Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 17, 2022

Heat transfer analysis describing freezing of a eutectic system by a line heat sink with convection effect in cylindrical geometry

  • Vikas Chaurasiya , Dinesh Kumar , Kabindra Nath Rai and Jitendra Singh EMAIL logo

Abstract

The current article devoted to study a moving boundary problem describing freezing of a eutectic system in a semi-infinite medium in cylindrical symmetry. The solidification of the material is considered by a line heat sink of strength Q place at r = 0. The heat transfer is considered due to both mechanism, conduction and convection driven by fluid motion in the liquid region, mushy region and possibly in porous solid phase. The analysis is concerned with extended freezing temperature range between solidus and liquidus temperatures respectively. The solid fraction is considered to have a linear relationship with temperature within the mushy zone. A direct integration method is used to solve the mathematical model, resulting an exact solution of the problem is obtained. To illustrate the application of current study and validity of mathematical model, a numerical example of freezing of an Al–Cu alloy with 5% Cu is presented. In addition, the temperature distribution in each region and position of moving interfaces is shown for different Peclet number. In this work, we obtained that the process of freezing becomes fast in the presence of convection. Moreover, it is shown that for a large value of Q, strength of line heat sink, the freezing of a eutectic alloy increases rapidly. Both eutectic and solid solution alloys come under the application of current study.


Corresponding author: Jitendra Singh, Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi 221005, India, E-mail:

Funding source: Banaras Hindu University

Award Identifier / Grant number: Unassigned

Acknowledgment

Vikas Chaurasiya, one of the authors is grateful to DST (INSPIRE)-New Delhi (India) for the Senior Research Fellowship vide Ref. No. DST/INSPIRE/03/2 017/000 184 (i) Ref. no/Math/2017-18/March 18/347 and also to the Department of Mathematics (Institute of Science), Banaras Hindu University (BHU), Varanasi (U.P), India, for providing necessary facilities.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] A. Mostafavi, M. Parhizi, and A. Jain, “Semi-analytical thermal modeling of transverse and longitudinal fins in a cylindrical phase change energy storage system,” Int. J. Therm. Sci., vol. 153, p. 106352, 2020. https://doi.org/10.1016/j.ijthermalsci.2020.106352.Search in Google Scholar

[2] M. Parhizi and A. Jain, “Analytical modeling and optimization of phase change thermal management of a Li-ion battery pack,” Appl. Therm. Eng., vol. 148, p. 229, 2019. https://doi.org/10.1016/j.applthermaleng.2018.11.017.Search in Google Scholar

[3] J. H. Nam, H. Hong, and C.-J. Kim, “Freeze coating of a cylindrical object with a binary alloy,” Heat Tran. Asian Res., vol. 28, p. 239, 1999.10.1002/(SICI)1523-1496(1999)28:4<239::AID-HTJ1>3.0.CO;2-9Search in Google Scholar

[4] D. W. Hahn and M. N. Ozisik, Eds., Heat conduction, 3rd ed. Wiley, 2012.10.1002/9781118411285Search in Google Scholar

[5] D. Poulikakos and W.-Z. Cao, “Solidification of a binary alloy from a cold wire or pipe: modeling of the mixed-phase region,” Numer. Heat Trans., vol. 15, p. 197, 1989. https://doi.org/10.1080/10407788908944685.Search in Google Scholar

[6] H. C. Liao, M. Zhang, J. J. Bi, K. Ding, X. Xi, and S. Q. Wu, “Eutectic solidification in near-eutectic Al–Si casting alloys,” J. Mater. Sci. Technol., vol. 26, p. 1089, 2010. https://doi.org/10.1016/s1005-0302(11)60006-6.Search in Google Scholar

[7] J. Mannapperuma and R. P. Singh, “Prediction of freezing and thawing times of foods using a numerical method based on enthalpy formulation,” J. Food Sci., vol. 53, p. 626, 1988. https://doi.org/10.1111/j.1365-2621.1988.tb07770.x.Search in Google Scholar

