Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) March 22, 2018

TEM, FTIR and Electrochemistry Study: Desorption of PVP from Pt Nanocubes

  • Isaac A. Safo , Carsten Dosche and Mehtap Oezaslan EMAIL logo

Abstract

Polyvinylpyrrolidone (PVP) polymer is among one of the widely used surfactants to prepare nano-materials with desired particle shape and particle size. The critical challenge is to remove PVP polymer from the metal surface without loss of the surface arrangement and particle agglomeration. Here, we developed a strategy to remove the surfactant PVP which prefers to form a multi-layer shell and thus blocks the catalytically active surface of the Pt nanocubes (6–7 nm). Since PVP is partially soluble in polar solvents, we studied four different solvent mixtures (volume ratio), (i) methanol/ethanol (3:1), (ii) acetone/water (3:1), (iii) ethanol/chloroform (3:1), and (iv) aqueous 0.1 M acetic acid by using transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR) and cyclic voltammetry (CV). Only, the washing process with methanol/ethanol and acetone/water generates Pt nanocubes with almost clean particle surface. Based on our FTIR results, a shift of the carbonyl band in IR spectrum was observed for methanol/ethanol-washed Pt nanocubes, indicating the coordination of the carbonyl oxygen of the PVP to platinum. The electrochemical experiments showed that the surface area of the methanol/ethanol-washed Pt nanocubes was increased by a factor of 14 compared to the unwashed, while an improvement of 11 times was achieved by washing in acetone/water. However, the CV profile still signifies the presence of strongly adsorbed PVP on the Pt surface. To remove the chemisorbed PVP, an electrochemical cleaning including 200 potential cycles between 0.06 and 1.00 V vs. RHE at 200 mV s−1 was applied. The potential cycling reveals the potential-controlled ad/desorption behavior of the PVP at the Pt surface. Altogether, we designed a cleaning procedure for surfactant-capped metal nanoparticles and provide insights into the interactions between the PVP and Pt surface.

Acknowledgments

Financial support from the Bundesministerium für Bildung und Forschung (BMBF, FKZ 03SF0539) is gratefully acknowledged. Furthermore, the funding of the JEOL JEM2100F HR-TEM by the DFG (INST 184/106-1 FUGG) is acknowledged. Our appreciation goes to Mr. Volker Stenhoff of DLR – Institute of Network Energy Systems, Oldenburg, Germany, for his assistance with the FTIR measurements.

References

1. D. Li, C. Wang, D. S. Strmcnik, D. V. Tripkovic, X. Sun, Y. Kang, M. Chi, J. D. Snyder, D. van der Vliet, Y. Tsai, V. R. Stamenkovic, S. Sun, N. M. Markovic, Energy Environ. Sci. 7 (2014) 4061.10.1039/C4EE01564ASearch in Google Scholar

2. T. Teranishi, R. Kurita, M. Miyake, J. Inorg. Organomet. Polym. 10 (2000) 145.10.1023/A:1009476128466Search in Google Scholar

3. H. Lee, RSC Adv. 4 (2014) 41017.10.1039/C4RA05958ASearch in Google Scholar

4. S. Neumann, S. Grotheer, J. Tielke, I. Schrader, J. Quinson, A. Zana, M. Oezaslan, M. Arenz, S. Kunz, J. Mater. Chem. A 5 (2017) 6140.10.1039/C7TA00628DSearch in Google Scholar

5. M. Oezaslan, F. Hasché, P. Strasser, J. Electrochem. Soc. 159 (2012) B394.10.1149/2.075204jesSearch in Google Scholar

6. M. Oezaslan, F. Hasché, P. Strasser, J. Electrochem. Soc. 159 (2012) B444.10.1149/2.106204jesSearch in Google Scholar

7. C.-K. Tsung, J. N. Kuhn, W. Huang, C. Aliaga, L.-I. Hung, G. A. Somorjai, P. Yang, J. Am. Chem. Soc. 131 (2009) 5816.10.1021/ja809936nSearch in Google Scholar PubMed

8. K. M. Koczkur, S. Mourdikoudis, L. Polavarapu, S. E. Skrabalak, Dalton Trans. 44 (2015) 17883.10.1039/C5DT02964CSearch in Google Scholar PubMed

