Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 18, 2021

Synthesis and structure of the λ6Si-silicate [Cs(18-crown-6)]2[Si(OSO2CH3)6]

  • Isabelle Georg , Michael Bolte , Matthias Wagner and Hans-Wolfram Lerner EMAIL logo

Abstract

The λ6Si-silicate [Cs(18-crown-6)]2[Si(OSO2CH3)6] (1) was synthesized by treatment of Si2Cl6 with Cs[OSO2CH3] in the presence of 18-crown-6. Compound 1 is the first example of a λ6Si-silicate with a methanesulfonate ligand. It was characterized by NMR spectroscopy and by single-crystal X-ray diffraction. The solid-state structure of 1 consists of discrete [Si(OSO2CH3)6]2– anions and two [Cs(18-crown-6)]+ cations (triclinic space group, P1¯, Z = 1).


Corresponding author: Hans-Wolfram Lerner, Institut für Anorganische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, 60438Frankfurt am Main, Germany, E-mail:

Funding source: Evonik Stiftung

Acknowledgments

The authors are grateful to the Evonik Operations GmbH, Rheinfelden (Germany), for the generous donation of Si2Cl6. I.G. wishes to thank the Evonik Foundation for a Ph.D. grant.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Kaczmarczyk, A., Urry, G. J. Am. Chem. Soc. 1960, 82, 751–752. https://doi.org/10.1021/ja01488a069.Search in Google Scholar

2. Kaczmarczyk, A., Millard, M., Urry, G. J. Inorg. Nucl. Chem. 1961, 17, 186–188. https://doi.org/10.1016/0022-1902(61)80212-1.Search in Google Scholar

3. Nuss, J. W., Urry, G. J. Inorg. Nucl. Chem. 1964, 26, 435–444. https://doi.org/10.1016/0022-1902(64)90008-9.Search in Google Scholar

4. Kaczmarczyk, A., Millard, M., Nuss, J. W., Urry, G. J. Inorg. Nucl. Chem. 1964, 26, 421–425. https://doi.org/10.1016/0022-1902(64)90006-5.Search in Google Scholar

5. Urry, G. Acc. Chem. Res. 1970, 3, 306–312. https://doi.org/10.1021/ar50033a004.Search in Google Scholar

6. Meyer-Wegner, F., Nadj, A., Bolte, M., Auner, N., Wagner, M., Holthausen, M. C., Lerner, H.-W. Chem. Eur J. 2011, 17, 4715–4719. https://doi.org/10.1002/chem.201003654.Search in Google Scholar

7. Schweizer, J. I., Scheibel, M. G., Diefenbach, M., Neumeyer, F., Würtele, C., Kulminskaya, N., Linser, R., Auner, N., Schneider, S., Holthausen, M. C. Angew. Chem. Int. Ed. 2016, 55, 1782–1786. https://doi.org/10.1002/anie.201510477.Search in Google Scholar

8. Tillmann, J., Meyer-Wegner, F., Nadj, A., Becker-Baldus, J., Sinke, T., Bolte, M., Holthausen, M. C., Wagner, M., Lerner, H.-W. Inorg. Chem. 2012, 51, 8599–8606. https://doi.org/10.1021/ic301283m.Search in Google Scholar

9. Tillmann, J., Lerner, H,-W., Bolte, M. Acta Crystallogr. 2015, C71, 883–888. https://doi.org/10.1107/s2053229615016484.Search in Google Scholar

10. Georg, I., Bursch, M., Stückrath, J. B., Alig, E., Bolte, M., Lerner, H.-W., Grimme, S., Wagner, M. Angew. Chem. Int. Ed. 2020, 59, 16181–16187.10.1002/anie.202006463Search in Google Scholar PubMed PubMed Central

11. Teichmann, J., Kunkel, C., Georg, I., Moxter, M., Santowski, T., Bolte, M., Lerner, H.-W., Bade, S., Wagner, M. Chem. Eur J. 2019, 25, 2740–2744. https://doi.org/10.1002/chem.201806298.Search in Google Scholar

12. Georg, I., Teichmann, J., Bursch, M., Tillmann, J., Endeward, B., Bolte, M., Lerner, H.-W., Grimme, S., Wagner, M. J. Am. Chem. Soc. 2018, 140, 9696–9708. https://doi.org/10.1021/jacs.8b05950.Search in Google Scholar

13. Teichmann, J., Wagner, M. Chem. Commun. 2018, 54, 1397–1412. https://doi.org/10.1039/c7cc09063c.Search in Google Scholar

14. Heininger, W., Stucka, R., Nagorsen, G. Z. Naturforsch. 1986, 41b, 702–707. https://doi.org/10.1515/znb-1986-0607.Search in Google Scholar

15. Seiler, O., Burschka, C., Götz, K., Kaupp, M., Metz, S., Tacke, R. Z. Anorg. Allg. Chem. 2007, 633, 2667–2670. https://doi.org/10.1002/zaac.200700189.Search in Google Scholar

16. Logemann, C., Klüner, T., Wickleder, M. S. Chem. Eur J. 2011, 17, 758–760. https://doi.org/10.1002/chem.201002619.Search in Google Scholar

17. Portius, P., Peerless, B., Davis, M., Campbell, R. Inorg. Chem. 2016, 55, 8976–8984. https://doi.org/10.1021/acs.inorgchem.6b01455.Search in Google Scholar

18. Harloff, J., Laatz, K. C., Lerch, S., Schulz, A., Stoer, P., Strassner, T., Villinger, A. Eur. J. Inorg. Chem. 2020, 2457–2464. https://doi.org/10.1002/ejic.202000281.Search in Google Scholar

19. Kowalke, J., Wagler, J., Viehweger, C., Brendler, E., Kroke, E. Chem. Eur J. 2020, 26, 8003–8006. https://doi.org/10.1002/chem.202000435.Search in Google Scholar

20. He, W., Zheng, X., Xiong, Y., Zhang, Z., Dong, J. Microvast Power Systems Co., Ltd. Silyl Ester Compound, its Preparation Method and Application in Electrolyte of Secondary Battery, 2020. CN 111217850.Search in Google Scholar

21. Schmidt, M., Schmidbaur, H., Sechser, L. J. Organomet. Chem. 1968, 15, 77–87.10.1016/S0022-328X(00)86326-3Search in Google Scholar

22. Schmidbaur, H., Sechser, L., Schmidt, M. Chem. Ber. 1969, 102, 376–377. https://doi.org/10.1002/cber.19691020143.Search in Google Scholar

23. Sonnek, G., Müller, G., Baumgarten, K.-G. J. Organomet. Chem. 1980, 194, 9–14. https://doi.org/10.1016/s0022-328x(00)90331-0.Search in Google Scholar

24. X-Area. Diffractometer Control Program System; STOE & Cie GmbH: Darmstadt (Germany), 2002.Search in Google Scholar

25. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112–122. https://doi.org/10.1107/s0108767307043930.Search in Google Scholar

26. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8.Search in Google Scholar

Received: 2021-05-25
Accepted: 2021-06-07
Published Online: 2021-06-18
Published in Print: 2021-07-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.6.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2021-0068/html
Scroll to top button