Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) August 26, 2019

Preparation and Physicochemical Characterization of Dual Responsive and Chemically Modified Cellulose Based Copolymer Hydrogels

  • Abbas Khan EMAIL logo , Mehvish Afzal , Luqman Ali Shah , Khair Zaman , Gul Shahzada Khan and Amir Badshah

Abstract

This research work is based on the preparation and physicochemical characterization of Poly(N-isopropylacrylamide)–Cellulose–Poly(Acrylic acid) [PNIPAAm–Cellulose–PAAc] based terpolymer hydrogels. The free radical polymerization reaction was initiated by the presence of ammonium persulphate (APS) and crosslinking between different monomers was occurring through N,Nl- Methylene bis-acrylamide (MBA). Confirmation of polymerization process was done by FT-IR and UV-visible spectroscopy. The prepared hydrogels were further characterized by different physicochemical techniques like rheology, Ostwald viscometry and dynamic light scattering (DLS). The effect of external stimuli like temperature, pH and composition of the samples on the physicochemical behavior was also carried out by dynamic rheology, swelling measurement and DLS. Various other properties like elasticity, shear stress, shear strain, loss modulus, storage modulus and complex viscosity was investigated by rheology. DLS was used to trace the size and swelling behavior of the samples. From the results obtained it was found that all the microgel samples are stimuli responsive and most of their physicochemical properties were prominently varying while changing the internal as well as the external experimental variable. These changes in physicochemical behavior of the gel can be attributed to two possibilities; the change in the hydrophobic character of gel (PNIPAAm) with temperature and also to the weakening of intermolecular hydrogen bonds with increase in temperature. As a result of this the PAA chains may undergo a transition from a compact conformation to an expanded coil conformation, resulting in the swelling of the hydrogels.

Acknowledgement

The authors are highly thankful to Higher Education Commission of Pakistan for financial support.

References

1. S. Chatrchyan, V. Khachatryan, A. Sirunyan, A. Tumasyan, W. Adam, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan, M. Friedl, Phys. Lett. 710 (2012) 26.10.1016/j.physletb.2012.02.064Search in Google Scholar

2. S. H. Butchart, M. Walpole, B. Collen, A. Van Strien, J. P. Scharlemann, R. E. Almond, J. E. Baillie, B. Bomhard, C. Brown, J. Bruno, Science 328 (2010) 1164.10.1126/science.1187512Search in Google Scholar

3. A. Mahajan, N. Chhabra, G. Aggarwal, Scholars Res. Lib. 3 (2011) 152.Search in Google Scholar

4. H. J. Van der Linden, S. Herber, W. Olthuis, P. Bergveld, Analyst 128 (2003) 325.10.1039/b210140hSearch in Google Scholar

5. X. Zhou, X. Huang, X. Qi, S. Wu, C. Xue, F. Y. Boey, Q. Yan, P. Chen, H. Zhang, J. Phys. Chem. C 113 (2009) 10842.10.1021/jp903821nSearch in Google Scholar

6. X. Zhao, Z. Suo, Appl. Phys. Lett. 91 (2007) 061921.10.1063/1.2768641Search in Google Scholar

7. I. D. Xynos, A. J. Edgar, L. D. Buttery, L. L. Hench, J. M. Polak, J. Biomed. Mater. Res. B 55 (2001) 151.10.1002/1097-4636(200105)55:2<151::AID-JBM1001>3.0.CO;2-DSearch in Google Scholar

8. I. Vinatier, Pour une didactique professionnelle de l’enseignement. Presses universitaires de Rennes, (2009).Search in Google Scholar

9. C.-L. Sun, B.-J. Li, Z.-J. Shi, Chem. Rev. 111 (2011) 1293.10.1021/cr100198wSearch in Google Scholar

10. A. C. Schinzel, O. Takeuchi, Z. Huang, J. K. Fisher, Z. Zhou, J. Rubens, C. Hetz, N. N. Danial, M. A. Moskowitz, S. J. Korsmeyer, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 12005.10.1073/pnas.0505294102Search in Google Scholar

11. S. Nesrinne, A. Djamel, Arab. J. Chem. 10 (2013) 539.10.1016/j.arabjc.2013.11.027Search in Google Scholar

12. D. E. Owens, Y. Jian, J. E. Fang, B. V. Slaughter, Y.-H. Chen, N. A. Peppas, Macromolecules 40 (2007) 7306.10.1021/ma071089xSearch in Google Scholar

13. T. Okano, N. Yamada, H. Sakai, Y. Sakurai, J. Biomed. Mater. Res. A 27 (1993) 1243.10.1002/jbm.820271005Search in Google Scholar PubMed

14. K. Gupta, K. Khandekar, Biomacromolecules 4 (2003) 758.10.1021/bm020135sSearch in Google Scholar PubMed

15. J. Yoon, S. K. Kim, N. J. Singh, K. S. Kim, Chem. Soc. Rev. 35 (2006) 355.10.1039/b513733kSearch in Google Scholar PubMed