9. H. Song, F. Kim, S. Connor, G. A. Somorjai, P. Yang, J. Phys. Chem. B 109 (2005) 188.10.1021/jp0464775Search in Google Scholar PubMed

10. W. Liu, H. Wang, Surf. Sci. 648 (2016) 120.10.1016/j.susc.2015.10.023Search in Google Scholar

11. D. Li, C. Wang, D. Tripkovic, S. Sun, N. M. Markovic, V. R. Stamenkovic, ACS Catal. 2 (2012) 1358.10.1021/cs300219jSearch in Google Scholar

12. F. Hasché, M. Oezaslan, P. Strasser, ChemPhysChem 13 (2012) 828.10.1002/cphc.201100857Search in Google Scholar PubMed

13. I. A. Safo, M. Oezaslan, Electrochim. Acta 241 (2017) 544.10.1016/j.electacta.2017.04.118Search in Google Scholar

14. M. Crespo-Quesada, J.-M. Andanson, A. Yarulin, B. Lim, Y. Xia, L. Kiwi-Minsker, Langmuir 27 (2011) 7909.10.1021/la201007mSearch in Google Scholar PubMed

15. B. Gehl, A. Frömsdorf, V. Aleksandrovic, T. Schmidt, A. Pretorius, J.-I. Flege, S. Bernstorff, A. Rosenauer, J. Falta, H. Weller, M. Bäumer, Adv. Funct. Mater. 18 (2008) 2398.10.1002/adfm.200800274Search in Google Scholar

16. N. Naresh, F. G. S. Wasim, B. P. Ladewig, M. Neergat, J. Mater. Chem. A 1 (2013) 8553.10.1039/c3ta11183kSearch in Google Scholar

17. L. R. Baker, G. Kennedy, J. M. Krier, M. Van Spronsen, R. M. Onorato, G. A. Somorjai, Catal. Lett. 142 (2012) 1286.10.1007/s10562-012-0904-3Search in Google Scholar

18. J.-Y. Ye, G. A. Attard, A. Brew, Z.-Y. Zhou, S.-G. Sun, D. J. Morgan, D. J. Willock, J. Phys. Chem. C 120 (2016) 7532.10.1021/acs.jpcc.5b10910Search in Google Scholar

19. P. S. Fernández, D. S. Ferreira, C. A. Martins, H. E. Troiani, G. A. Camara, M. E. Martins, Electrochim. Acta 98 (2013) 25.10.1016/j.electacta.2013.02.129Search in Google Scholar

20. N. V. Long, M. Ohtaki, M. Nogami, T. D. Hien, Colloid Polym. Sci. 289 (2011) 1373.10.1007/s00396-011-2460-6Search in Google Scholar

21. F. Haaf, A. Sanner, F. Straub, Polym. J. 17 (1985) 143.10.1295/polymj.17.143Search in Google Scholar

22. B. Jirgensons, J. Polym. Sci. 8 (1952) 519.10.1002/pol.1952.120080508Search in Google Scholar

23. http://www.ashland.com/industries/energy/batteries/pvp-k-series, PVP Polyvinylpyrrolidone Polymers – Intermediates, solvents, monomers, polymers and specialty chemicals.Search in Google Scholar

24. N. Tanaka, K. Ito, H. Kitano, Macromol. Chem. Phys. 195 (1994) 3369.10.1002/macp.1994.021951008Search in Google Scholar

25. Y. Borodko, S. E. Habas, M. Koebel, P. Yang, H. Frei, G. A. Somorjai, J. Phys. Chem. B 110 (2006) 23052.10.1021/jp063338+Search in Google Scholar PubMed

26. Spektroskopische Methoden in der organischen Chemie, in: M. Hesse, H. Meier, B. Zeeh (Eds.): 7., überarbeitete Auflage ed., Georg Thieme Verlag, Stuttgart, New York (2005).Search in Google Scholar


Supplementary Material:

The online version of this article offers supplementary material (https://doi.org/10.1515/zpch-2018-1147).


Received: 2018-02-09
Accepted: 2018-02-28
Published Online: 2018-03-22
Published in Print: 2018-08-28

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.6.2024 from https://www.degruyter.com/document/doi/10.1515/zpch-2018-1147/html
Scroll to top button