Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 12, 2021

Orthoamide und Iminiumsalze, CIV. Umsetzungen von Orthoamiden der Alkincarbonsäuren mit enolisierbaren Carbonylverbindungen – Cyclisierung der Kondensationsprodukte zu Pyran-Derivaten

Orthoamides and iminium salts, CIV. Reactions of alkynecarboxylic acid orthoamides with enolizable CH2-acidic compounds and subsequent reactions of some of the condensation products
  • Willi Kantlehner EMAIL logo , Kai Edelmann , Jochen Mezger , Markus Vettel and Wolfgang Frey

Abstract

Orthoamides of alkynecarboxylic acid 15 condense with enolisable β-dicarbonyl compounds and as well with acetophenones to give 3-acryl-1,1-bis(dimethyl-amino)-1,3-butadienes. Some acylbutadienes cyclize affording 2-pyranon-derivatives 33 upon heating with aqueous ethanol. 2H-pyranes are accessible from acetone dicarboxylic acid ester and orthoamides 15. The constitution of one 4-acyl-1,1-bis(dimethylamino)-1,3-butadiene (16f) and one 2H-pyrane (44b) was confirmed by crystal structure determinations.


Corresponding author: Willi Kantlehner, Institut für Angewandte Forschung, Abteilung Technische Organische Synthesechemie und Katalyseforschung, Hochschule Aalen, Beethovenstr. 1, D-73430 Aalen, Germany; and Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany, E-mail:

Orthoamide und Iminiumsalze CIII, see ref. [1].


  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

Literatur

1. Kantlehner, W., Mezger, J., Tiritiris, I., Kreß, R., Frey, W. Z. Naturforsch. 2021, 76b, 133–162; https://doi.org/10.1515/znb-2020-0074.Search in Google Scholar

2. Eine Zusammenstellung von Übersichtsartikeln findet sich unter loc. cit. [2] bei: Kantlehner, W., Stieglitz, R., Hauber, M., Haug, E., Regele, C. J. Prakt. Chem. 2000, 342, 256–268.10.1002/(SICI)1521-3897(200003)342:3<256::AID-PRAC256>3.0.CO;2-GSearch in Google Scholar

3. Meerwein, H., Florian, W., Schön, N., Stopp, G. Liebigs Ann. Chem. 1961, 641, 1–39; https://doi.org/10.1002/jlac.19616410102.Search in Google Scholar

4. Kantlehner, W., Jaus, H., Kienitz, L., Bredereck, H. Liebigs Ann. Chem. 1979, 2096–2113; https://doi.org/10.1002/jlac.197919791220.Search in Google Scholar

5. Kantlehner, W., Heckel, B., Mezger, J. Z. Naturforsch. 2020, 75b, 865–880; https://doi.org/10.1515/znb-2020-0072.Search in Google Scholar

6. Bredereck, H., Effenberger, F., Brendle, T. Angew. Chem., Int. Ed. Engl. 1966, 5, 132; https://doi.org/10.1002/anie.196601321.Search in Google Scholar

7. Föhlisch, B. Chem. Ber. 1971, 104, 348–349; https://doi.org/10.1002/cber.19711040141.Search in Google Scholar

8. Lin, Y., Lang, S. A.Jr. J. Heterocycl. Chem. 1977, 14, 343–347; https://doi.org/10.1016/b978-0-08-019602-2.50020-4.Search in Google Scholar

9. Lin, Y., Lang, S. A.Jr. J. Org. Chem. 1980, 45, 4857–4860; https://doi.org/10.1021/jo01312a011.Search in Google Scholar

10. Boamah, P. J., Haider, N., Heinisch, G. J. Heterocycl. Chem. 1989, 26, 933–939; https://doi.org/10.1002/jhet.5570260410.Search in Google Scholar

11. Sarodnick, G. Chem. Ztg. 1991, 115, 217–218; https://doi.org/10.1016/0300-9572(91)90015-q.Search in Google Scholar

12. Jameson, D. L., Guise, L. E. Tetrahedron Lett. 1991, 18, 1993–2002; https://doi.org/10.1016/s0040-4039(00)78890-3.Search in Google Scholar

13. Gupton, J. T., Hicks, F. A., Wilkinson, D. R., Petrich, S. A., Sikorski, J. A. Heterocycles 1994, 37, 487–499; https://doi.org/10.3987/com-93-s38.Search in Google Scholar