16. L. A. Shah, R. Javed, A. Khan, I. Bibi, N. S. Khattak, S. Alam, Z. Phys. Chem. 233 (2019) 1145.10.1515/zpch-2018-1310Search in Google Scholar

17. L. A. Shah, M. Khan, R. Javed, M. Sayed, M. S. Khan, A. Khan, M. Ullah, J. Clean. Prod. 201 (2018) 78.10.1016/j.jclepro.2018.08.035Search in Google Scholar

18. E. Zhang, J. Yang, W. Liu, Z. Phys. Chem. 232 (2018) 1707.10.1515/zpch-2018-1133Search in Google Scholar

19. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, R. S. Ruoff, Adv. Mater. 22 (2010) 3906.10.1002/adma.201001068Search in Google Scholar PubMed

20. Y.-C. Hseu, F.-Y. Wu, J.-J. Wu, J.-Y. Chen, W.-H. Chang, F.-J. Lu, Y.-C. Lai, H.-L. Yang, Int. Immunopharmacol. 5 (2005) 1914.10.1016/j.intimp.2005.06.013Search in Google Scholar PubMed

21. A. Khan, M. Sajjad, E. Khan, H. M. Akil, L. A. Shah, Z. H. Farooqi, J. Polym. Res. 24 (2017) 170.10.1007/s10965-017-1332-2Search in Google Scholar

22. L. Ye, H. K. Haider, R. Tan, W. Toh, P. K. Law, W. Tan, L. Su, W. Zhang, R. Ge, Y. Zhang, Circulation 116 (2007) I-113.10.1161/CIRCULATIONAHA.106.680124Search in Google Scholar PubMed

23. C. Alvarez-Lorenzo, A. Concheiro, J. Control. Release 80 (2002) 247.10.1016/S0168-3659(02)00032-9Search in Google Scholar

24. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, Science 324 (2009) 1312.10.1126/science.1171245Search in Google Scholar

25. W. Lee, J. Lucey, J. Dairy. Sci. 87 (2004) 3153.10.3168/jds.S0022-0302(04)73450-5Search in Google Scholar

26. N. Seddiki, D. Aliouche, B. Chem. Soc. Ethiopia 27 (2013) 447.Search in Google Scholar

27. D. J. Klionsky, K. Abdelmohsen, A. Abe, M. J. Abedin, H. Abeliovich, A. Acevedo Arozena, H. Adachi, C. M. Adams, P. D. Adams, K. Adeli, Autophagy 12 (2016) 1.10.1080/15548627.2015.1100356Search in Google Scholar PubMed PubMed Central

28. N. E. Angar, D. Aliouche, Revue Roumaine De Chimie 61 (2016) 41.Search in Google Scholar

29. P. Jiang, J. Bertone, K. Hwang, V. Colvin, Chem. Mater. 11 (1999) 2132.10.1021/cm990080+Search in Google Scholar

30. T. Quiroga, M. Goycoolea, O. Panes, E. Aranda, C. Martínez, S. Belmont, B. Muñoz, P. Zúñiga, J. Pereira, D. Mezzano, Haematologica 92 (2007) 357.10.3324/haematol.10816Search in Google Scholar PubMed

31. A. Eddhahak, M. Zidi, Biomed. Mater. Eng. 26 (2015) 103.Search in Google Scholar

32. L. A. Garibaldi, I. Steffan-Dewenter, R. Winfree, M. A. Aizen, R. Bommarco, S. A. Cunningham, C. Kremen, L. G. Carvalheiro, L. D. Harder, O. Afik, Science 339 (2013) 1608.10.1126/science.1230200Search in Google Scholar PubMed

33. B. Soares-Filho, R. Rajão, M. Macedo, A. Carneiro, W. Costa, M. Coe, H. Rodrigues, A. Alencar, Science 344 (2014) 363.10.1126/science.1246663Search in Google Scholar PubMed

34. H. A. Pawar, K. Lalitha, K. Ruckmani, Int. J. Biol. Macromol. 76 (2015) 119.10.1016/j.ijbiomac.2015.02.026Search in Google Scholar PubMed

35. M. C. I. M. Amin, N. Ahmad, N. Halib, I. Ahmad, Carbohyd. Polym. 88 (2012) 465.10.1016/j.carbpol.2011.12.022Search in Google Scholar

36. E. O. Akala, P. Kopečková, J. Kopeček, Biomaterials 19 (1998) 1037.10.1016/S0142-9612(98)00023-4Search in Google Scholar

37. L. A. Shah, W. Chen, M. Siddiq, J. Hu, A. Dong, D. Yang, Chin. J. Chem. 33 (2015) 467.10.1002/cjoc.201400751Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zpch-2019-1470).


Received: 2019-05-13
Accepted: 2019-07-26
Published Online: 2019-08-26
Published in Print: 2020-10-25

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.5.2024 from https://www.degruyter.com/document/doi/10.1515/zpch-2019-1470/html
Scroll to top button