[8] P. D. Babu, P. Gouthaman, and P. Marimuthu, “Effect of heat sink and cooling mediums on ferrite austenite ratio and distortion in laser welding of duplex stainless steel 2205,” Chin. J. Mech. Eng., vol. 32, 2019. https://doi.org/10.1186/s10033-019-0363-5.Search in Google Scholar

[9] J. Tang, R. Daiyan, M. B. Ghasemian et al.., “Advantages of eutectic alloys for creating catalysts in the realm of nanotechnology-enabled metallurgy,” Nat. Commun., vol. 10, p. 4645, 2019. https://doi.org/10.1038/s41467-019-12615-6.Search in Google Scholar

[10] K. A. Jackson and J. D. Hunt, “Lamellar and rod eutectic growth,” Metal. Soc. AIME, vol. 236, p. 1129, 1966.10.1016/B978-0-08-092523-3.50040-XSearch in Google Scholar

[11] R. Trivedi, P. Magnin, and W. Kurz, “Theory of eutectic growth under rapid solidification conditions,” Acta Metallurgica, vol. 35, p. 971, 1987.10.1016/0001-6160(87)90176-3Search in Google Scholar

[12] P. Magnin and R. Trivedi, “Eutectic growth: a modification of the Jackson and Hunt theory,” Acta Metall. Mater., vol. 39, p. 453, 1991. https://doi.org/10.1016/0956-7151(91)90114-g.Search in Google Scholar

[13] W. Kurz and R. Trivedi, “Eutectic growth under rapid solidification conditions,” Metall. Trans. A, vol. 22, p. 3051, 1991. https://doi.org/10.1007/bf02650266.Search in Google Scholar

[14] J. F. Li and Y. H. Zhou, “Eutectic growth in bulk undercooled melts,” Acta Mater., vol. 53, p. 2351, 2005. https://doi.org/10.1016/j.actamat.2005.01.042.Search in Google Scholar

[15] M. A. Alzoubi, A. Nie-Rouquette, S. A. Ghoreishi-Madiseh, F. P. Hassani, and A. P. Sasmito, “On the concept of the freezing-on-demand (FoD) in artificial ground freezing for long-term applications,” Int. J. Heat Mass Tran., vol. 143, p. 118557, 2019. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118557.Search in Google Scholar

[16] M. Zhang, W. Pei, Y. Lai, F. Niu, and S. Li, “Numerical study of the thermal characteristics of a shallow tunnel section with a two-phase closed thermosyphon group in a permafrost region under climate warming,” Int. J. Heat Mass Tran., vol. 104, p. 952, 2017. https://doi.org/10.1016/j.ijheatmasstransfer.2016.09.010.Search in Google Scholar

[17] A. Zueter, A. Nie-Rouquette, M. A. Alzoubi, and A. P. Sasmito, “Thermal and hydraulic analysis of selective artificial ground freezing using air insulation: experiment and modeling,” Comput. Geotech., vol. 120, p. 103416, 2020. https://doi.org/10.1016/j.compgeo.2019.103416.Search in Google Scholar

[18] J. Crank, Free and moving boundary problems, Oxford University Press, 1984.Search in Google Scholar

[19] S. C. Gupta, The classical stefan problem: Basic concepts, modelling and analysis, Elsevier, 2003.Search in Google Scholar

[20] H. S. Carslaw and J. C. Jaeger, “Conduction of heat in solids,” 2nd ed. Oxford, UK, Oxford University Press, 1986.10.1063/1.3057871Search in Google Scholar

[21] A. Jain and M. Parhizi, “Conditionally Exact Closed-Form Solution for Moving Boundary Problems in Heat and Mass Transfer in the Presence of Advection,” Int. J. Heat Mass Tran., vol. 180, p. 121802, 2021. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121802.Search in Google Scholar

[22] H. P. W. Gottlieb, “Exact solution of a Stefan problem in a nonhomogeneous cylinder,” Appl. Math. Lett., vol. 15, p. 167, 2002. https://doi.org/10.1016/s0893-9659(01)00113-6.Search in Google Scholar

[23] S. H. Cho and J. E. Sunderland, “Heat-Conduction Problems With Melting or Freezing,” Trans. ASME J. Heat Trans., vol. 91, p. 421, 1969. https://doi.org/10.1115/1.3580205.Search in Google Scholar

