Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) June 14, 2018

Elastin-like Peptide in Confinement: FT-IR and NMR T1 Relaxation Data

  • Susann Weißheit , Marie Kahse , Kerstin Kämpf , Alesia Tietze , Michael Vogel , Roland Winter and Christina Marie Thiele EMAIL logo

Abstract

We employed FT-IR and NMR experiments to investigate the influence of a cell-mimicking crowding environment on the structure and dynamics of an elastin-like peptide (ELP) with the sequence GVG(VPGVG)3, which – due to a high number of hydrophobic amino acid side chains – exhibits an inverse temperature transition (ITT). As simplified crowding agent, we used 30 wt% Ficoll. The FT-IR data revealed the well-known broad ITT above ~25°C, as observed by the decrease of the relative population of random coil structures and the concomitant increase of type II β-turns. Interestingly, the addition of Ficoll leads to a destabilizing effect of type II β-turn structures. This is in contrast to the expected excluded-volume effect of the macromolecular crowder, but can be explained by weak interactions of the peptide with the polysaccharide chains of the crowding agent. Further, the crowding agent leads to the onset of a reversal of the folding transition at high temperatures. The full assignment of the ELP allowed for a residue-specific investigation of the dynamic behavior of ELP by NMR. Due to a strong change of microscopic viscosity between native/buffered conditions and crowded conditions, relaxation data remain inconclusive with respect to the observation of an ITT. Hence, no quantitative details in terms of internal conformational changes can be obtained. However, temperature dependent differences in the 13C relaxation behavior between core and terminal parts of the peptide indicate temperature induced changes in the internal dynamics with generally higher internal mobility at chain ends: This is in full agreement with FT-IR data. In harmony with the FT-IR analysis, macromolecular crowding does not lead to significant changes in the relaxation behavior.

Acknowledgements

The authors thank Volker Schmidts and Julian Ilgen for helpful discussions about the NMR measurements and data. Additionally, thanks to Michaela Standhardt for support with the first T1 measurements. We thank Satyajit Patra for carrying out the FCS measurements and Melanie Berghaus for the SAXS data on ELP. The Deutsche Forschungsgemeinschaft (DFG) is thanked for funding in the framework of FOR1583 through projects DFG TH 1115/8-1, WI 742/17-1/2 and VO 905/8-1/2.

References

1. D. W. Urry, T. Hugel, M. Seitz, H. E. Gaub, L. Sheiba, J. Dea, J. Xu, T. Parker, Philos. Trans. R. Soc. B 357 (2002) 169.10.1098/rstb.2001.1023Search in Google Scholar

2. C. Nicolini, R. Ravindra, B. Ludolph, R. Winter, Biophys. J. 86 (2004) 1385.10.1016/S0006-3495(04)74209-5Search in Google Scholar PubMed

3. E. Schreiner, C. Nicolini, B. Ludolph, R. Ravindra, N. Otte, A. Kohlmeyer, R. Rousseau, R. Winter, D. Marx, Phys. Rev. Lett. 92 (2004) 148101.10.1103/PhysRevLett.92.148101Search in Google Scholar PubMed

4. S. Rauscher, S. Baud, M. Miao, F. W. Keeley, R. Pomes, Structure 14 (2006) 1667.10.1016/j.str.2006.09.008Search in Google Scholar PubMed

5. L. D. Muiznieks, A. S. Weiss, F. W. Keeley, Biochem. Cell Biol. 88 (2010) 239.10.1139/O09-161Search in Google Scholar PubMed

6. B. Li, D. O. V. Alonso, V. Daggett, J. Mol. Biol. 305 (2001) 581.10.1006/jmbi.2000.4306Search in Google Scholar PubMed

7. J. Huang, C. Sun, O. Mitchell, N. Ng, Z. N. Wang, G. S. Boutis, J. Chem. Phys. 136 (2012) 085101.10.1063/1.3685454Search in Google Scholar PubMed PubMed Central

8. S. Perticaroli, G. Ehlers, N. Jalarvo, J. Katsaras, J. D. Nickels, J. Phys. Chem. Lett. 6 (2015) 4018.10.1021/acs.jpclett.5b01890Search in Google Scholar PubMed