14. Bredereck, H., Effenberger, F., Botsch, H. J. Chem. Ber. 1964, 97, 3397–3406; https://doi.org/10.1002/cber.19640971220.Search in Google Scholar

15. Bredereck, H., Simchen, G., Griebenow, W. Chem. Ber. 1974, 107, 1545–1554; https://doi.org/10.1002/cber.19741070515.Search in Google Scholar

16. Bennett, G. B., Simpson, W. R. J., Mason, R. B., Strohschein, R. J., Mensukhani, R. J. Org. Chem. 1977, 48, 221–225; https://doi.org/10.1021/jo00422a009.Search in Google Scholar

17. Eiden, F., Hereis, C. Arch. Pharm. (Weinheim) 1978, 311, 287–293; https://doi.org/10.1002/ardp.19783110404.Search in Google Scholar PubMed

18. Takeuchi, N., Ochi, K., Murase, M., Tobinaga, S. J. Chem. Soc., Chem. Commun. 1980, 13, 593–594; https://doi.org/10.1039/c39800000593.Search in Google Scholar

19. Weingarten, H., Edelmann, K. N. J. Org. Chem. 1967, 33, 3293–3294; https://doi.org/10.1021/jo01286a005.Search in Google Scholar

20. Kantlehner, W., Haug, E., Stieglitz, R., Frey, W., Kreß, R., Mezger, J. Z. Naturforsch. 2002, 57b, 399–419; https://doi.org/10.1515/znb-2002-0406.Search in Google Scholar

21. Kantlehner, W., Mergen, W. W., Haug, E., Speh, P., Kapasakalidis, J. J., Bräuner, H.-J. Liebigs Ann. Chem. 1985, 1804–1816; https://doi.org/10.1002/jlac.198519850908.Search in Google Scholar

22. Kantlehner, W., Mergen, W. W., Haug, E. Liebigs Ann. Chem. 1983, 290–298; https://doi.org/10.1002/jlac.198319830214.Search in Google Scholar

23. Kantlehner, W., Vettel, M., Lehmann, H., Edelmann, K., Stieglitz, R., Ivanov, I. C. J. Prakt. Chem. 1998, 340, 408–423; https://doi.org/10.1002/prac.19983400503.Search in Google Scholar

24. Kantlehner, W., Haug, E., Stieglitz, R., Frey, W., Kreß, R., Mezger, J. Z. Naturforsch. 2002, 57b, 399–419; https://doi.org/10.1515/znb-2002-0406.Search in Google Scholar

25. Weingarten, H. Tetrahedron 1968, 24, 2767–2772; https://doi.org/10.1016/s0040-4020(01)82548-5.Search in Google Scholar

26. Gelin, S., Chantegrel, B. J. Heterocycl. Chem. 1981, 18, 663–665; https://doi.org/10.1002/jhet.5570180403.Search in Google Scholar

27. Parker, K. A., Kosley, R. W. Tetrahedron Lett. 1976, 341–344; https://doi.org/10.1016/s0040-4039(00)93726-2.Search in Google Scholar

28. Kantlehner, W., Lehmann, H., Edelmann, K., Mezger, J., Ivanov, I. C. Appl. Catal. A 2008, 336, 148–154; https://doi.org/10.1016/j.apcata.2007.08.027.Search in Google Scholar

29. Kantlehner, W., Mezger, J., Lehmann, H., Edelmann, K., Frey, W. Z. Naturforsch. 2018, 73b, 689–702; https://doi.org/10.1515/znb-2018-0065.Search in Google Scholar

30. Kohler, E. P. J. Am. Chem. Soc. 1982, 44, 384–390; https://doi.org/10.1007/bf00319924.Search in Google Scholar

31. Bellamy, L. J. Ultrarot-Spektrum und chemische Konstitution, 2. Auflage; Kapitel 9, D. Steinkopf: Darmstadt, 1966; pp. 101–106.Search in Google Scholar

32. Kantlehner, W., Lehmann, H., Edekmann, K., Mezger, J., Ivanov, I. C. Appl. Catal., A 2008, 326, 148–154; https://doi.org/10.1016/j.apcata.2007.08.027.Search in Google Scholar

33. Kantlehner, W., Speh, P., Lehmann, H., Bräuner, H.-J. Chem. Ztg. 1990, 184, 176–178.Search in Google Scholar

Erhalten: 2021-01-17
Angenommen: 2021-05-18
Online erschienen: 2021-08-12
Erschienen im Druck: 2021-08-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.5.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2021-0005/html
Scroll to top button