[24] M. N. Ozisjk and J. C. UzzellJr., Trans. ASME J. Heat Trans., vol. 101, p. 331, 1979.10.1115/1.3450969Search in Google Scholar

[25] R. H. Tien and G. E. Geiger, “A Heat-transfer analysis of the solidification of a binary eutectic system,” Trans. ASME J. Heat Trans., vol. 89, p. 230, 1967. https://doi.org/10.1115/1.3614365.Search in Google Scholar

[26] R. H. Tien and G. E. Geiger, “The nidimensional solidification of a binary eutectic system with a time-dependent surface temperature,” Trans. ASME J. Heat Trans., vol. 90, p. 27, 1968. https://doi.org/10.1115/1.3597455.Search in Google Scholar

[27] A. Kumar and Rajeev, “A Stefan problem with moving phase change material, variable thermal conductivity and periodic boundary condition,” Appl. Math. Comput., vol. 386, p. 125490, 2020. https://doi.org/10.1016/j.amc.2020.125490.Search in Google Scholar

[28] J. Singh, Jitendra, and K. N. Rai, “Legendre wavelet based numerical solution of variable latent heat moving boundary problem,” Math. Comput. Simulat., vol. 178, p. 485, 2020. https://doi.org/10.1016/j.matcom.2020.06.020.Search in Google Scholar

[29] V. Gulkac, “On the finite differences schemes for the numerical solution of two-dimensional moving boundary problem,” Appl. Math. Comput., vol. 168, p. 549, 2005.10.1016/j.amc.2004.09.039Search in Google Scholar

[30] X. Li, M. Xu, and X. Jiang, “Homotopy perturbation method to time-fractional diffusion equation with a moving boundary condition,” Appl. Math. Comput., vol. 209, p. 434, 2008.10.1016/j.amc.2008.12.023Search in Google Scholar

[31] S. G. Ahmed and S. A. Meshrif, “A new numerical algorithm for 2D moving boundary problems using a boundary element method,” Comput. Math. Appl., vol. 58, p. 1302, 2009. https://doi.org/10.1016/j.camwa.2009.03.115.Search in Google Scholar

[32] S. Yadav, D. Kumar, and K. N. Rai, “Finite element legendre wavelet Galerkin approch to inward solidification in simple body under most generalized boundary condition,” Z. Naturforsch., vol. 69, p. 501, 2014. https://doi.org/10.5560/zna.2014-0052.Search in Google Scholar

[33] R. K. Chaudhary, K. N. Rai, and J. Singh, “A study for multi-layer skin burn injuries based on DPL bioheat model,” J. Therm. Anal. Calorim., vol. 146, p. 1171, 2021. https://doi.org/10.1007/s10973-020-09967-3.Search in Google Scholar

[34] R. K. Chaudhary, K. N. Rai, and J. Singh, “A study of thermal injuries when skin surface subjected under most generalized boundary condition,” Comput. Therm. Sci., vol. 12, p. 529, 2020. https://doi.org/10.1615/computthermalscien.2020031207.Search in Google Scholar

[35] R. D. Groot, “Second order front tracking algorithm for Stefan problem on a regular grid,” J. Comput. Phys., vol. 372, p. 956, 2018. https://doi.org/10.1016/j.jcp.2018.04.051.Search in Google Scholar

[36] V. Chaurasiya, D. Kumar, K. N. Rai, and J. Singh, “A computational solution of a phase-change material in the presence of convection under the most generalized boundary condition,” Therm. Sci. Eng. Prog., vol. 20, p. 100664, 2020. https://doi.org/10.1016/j.tsep.2020.100664.Search in Google Scholar

[37] Y. Rabin and A. Shitzer, “Numerical solution of the multidimensional freezing problem during cryosurgery,” J. Biomech. Eng., vol. 120, p. 32, 1998. https://doi.org/10.1115/1.2834304.Search in Google Scholar PubMed

[38] S. W. McCue, B. Wu, and J. M. Hill, “Classical two-phase Stefan problem for spheres,” Proc. Roy. Soc. A, vol. 464, p. 2055, 2008. https://doi.org/10.1098/rspa.2007.0315.Search in Google Scholar

