics studies for the adsorption of furadan from aqueous solution by orange peel, Advanced Materials Research. Trans Tech Publ, Switzerland. 2014, 87, p. 187.10.4028/www.scientific.net/AMR.842.187Search in Google Scholar

22. Salman, S. M., Ali, A., Khan, B., Iqbal, M., Alamzeb, M. Environ. Sci. Pollut. Res. 2019, https://doi.org/10.1007/s11356-019-04611-6.Search in Google Scholar PubMed

23. Anayurt, R. A., Sari, A., Tuzen, M. Chem. Eng. J. 2009, 151, 255; https://doi.org/10.1016/j.cej.2009.03.002.Search in Google Scholar

24. Yu, J., Tong, M., Sun, X., Li, B. J. Hazard. Mater. 2007, 143, 277; https://doi.org/10.1016/j.jhazmat.2006.09.021.Search in Google Scholar PubMed

25. Peng, J., He, Y., Ye, L., Shen, T., Liu, F., Kong, W., Liu, X., Zhao, Y. Anal. Chem. 2017, 89, 7593; https://doi.org/10.1021/acs.analchem.7b01441.Search in Google Scholar PubMed

26. Choi, K., Lee, S., Park, J. O., Park, J.-A., Cho, S.-H., Lee, S. Y., Lee, J. H., Choi, J.-W. Sci. Rep. 2018, 8, 1438; https://doi.org/10.1038/s41598-018-20017-9.Search in Google Scholar PubMed PubMed Central

27. Janik, P., Zawisza, B., Talik, E., Sitko, R. Microchim. Acta 2018, 185, 117; https://doi.org/10.1007/s00604-017-2640-2.Search in Google Scholar PubMed PubMed Central

28. Amegrissi, F., Maghri, I., Elkouali, M., Kenz, A., Salouhi, M., Ta, M., Glob. J. Sci. Front. Res. Environ. Earth Sci. 2013, 1.Search in Google Scholar

29. Enniya, I., Rghioui, L., Jourani, A. Sustain. Chem. Pharm. 2018, 7, 9; https://doi.org/10.1016/j.scp.2017.11.003.Search in Google Scholar

30. Hanafiah, M. A. K. M., Zakaria, H., Ngah, W. S. W. Water Air Soil Pollut. 2009, 201, 43; https://doi.org/10.1007/s11270-008-9926-2.Search in Google Scholar

31. Shi, Y., Zhang, T., Ren, H., Kruse, A., Cui, R. Bioresour. Technol. 2018, 247, 370; https://doi.org/10.1016/j.biortech.2017.09.107.Search in Google Scholar PubMed

32. Rao, K. S., Anand, S., Venkateswarlu, P. Acta Hydroch. Hydrob. 2011, 39, 384; https://doi.org/10.1002/clen.201000098.Search in Google Scholar

33. Huang, J., Li, Y., Cao, Y., Peng, F., Cao, Y., Shao, Q., Liu, H., Guo, Z. J. Mater. Chem. A 2018, 6, 13062; https://doi.org/10.1039/c8ta02861c.Search in Google Scholar

34. Sarı, A., Tuzen, M., J. Hazard. Mater. 2009, 164, 1004.10.1016/j.jhazmat.2008.09.002Search in Google Scholar PubMed

35. Bharagava, R. N., Mishra, S. Ecotoxicol. Environ. Saf. 2018, 147, 102; https://doi.org/10.1016/j.ecoenv.2017.08.040.Search in Google Scholar PubMed

36. Moussout, H., Aazza, M., El Akili, C. Int. J. Biol. Macromol. 2018, 108, 1063; https://doi.org/10.1016/j.ijbiomac.2017.11.018.Search in Google Scholar PubMed

37. Ho, Y. S. J. Hazard. Mater. 2009, 162, 539; https://doi.org/10.1016/j.jhazmat.2008.05.065.Search in Google Scholar PubMed

38. Çelekli, A., Bozkurt, H., Geyik, F. Bioresour. Technol. 2013, 129, 396.10.1016/j.biortech.2012.11.085Search in Google Scholar PubMed

39. Anwar, J., Shafique, U., Salman, M., Dar, A., Anwar, S. Bioresour. Technol. 2010, 101, 1752; https://doi.org/10.1016/j.biortech.2009.10.Search in Google Scholar

40. Singh, K., Singh, A., Hasan, S. Bioresour. Technol. 2006, 97, 994; https://doi.org/10.1016/j.biortech.2005.04.043.Search in Google Scholar PubMed

41. Guo, H., Bi, C., Zeng, C., Ma, W., Yan, L., Li, K., Wei, K. J. Mol. Liquids 2018, 249, 629; https://doi.org/10.1016/j.molliq.2017.11.096.Search in Google Scholar

Received: 2020-04-16
Accepted: 2020-06-09
Published Online: 2020-08-06
Published in Print: 2021-07-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.5.2024 from https://www.degruyter.com/document/doi/10.1515/zpch-2020-1677/html
Scroll to top button