Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 21, 2024

Pyrane-based cembranoid and 2-dehydro-4-peroxy-sarcophine: two new diterpenes from Sarcophyton glaucum

  • Mohamed Shaaban ORCID logo EMAIL logo and Mohamed A. Ghani

Abstract

Soft corals, particularly Sarcophyton sp. are rich in metabolites with variety of biological activities. In this study, a pyran-based 9-exo-methylene-10-hydroxy-sarcotrocheliol (1) and 2-dehydro-4-peroxy-sarcophine (2), two new cembranoide diterpenes, were isolated together with 9-hydroxy-10,11-dehydro-sarcotrocheliol, sarcotrocheliol, sarcotrocheliol acetate, sarcophine, (+)-7α,8β-dihydroxydeepoxysarcophine, (±)-sarcophytonine B, and peridinin from the organic extract of Sarcophyton glaucum collected at the coasts of Hurghada, Egypt. The structures of the new diterpenes 1–2 were identified based on cumulative analyses of HRESIMS and NMR (1D/2D NMR) spectra. The relative configurations of both compounds were verified by NOESY spectra and comparison with our recently reported analogues. The compounds showed no antimicrobial activity against a set of diverse tested microorganisms.


Corresponding author: Mohamed Shaaban, Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El-Behoos St. 33 12622 Dokki-Cairo, Egypt; and Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, D-37077 Göttingen, Germany, E-mail:

Acknowledgments

The authors are deeply thankful to Prof. H. Laatsch, Institute of Organic and Biomolecular Chemistry, Göttingen, for his support and lab facilities. I thank Dr. H. Frauendorf and Dr. Michael John for MS and NMR measurements. The author would like to acknowledge Ms. F. Lissy for biological activity tests. M. Shaaban thanks the German Academic Exchange Service (DAAD) for a short-term grant.

  1. Research ethics: Not applicable.

  2. Author contributions: Conceptualization, M.S., M.A.G.; methodology, M.S., M.A.G.; validation, M.S., M.A.G.; investigation, M.S., M.A.G.; resources, M.A.G.; data curation, M.S.; writing—Original draft preparation, M.S., M.A.G.; writing—Review and editing, M.S.; visualization, M.S., M.A.G.; supervision, M.S. All authors have read and agreed to the published version of the manuscript.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Nurrachma, MY, Sakaraga, D, Nugraha, AY, Rahmawati, SI, Bayu, A, Sukmarini, L, et al.. Cembranoids of soft corals: recent updates and their biological activities. Nat Prod Bioprospect 2021;11:243–306. https://doi.org/10.1007/s13659-021-00303-2.Search in Google Scholar PubMed PubMed Central

2. Bernstein, J, Schmeuli, U, Zadock, E, Kashman, Y, Neeman, I. Sarcophine, a new epoxy cembranolide from marine origin. Tetrahedron 1974;30:2817–24. https://doi.org/10.1016/s0040-4020(01)97451-4.Search in Google Scholar

3. Kashman, Y, Zadock, E, Neeman, I. Some new cembrane derivatives of marine origin. Tetrahedron 1974;30:3615–20. https://doi.org/10.1016/s0040-4020(01)97044-9.Search in Google Scholar

4. Tursch, B. Some recent developments in the chemistry of alcyonaceans. Pure Appl Chem 1976;48:1–6. https://doi.org/10.1351/pac197648010001.Search in Google Scholar

5. Bowden, F, Coll, JC, Mitchell, SJ, Stoke, GJ. Studies of Australian soft corals. XI. Two new cembranoid diterpenes from a Sarcophyton species. Aust J Chem 1979;32:653–9. https://doi.org/10.1071/ch9790653.Search in Google Scholar

6a. Faulkner, DJ. Marine natural products: metabolites of marine invertebrates. Nat Prod Rep 1984;1:551–98. https://doi.org/10.1039/np9840100551.Search in Google Scholar

b. Faulkner, DJ. Marine natural products. Nat Prod Rep 1995;12:223–69. https://doi.org/10.1039/np9951200223.Search in Google Scholar

7. Coll, JC. The chemistry and chemical ecology of octocorals (Coelenterata, Anthozoa, Octocorallia). Chem Rev 1992;92:613–31. https://doi.org/10.1021/cr00012a006.Search in Google Scholar