[39] Rajeev, K. N. Rai and S. Das, “Numerical solution of a moving-boundary problem with variable latent heat,” Int. J. Heat Mass Trans., vol. 52, p. 1913, 2009. https://doi.org/10.1016/j.ijheatmasstransfer.2008.08.036.Search in Google Scholar

[40] T. G. Myres and F. Font, “On the one-phase reduction of the Stefan problem with a variable phase change temperature,” Int. Comm. in Heat and Mass Tran., vol. 61, p. 37, 2015. https://doi.org/10.1016/j.icheatmasstransfer.2014.11.008.Search in Google Scholar

[41] M. Z. Khalid, M. Zubair, and M. Ali, “An analytical method for the solution of two phase Stefan problem in cylindrical geometry,” Appl. Math. Comput., vol. 342, p. 295, 2019. https://doi.org/10.1016/j.amc.2017.09.013.Search in Google Scholar

[42] M. Parhizi and A. Jain, “Solution of the phase change Stefan problem with time-dependent heat flux using perturbation method,” Trans. ASME J. Heat Trans., vol. 141, 2019, Art no. 024503. https://doi.org/10.1115/1.4041956.Search in Google Scholar

[43] A. N. Ceretani, N. N. Salva, and D. A. Tarzia, “Auxiliary functions in the study of Stefan-like problems with variable thermal properties,” Appl. Math. Lett., vol. 104, p. 106204, 2020. https://doi.org/10.1016/j.aml.2019.106204.Search in Google Scholar

[44] G. Parissenti and A. Niro, “Numerical solution of a three-phase Stefan problem with high power input,” Trans. ASME J. Heat Transf. Eng., vol. 15, p. 611, 2015. https://doi.org/10.1080/01457632.2014.939535.Search in Google Scholar

[45] M. Xu, S. Akhtar, A. F. Zueter, M. A. Alzoubi, L. Sushama, and A. P. Sasmito, “Asymptotic analysis of a two-phase Stefan problem in annulus: Application to outward solidification in phase change materials,” Appl. Math. Comput., vol. 408, p. 126343, 2021. https://doi.org/10.1016/j.amc.2021.126343.Search in Google Scholar

[46] M. Turkyilmazoglu, “Stefan problems for moving phase change materials and multiple solutions,” Int. J. Therm. Sci., vol. 126, p. 67, 2018. https://doi.org/10.1016/j.ijthermalsci.2017.12.019.Search in Google Scholar

[47] V. Chaurasiya, K. N. Rai, and J. Singh, “A study of solidification on binary eutectic system with moving phase change material,” Therm. Sci. Eng. Prog., vol. 25, p. 101002, 2021. https://doi.org/10.1016/j.tsep.2021.101002.Search in Google Scholar

[48] V. Chaurasiya, K. N. Rai, and J. Singh, “Heat transfer analysis for the solidification of a binary eutectic system under imposed movement of the material,” J. Therm. Anal. Calorim., 2021. https://doi.org/10.1007/s10973-021-10614-8.Search in Google Scholar

[49] R. S. Barclay, H. W. Kerr, and P. Niessen, “Off-eutectic composite solidification and properties in Al–Ni and Al–Co alloys,” J. Mater. Sci., vol. 6, p. 1168, 1971. https://doi.org/10.1007/bf00550086.Search in Google Scholar

[50] J. H. Lee, S. Liu, and R. Trivedi, “The effect of fluid flow on eutectic growth,” Metall. Mater. Trans., vol. 36, p. 3111, 2005. https://doi.org/10.1007/s11661-005-0083-6.Search in Google Scholar

[51] J. Gao, “A model for free growth of a lamellar eutectic dendrite with an incident flow,” Phil. Trans. R. Soc. A., vol. 376, p. 20170209, 2018. https://doi.org/10.1098/rsta.2017.0209.Search in Google Scholar PubMed PubMed Central

Received: 2021-11-01
Revised: 2021-12-20
Accepted: 2021-12-21
Published Online: 2022-01-17
Published in Print: 2022-06-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.1515/zna-2021-0320/html
Scroll to top button