Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 30, 2022

TiNiSi-type YbIrMg with trivalent ytterbium

  • Maximilian Kai Reimann and Rainer Pöttgen EMAIL logo

Abstract

YbIrMg was obtained from a reaction of the elements in an equiatomic ratio in a sealed tantalum ampoule in a muffle furnace. The TiNiSi-type structure of YbIrMg was refined from single crystal X-ray diffractometer data: Pnma, a = 695.72(3), b = 405.84(6), c = 840.57(7) pm, wR = 0.0431, 511 F2 values and 21 variables. A small degree of Mg/Ir mixing within the three-dimensional [IrMg] network leads to the refined composition YbIr1.024(4)Mg0.976(4). The course of the cell volume in the REIrMg series (Iandelli plot) points to trivalent ytterbium in YbIrMg.


Corresponding author: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany, E-mail:

Acknowledgments

We thank Dipl.-Ing. J. Kösters for the intensity data collection.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar

2. Rodewald, U. C., Chevalier, B., Pöttgen, R. J. Solid State Chem. 2007, 180, 1720–1736; https://doi.org/10.1016/j.jssc.2007.03.007.Search in Google Scholar

3. Villars, P., Cenzual, K., Eds. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2022/23); ASM International®: Materials Park, Ohio (USA), 2022.Search in Google Scholar

4. De Negri, S., Solokha, P., Saccone, A. J. Phase Equilibria Diffus. 2014, 35, 377–383; https://doi.org/10.1007/s11669-014-0290-1.Search in Google Scholar

5. Shtender, V. V., Denys, R. V., Zavaliy, I. Y., Zelinska, O. Y., Paul-Boncour, V., Pavlyuk, V. V. J. Solid State Chem. 2015, 232, 228–235; https://doi.org/10.1016/j.jssc.2015.09.031.Search in Google Scholar

6. Shtender, V. V., Zelinska, O. Y., Pavlyuk, V. V., Denys, R. V., Paul-Boncour, V., Zavaliy, I. Y., Marciniak, B., Rόżycka-Sokołowska, E. Intermetallics 2017, 87, 61–69; https://doi.org/10.1016/j.intermet.2017.04.006.Search in Google Scholar

7. Shtender, V. V., Pavlyuk, V. V., Zelinska, O. Y., Nitek, W., Paul-Boncour, V., Dmytriv, G. S., Łasocha, W., Zavaliy, I. Y. J. Alloys Compd. 2020, 812, 152072; https://doi.org/10.1016/j.jallcom.2019.152072.Search in Google Scholar

8. Huaiying, Z., Xin, X., Gang, C., Zhongmin, W., Songli, Z. J. Alloys Compd. 2005, 386, 144–146; https://doi.org/10.1016/j.jallcom.2004.05.030.Search in Google Scholar

9. De Negri, S., Giovannini, M., Saccone, A. J. Alloys Compd. 2005, 397, 126–134; https://doi.org/10.1016/j.jallcom.2005.01.025.Search in Google Scholar

10. Zhou, H., Wang, Y., Yao, Q. J. Alloys Compd. 2006, 407, 129–131; https://doi.org/10.1016/j.jallcom.2005.06.015.Search in Google Scholar

11. Yao, Q., Zhou, H., Wang, Z. J. Alloys Compd. 2006, 421, 117–119; https://doi.org/10.1016/j.jallcom.2005.11.050.Search in Google Scholar

12. Mezbahul-Islam, M., Medraj, M. Calphad 2009, 33, 478–486; https://doi.org/10.1016/j.calphad.2009.01.001.Search in Google Scholar

13. Mezbahul-Islam, M., Kevorkov, D., Medraj, M. Metals 2015, 5, 1746–1769; https://doi.org/10.3390/met5031746.Search in Google Scholar

14. Xu, K., Liu, S., Huang, D., Du, Y. J. Mater. Sci. 2018, 53, 9243–9257; https://doi.org/10.1007/s10853-018-2192-9.Search in Google Scholar

15. Shtender, V. V., Pavlyuk, V. V., Dmytriv, G. S., Nitek, W., Lasocha, W., Cichowicz, G., Cyrański, M. K., Paul-Boncour, V., Zavaliy, I. Y. Z. Kristallogr. 2019, 234, 19–32; https://doi.org/10.1515/zkri-2018-2107.Search in Google Scholar

16. De Negri, S., Giovannini, M., Saccone, A. J. Alloys Compd. 2007, 427, 134–141; https://doi.org/10.1016/j.jallcom.2006.02.062.Search in Google Scholar

