Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) March 28, 2022

Peierls distortion of the cobalt chain in the low-temperature structure of CoIn2

  • Nataliya L. Gulay , Jutta Kösters , Yaroslav M. Kalychak , Samir F. Matar , Alfred Rabenbauer , Tom Nilges and Rainer Pöttgen EMAIL logo

Abstract

CoIn2 (Z. Metallkd. 1970, 61, 342–343) forms by reaction of the elements at 1470 K followed by annealing at 770 K for five days. The room temperature structure is orthorhombic (CuMg2 type, Fddd, a = 529.95(10), b = 940.49(13), c = 1785.8(3) pm, wR2 = 0.0563, 444 F2 values, 17 variables) and shows a phase transition at 195(1) K (DSC data). The low-temperature modification crystallizes in the translationengleiche monoclinic subgroup C2/c and exhibits a new structure type (a = 933.7(7), b = 526.91(10), c = 1000.8(2) pm, β = 117.81(5)°, wR2 = 0.0374, 843 F2 values, 30 variables). The structural phase transition is a consequence of a Peierls type distortion. The equidistant cobalt chains in HT-CoIn2 (270.1 pm, 175.2° Co–Co–Co) show pairwise dislocation in LT-CoIn2 with shorter (252.4 pm) and longer (284.1 pm) Co–Co distances. Each cobalt atom has coordination number 10 in the form of slightly distorted square antiprisms of indium, capped by cobalt on the rectangular faces. Density-of-states calculations reveal metallic behavior for both modifications. Integrated crystal orbital overlap populations featuring the bonding characteristics indicate a slightly higher intensity area for LT-CoIn2 along with a shift to lower energy, manifesting the stabilization by pair formation through Peierls distortion.


Corresponding author: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany, E-mail:

Acknowledgements

We thank M. Sc. C. Paulsen for the EDX analyses and M. Sc. M. K. Reimann for the susceptibility measurement.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2021/22); ASM International®: Materials Park, Ohio (USA), 2021.Search in Google Scholar

2. Compton, V. B., Matthias, B. T. Acta Crystallogr. 1962, 15, 94; https://doi.org/10.1107/s0365110x62000237.Search in Google Scholar

3. Parthé, E., Hohnke, D., Jeitschko, W., Schob, O. Naturwissenschaften 1965, 52, 155.10.1007/BF00609263Search in Google Scholar

4. Pöttgen, R. Z. Naturforsch. 1995, 50b, 1505–1509.10.1515/znb-1995-1011Search in Google Scholar

5. Pöttgen, R., Dronskowski, R. Chem. Eur. J. 1996, 2, 800–804.10.1002/chem.19960020711Search in Google Scholar

6. Pöttgen, R. J. Alloys Compd. 1995, 226, 59–64.10.1016/0925-8388(95)01575-2Search in Google Scholar

7. Pöttgen, R., Hoffmann, R.-D., Kotzyba, G. Z. Anorg. Allg. Chem. 1998, 624, 244–250.10.1002/(SICI)1521-3749(199802)624:2<244::AID-ZAAC244>3.0.CO;2-GSearch in Google Scholar

8. Stadelmaier, H. H., Manaktala, H. K. Acta Crystallogr. 1975, B31, 374–378; https://doi.org/10.1107/s056774087500283x.Search in Google Scholar

9. Zumdick, M. F., Landrum, G. A., Dronskowski, R., Hoffmann, R.-D., Pöttgen, R. J. Solid State Chem. 2000, 150, 19–30; https://doi.org/10.1006/jssc.1999.8541.Search in Google Scholar

10. Zintl, E., Harder, A., Haucke, W. Z. Phys. Chem. B 1937, 35, 354–362; https://doi.org/10.1515/zpch-1937-3528.Search in Google Scholar

11. Matthias, B. T., Clogston, A. M., Williams, H. J., Corenzwit, E., Sherwood, R. C. Phys. Rev. Lett. 1961, 7, 7–9; https://doi.org/10.1103/physrevlett.7.7.Search in Google Scholar

12. Knapp, G. S., Isaacs, L. L., Culbert, H. V., Conner, R. A. AIP Conf. Proc. 1972, 5, 467; https://doi.org/10.1063/1.3699479.Search in Google Scholar

13. Haldolaarachchige, N., Phelan, W. A., Xiong, Y. M., Jin, R., Chan, J. Y., Stadler, S., Young, D. P. J. Appl. Phys. 2013, 113, 083709; https://doi.org/10.1063/1.4793493.Search in Google Scholar

14. Wagner, M., Cardoso-Gil, R., Oeschler, N., Rosner, H., Grin, Y. J. Mater. Res. 2011, 26, 1886–1893; https://doi.org/10.1557/jmr.2011.153.Search in Google Scholar