9. D. W. Urry, T. L. Trapane, M. Iqbal, C. M. Venkatachalam, K. U. Prasad, Biochemistry 24 (1985) 5182.10.1021/bi00340a034Search in Google Scholar PubMed

10. D. Kurkova, J. Kriz, P. Schmidt, J. Dybal, J. C. Rodriguez-Cabello, M. Alonso, Biomacromolecules 4 (2003) 589.10.1021/bm025618aSearch in Google Scholar PubMed

11. X. L. Yao, M. Hong, J. Am. Chem. Soc. 126 (2004) 4199.10.1021/ja036686nSearch in Google Scholar PubMed

12. H. Nuhn, H. A. Klok, Biomacromolecules 9 (2008) 2755.10.1021/bm800784ySearch in Google Scholar PubMed

13. H. Reiersen, A. R. Clarke, A. R. Rees, J. Mol. Biol. 283 (1998) 255.10.1006/jmbi.1998.2067Search in Google Scholar PubMed

14. J. W. Emsley, G. R. Luckhurst, C. P. Stockley, Proc. R. Soc. Lond. A 381 (1982) 117.10.1098/rspa.1982.0061Search in Google Scholar

15. H.-X. Zhou, G. Rivas, A. P. Minton, Annu. Rev. Biophys. 37 (2008) 375.10.1146/annurev.biophys.37.032807.125817Search in Google Scholar PubMed PubMed Central

16. G. Rivas, A. P. Minton, Trends Biochem. Sci. 41 (2016) 970.10.1016/j.tibs.2016.08.013Search in Google Scholar PubMed PubMed Central

17. M. Gao, C. Held, S. Patra, L. Arns, G. Sadowski, R. Winter, ChemPhysChem 18 (2017) 2951.10.1002/cphc.201700762Search in Google Scholar PubMed

18. J. Danielsson, X. Mu, L. Lang, H. B. Wang, A. Binolfi, F. X. Theillet, B. Bekei, D. T. Logan, P. Selenko, H. Wennerstrom, M. Oliveberg, Proc. Natl. Acad. Sci. USA 112 (2015) 12402.10.1073/pnas.1511308112Search in Google Scholar PubMed PubMed Central

19. S. Mittal, R. K. Chowhan, L. R. Singh, Bba-Gen. Subj. 1850 (2015) 1822.10.1016/j.bbagen.2015.05.002Search in Google Scholar PubMed

20. A. Politou, P. A. Temussi, Curr. Opin. Struct. Biol. 30 (2015) 1.10.1016/j.sbi.2014.10.005Search in Google Scholar PubMed

21. S. Shahid, M. I. Hassan, A. Islam, F. Ahmad, Bba-Gen. Subj. 1861 (2017) 178.10.1016/j.bbagen.2016.11.014Search in Google Scholar PubMed

22. K. A. Sharp, Proc. Natl. Acad. Sci. USA 113 (2016) 1684.10.1073/pnas.1600098113Search in Google Scholar PubMed PubMed Central

23. A. E. Smith, L. Z. Zhou, A. H. Gorensek, M. Senske, G. J. Pielak, Proc. Natl. Acad. Sci. USA 113 (2016) 1725.10.1073/pnas.1518620113Search in Google Scholar PubMed PubMed Central

24. M. Senske, A. E. Smith, G. J. Pielak, Angew. Chem. Int. Ed. 55 (2016) 3586.10.1002/anie.201508981Search in Google Scholar PubMed

25. M. Senske, L. Tork, B. Born, M. Havenith, C. Herrmann, S. Ebbinghaus, J. Am. Chem. Soc. 136 (2014) 9036.10.1021/ja503205ySearch in Google Scholar PubMed

26. M. Foroozandeh, R. W. Adams, N. J. Meharry, D. Jeannerat, M. Nilsson, G. A. Morris, Angew. Chem. Int. Ed. 53 (2014) 6990.10.1002/anie.201404111Search in Google Scholar PubMed PubMed Central