8. OK, R, Vaske, YM, Navarro, G, Vervoort, HC, Tenney, K, Linington, RG, et al.. Highlights of marine invertebrate-derived biosynthetic products: their biomedical potential and possible production by microbial associants. Bioorg Med Chem 2011;19:6658–74.10.1016/j.bmc.2011.07.017Search in Google Scholar PubMed PubMed Central

9. Weinheimer, J, Matson, JA, Hoassain, MB, van del Helm, D. Marine anticancer agents: Sinularin and dihydrosinularin, new cembranolides from the soft coral, Sinularia flexibilis. Tetrahedron Lett 1977;34:2923–6. https://doi.org/10.1016/s0040-4039(01)83115-4.Search in Google Scholar

10. Sheu, J-H, Ahmed, AF, Shiue, R-T, Dai, C-F, Kuo, Y-H. Scabrolides A−D, four new norditerpenoids isolated from the soft coral Sinularia scabra. J Nat Prod 2002;65:1904–8. https://doi.org/10.1021/np020280r.Search in Google Scholar PubMed

11. Duh, C-Y, Wang, S-K, Tseng, H-K, Sheu, J-H, Chiang, MY. Novel cytotoxic cembranoids from the soft coral Sinularia flexibilis. J Nat Prod 1998;61:844–7. https://doi.org/10.1021/np980021v.Search in Google Scholar PubMed

12. Duh, C-Y, Wang, S-K, Chia, M-C, Chiang, MY. A novel cytotoxic norditerpenoid from the Formosan soft coral Sinularia inelegans. Tetrahedron Lett 1999;40:6033–5. https://doi.org/10.1016/s0040-4039(99)01194-6.Search in Google Scholar

13. Yamada, K, Ujiie, T, Yoshida, K, Miyamoto, T, Higuchi, R. Sinulobatins A∼ D, new amphilectane-type diterpenoids from the Japanese soft coral Sinularia nanolobata. Tetrahedron 1997;53:4569–78. https://doi.org/10.1016/s0040-4020(97)00169-5.Search in Google Scholar

14. Aceret, TL, Coll, JC, Uchio, Y, Sammarco, PW. Antimicrobial activity of the diterpenes flexibilide and sinulariolide derived from Sinularia flexibilis Quoy and Gaimard 1833 (Coelenterata: Alcyonacea, Octocorallia). Comp Biochem Physiol Part C Pharmacol 1998;120:121–6. https://doi.org/10.1016/s0742-8413(98)00032-2.Search in Google Scholar PubMed

15. González, Y, Torres-Mendoza, D, Jones, GE, Fernandez, PL. Marine diterpenoids as potential anti-inflammatory agents. Mediat Inflamm 2015;2015:1–14. https://doi.org/10.1155/2015/263543.Search in Google Scholar PubMed PubMed Central

16. Takaki, H, Koganemaru, R, Iwkawa, Y, Higuchi, R. Miyamoto, T. Inhibitory effect of norditerpenes on LPS-induced TNF-α production from the Okinawan soft coral, Sinularia sp. Biol Pharm Bull 2003;26:380–2. https://doi.org/10.1248/bpb.26.380.Search in Google Scholar PubMed

17. Li, Y, Pattenden, G. Perspectives on the structural and biosynthetic interrelationships between oxygenated furano-cembranoids and their polycyclic congeners found in corals. Nat Prod Rep 2011;28:1269–310. https://doi.org/10.1039/c1np00023c.Search in Google Scholar PubMed

18. Kamel, HN, Slattery, M. Terpenoids of Sinularia: chemistry and biomedical applications. Pharm Biol 2005;43:253–69. https://doi.org/10.1080/13880200590928852.Search in Google Scholar

19. Shaaban, M, Shaaban, KA, Ghani, MA. Hurgadacin: a new steroid from Sinularia polydactyla. Steroids 2013;78:866–73. https://doi.org/10.1016/j.steroids.2013.05.006.Search in Google Scholar PubMed