17. De Negri, S., Saccone, A., Rogl, P., Giester, G. Intermetallics 2008, 16, 1285–1291; https://doi.org/10.1016/j.intermet.2008.08.004.Search in Google Scholar

18. De Negri, S., Solokha, P., Saccone, A., Pavlyuk, V. Intermetallics 2009, 17, 614–621; https://doi.org/10.1016/j.intermet.2009.02.001.Search in Google Scholar

19. Solokha, P., De Negri, S., Pavlyuk, V., Saccone, A. Solid State Sci. 2009, 11, 801–811; https://doi.org/10.1016/j.solidstatesciences.2008.12.006.Search in Google Scholar

20. Mezbahul-Islam, M., Medraj, M. Sci. Rep. 2013, 3, 3033; https://doi.org/10.1038/srep03033.Search in Google Scholar PubMed PubMed Central

21. Marciniak, B., Pavlyuk, V., Rozycka-Sokolowska, E., Karwowski, L., Bak, Z. J. Alloys Compd. 2015, 652, 254–259.10.1016/j.jallcom.2015.08.183Search in Google Scholar

22. De Negri, S., Solokha, P., Pavlyuk, V., Saccone, A. Intermetallics 2011, 19, 671–681; https://doi.org/10.1016/j.intermet.2011.01.007.Search in Google Scholar

23. Freccero, R., De Negri, S., Saccone, A., Solokha, P. Dalton Trans. 2020, 49, 12056–12067; https://doi.org/10.1039/d0dt02359k.Search in Google Scholar PubMed

24. Stein, S., Heletta, L., Pöttgen, R. J. Solid State Chem. 2017, 253, 184–191; https://doi.org/10.1016/j.jssc.2017.05.028.Search in Google Scholar

25. Pöttgen, R., Gulden, T., Simon, A. GIT Labor-Fachzeitschrift 1999, 43, 133–136.Search in Google Scholar

26. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74; https://doi.org/10.1107/s0021889877012898.Search in Google Scholar

27. Iandelli, A., Palenzona, A. Rev. Chim. Miner. 1976, 13, 55–61.Search in Google Scholar

28. Palatinus, L. Acta Crystallogr. 2013, 69B, 1–16; https://doi.org/10.1107/s0108768112051361.Search in Google Scholar

29. Palatinus, L., Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790; https://doi.org/10.1107/s0021889807029238.Search in Google Scholar

30. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352; https://doi.org/10.1515/zkri-2014-1737.Search in Google Scholar

31. Cordier, G., Dörsam, G., Kniep, R. J. Magn. Magn Mater. 1988, 76/77, 653–654; https://doi.org/10.1016/0304-8853(88)90517-3.Search in Google Scholar

32. Shoemaker, C. B., Shoemaker, D. P. Acta Crystallogr. 1965, 18, 900–905; https://doi.org/10.1107/s0365110x65002189.Search in Google Scholar

33. Fickenscher, T., Pöttgen, R. J. Solid State Chem. 2001, 161, 67–72; https://doi.org/10.1006/jssc.2001.9268.Search in Google Scholar

34. Hoffmann, R.-D., Pöttgen, R. Z. Kristallogr. 2001, 216, 127–145; https://doi.org/10.1524/zkri.216.3.127.20327.Search in Google Scholar

35. Pöttgen, R. Z. Anorg. Allg. Chem. 2014, 640, 869–891; https://doi.org/10.1002/zaac.201400023.Search in Google Scholar

36. Landrum, G. A., Hoffmann, R., Evers, J., Boysen, H. Inorg. Chem. 1998, 37, 5754–5763; https://doi.org/10.1021/ic980223e.Search in Google Scholar

37. Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K., Gladyshevskii, R. TYPIX-Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types. Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th ed.; Springer: Berlin, 1993.10.1007/978-3-662-10641-9Search in Google Scholar

38. Bojin, M. D., Hoffmann, R. Helv. Chim. Acta 2003, 86, 1653–1682; https://doi.org/10.1002/hlca.200390140.Search in Google Scholar

39. Bojin, M. D., Hoffmann, R. Helv. Chim. Acta 2003, 86, 1683–1708; https://doi.org/10.1002/hlca.200390141.Search in Google Scholar

40. Janka, O., Niehaus, O., Pöttgen, R., Chevalier, B. Z. Naturforsch. 2016, 71b, 737–764; https://doi.org/10.1515/znb-2016-0101.Search in Google Scholar

Received: 2022-12-09
Accepted: 2022-12-20
Published Online: 2022-12-30
Published in Print: 2023-02-23

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 18.5.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2022-0149/html
Scroll to top button