27. G. Stokes, Trans. Camb. Philos. Soc. 9 (1856) 5.Search in Google Scholar

28. A. Einstein, Ann. Phys. 324 (1906) 371.10.1002/andp.19063240208Search in Google Scholar

29. P. J. W. Debye, Polar Molecules, The Chemical Catalog Company, Inc., New York (1929).Search in Google Scholar

30. M. Berghaus, PhD Thesis, Structural Investigations of Biomolecules under Extreme Conditions, TU Dortmund (2017).Search in Google Scholar

31. A. Werkmüller, G. Triola, H. Waldmann, R. Winter, ChemPhysChem 14 (2013) 3698.10.1002/cphc.201300617Search in Google Scholar PubMed

32. M. Roos, M. Ott, M. Hofmann, S. Link, E. Rossler, J. Balbach, A. Krushelnitsky, K. Saalwachter, J. Am. Chem. Soc. 138 (2016) 10365.10.1021/jacs.6b06615Search in Google Scholar PubMed

33. Y. Q. Wang, C. G. Li, G. J. Pielak, J. Am. Chem. Soc. 132 (2010) 9392.10.1021/ja102296kSearch in Google Scholar PubMed PubMed Central

34. S. Zorrilla, M. A. Hink, A. J. W. G. Visser, M. P. Lillo, Biophys. Chem. 125 (2007) 298.10.1016/j.bpc.2006.09.003Search in Google Scholar PubMed

35. P. C. Groß, W. Possart, M. Zeppezauer, Z. Naturforsch. C 58 (2003) 873.10.1515/znc-2003-11-1223Search in Google Scholar PubMed

36. J. Huang, C. Sun, O. Mitchell, N. Ng, Z. N. Wang, G. S. Boutis, J. Chem. Phys. 136 (2012) 3685454.Search in Google Scholar

37. J. Lessing, S. Roy, M. Reppert, M. Baer, D. Marx, T. L. C. Jansen, J. Knoester, A. Tokmakoff, J. Am. Chem. Soc. 134 (2012) 5032.10.1021/ja2114135Search in Google Scholar PubMed

38. R. Glaves, M. Baer, E. Schreiner, R. Stoll, D. Marx, ChemPhysChem 9 (2008) 2759.10.1002/cphc.200800474Search in Google Scholar PubMed

39. D. W. Urry, D. K. Chang, N. R. Krishna, D. H. Huang, T. L. Trapane, K. U. Prasad, Biopolymers 28 (1989) 819.10.1002/bip.360280404Search in Google Scholar PubMed

40. I. Maeda, Y. Fukumoto, T. Nose, Y. Shimohigashi, T. Nezu, Y. Terada, H. Kodama, K. Kaibara, K. Okamoto, J. Pept. Sci. 17 (2011) 735.10.1002/psc.1394Search in Google Scholar PubMed

41. G. Lipari, A. Szabo, J. Am. Chem. Soc. 104 (1982) 4546.10.1021/ja00381a009Search in Google Scholar

42. G. Lipari, A. Szabo, J. Am. Chem. Soc. 104 (1982) 4559.10.1021/ja00381a010Search in Google Scholar

43. N. Boden, R. J. Bushby, L. D. Clark, Mol. Phys. 38 (1979) 1683.10.1080/00268977900102731Search in Google Scholar

44. A. Bormuth, P. Henritzi, M. Vogel, Macromolecules 43 (2010) 8985.10.1021/ma101721dSearch in Google Scholar

45. M. Erlkamp, S. Grobelny, R. Winter, Phys. Chem. Chem. Phys. 16 (2014) 5965.10.1039/c3cp55040kSearch in Google Scholar PubMed

46. K. Kämpf, F. Klameth, M. Vogel, J. Chem. Phys. 137 (2012) 205105.10.1063/1.4768046Search in Google Scholar PubMed


Supplementary Material:

The online version of this article offers supplementary material (https://doi.org/10.1515/zpch-2017-1047).


Received: 2017-10-13
Accepted: 2018-05-17
Published Online: 2018-06-14
Published in Print: 2018-07-26

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/zpch-2017-1047/html
Scroll to top button