20. Shaaban, M, Ghani, MA, Shaaban, KA. Zahramycins A-B, two new steroids from the coral Sarcophyton trocheliophorum. Z Naturforsch 2013;68b:939–45. https://doi.org/10.5560/znb.2013-3131.Search in Google Scholar

21. Shaaban, KA, Ghani, MA, Shaaban, M. New cembranoid diterpenes from Sarcophyton Trocheliophorum. Br J Pharmaceut Res 2015;5:192–201. https://doi.org/10.9734/bjpr/2015/14757.Search in Google Scholar

22. Shaaban, M, Ghani, MA, Shaaban, KA. Unusual pyranosyl cembranoid diterpene from Sarcophyton trocheliophorum. Z Naturforsch B Chem Sci 2016;71:1211–17. https://doi.org/10.1515/znb-2016-0144.Search in Google Scholar

23. Shaaban, M, Issa, MY, Ghani, MA, Hamed, A, Abdelwahab, AB. New pyranosyl cembranoid diterpenes from Sarcophyton trocheliophorum. Nat Prod Res 2019;33:24–33. https://doi.org/10.1080/14786419.2018.1431631.Search in Google Scholar PubMed

24. Al-Footy, KO, Alarif, WM, Asiri, F, Aly, MM, Ayyad, SN. Rare pyrane-based cembranoids from the Red Sea soft coral Sarcophyton trocheliophorum as potential antimicrobial–antitumor agents. Ayyad Med Chem Res 2015;24:505–12. https://doi.org/10.1007/s00044-014-1147-1.Search in Google Scholar

25. Abdel-Lateff, A, Alarif, WM, Ayyad, SN, Al-Lihaibi, SS, Basaif, SA. New cytotoxic isoprenoid derivatives from the Red Sea soft coral Sarcophyton glaucum. Nat Prod Res 2015;29:24–30. https://doi.org/10.1080/14786419.2014.952637.Search in Google Scholar PubMed

26. Kobayashi, M, Nakagawa, T, Mitsuhashi, H. Marine terpenes and terpenoids. I. structures of four cembrane-type diterpenes: sarcophytol-A, sarcophytol-A acetate sarcophytol-B, and sarcophytonin-A, from the soft coral, Sarcophyton glaucum. Chem Pharm Bull 1979;27:2382–7. https://doi.org/10.1248/cpb.27.2382.Search in Google Scholar

27. Nichitani, K, Harada, K, Sano, N, Sato, K, Yamakawa, K. Stereoselective synthesis of both half segments for (-)-sarcophytonin A and (-)-sarcophytoxide. Chem Pharm Bull 1991;39:2514–24.10.1248/cpb.39.2514Search in Google Scholar

28. Miyaoka, H, Taira, S, Mitome, H, Iguchi, K, Matsumoto, K, Yokoo, C, et al.. Two new cembrane-type diterpenoids from okinawan soft coral of the genus, Sarcophyton. Chem Lett 1996:239–40. https://doi.org/10.1246/cl.1996.239.Search in Google Scholar

29. Grote, D, Soliman, HSM, Shaker, KH, Hamza, M, Seifert, K. Cembranoid diterpenes and a briarane diterpene from corals. Nat Prod Res 2006;20:285–91. https://doi.org/10.1080/14786410500087657.Search in Google Scholar PubMed

30. Hamed, A, Issa, MY, Ghani, MA, Frese, M, Neumann, B, Stammler, HG, et al.. Crystal structure and configuration revision of 9-hydroxy-7,8-dehydro-sarcotrocheliol and sarcotrocheliol. Nat Prod Res 2019;20:3029–32. https://doi.org/10.1080/14786419.2018.1512997.Search in Google Scholar PubMed

31. Zubair, M, Alarif, W, Al-Fooly, K, Ph, M, Ali, M, Basaif, S, et al.. New antimicrobial biscembrane hydrocarbon and cembranoid diterpenes from the soft coral Sarcophyton trocheliophorum. Turk J Chem 2016;40:385–92. https://doi.org/10.3906/kim-1502-82.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/ijfe-2023-0184).


Received: 2024-01-03
Accepted: 2024-03-03
Published Online: 2024-03-21
Published in Print: 2024-03-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.5.2024 from https://www.degruyter.com/document/doi/10.1515/znc-2024-0004/html
Scroll to top button