15. van der Lingen, E. J. S. Afr. Inst. Min. Metall. 2014, 114, 137–144.Search in Google Scholar

16. Keast, V. J., Birt, K., Koch, C. T., Supansomboon, S., Cortie, M. B. Appl. Phys. Lett. 2011, 99, 111908; https://doi.org/10.1063/1.3638061.Search in Google Scholar

17. Nishimura, K., Kakihana, M., Suzuki, F., Yara, T., Hedo, M., Nakama, T., Ōnuki, Y., Harima, H. Phys. B: Condens. Matter 2018, 536, 588–596; https://doi.org/10.1016/j.physb.2017.10.057.Search in Google Scholar

18. Hlapova, A. N. Khim. Redk. Elementov 1954, 1, 115–120.10.1097/00005053-195407000-00036Search in Google Scholar

19. Schöbel, J.-D., Stadelmaier, H. H. Z. Metallkd. 1970, 61, 342–343.Search in Google Scholar

20. Predel, B., Vogelbein, W. Thermochim. Acta 1979, 30, 187–200; https://doi.org/10.1016/0040-6031(79)85053-4.Search in Google Scholar

21. Okamoto, H. Bull. Alloy Phase Diagr. 1990, 11, 137–139; https://doi.org/10.1007/bf02841696.Search in Google Scholar

22. Okamoto, H. J. Phase Equil. 1997, 18, 315; https://doi.org/10.1007/bf02647865.Search in Google Scholar

23. Kwon, Y. S., Choi, P. P., Gerasimov, K. B. J. Metastable Nanocryst. Mater. 2005, 24–25, 189–192; https://doi.org/10.4028/www.scientific.net/jmnm.24-25.189.Search in Google Scholar

24. Kwon, Y. S., Choi, P. P., Kim, J. S., Kwon, D. H., Gerasimov, K. B. Mater. Sci. Eng. A 2007, 449–451, 1083–1086; https://doi.org/10.1016/j.msea.2006.02.267.Search in Google Scholar

25. Yang, T., He, W., Chen, G., Zeng, W., Wang, J., Zeng, L., Liang, J. Materials 2020, 13, 3990; https://doi.org/10.3390/ma13183990.Search in Google Scholar PubMed PubMed Central

26. Tseng, S.-M., Chen, S.-W., Chang, J.-S., Tang, Y., Snyder, G. J. Metall. Mater. Trans. E 2015, 2, 236–249; https://doi.org/10.1007/s40553-015-0061-x.Search in Google Scholar

27. Xiao, S., Li, X., Zhang, W., Xiang, Y., Li, T., Niu, X., Chen, J. S., Yan, Q. ACS Nano 2021, 15, 13307–13318; https://doi.org/10.1021/acsnano.1c03056.Search in Google Scholar PubMed

28. Gulay, N. L., Kalychak, Y. M., Pöttgen, R. Z. Anorg. Allg. Chem. 2021, 647, 75–80; https://doi.org/10.1002/zaac.202000362.Search in Google Scholar

29. Gulay, N. L., Kalychak, Y. M., Pöttgen, R. Z. Naturforsch. 2021, 76b, 345–354.10.1515/znb-2021-0052Search in Google Scholar

30. Doverbratt, I., Ponou, S., Zhang, Y., Lidin, S., Miller, G. J. Chem. Mater. 2015, 27, 304–315; https://doi.org/10.1021/cm503985h.Search in Google Scholar

31. Stegemann, F., Benndorf, C., Touzani, R. S., Fokwa, B. P. T., Janka, O. J. Solid State Chem. 2016, 242, 143–150; https://doi.org/10.1016/j.jssc.2016.07.019.Search in Google Scholar

32. Giovannini, M., Čurlík, I., Freccero, R., Solokha, P., Reiffers, M., Sereni, J. Inorg. Chem. 2021, 60, 8085–8092; https://doi.org/10.1021/acs.inorgchem.1c00678.Search in Google Scholar PubMed PubMed Central

33. Peierls, R. E. Quantum Theory of Solids; Clarendon Press: Oxford, 1955.Search in Google Scholar

34. Hoffmann, R. Solids and Surfaces: A Chemist’s View of Bonding in Extended Structures; VCH Publishers: Weinheim, 1988.10.21236/ADA196638Search in Google Scholar

35. Burdett, J. K. Chemical Bonding in Solids; Oxford University Press: Oxford, 1995.Search in Google Scholar

36. Whangbo, M.-H. J. Chem. Phys. 1981, 75, 4983–4996; https://doi.org/10.1063/1.441887.Search in Google Scholar

37. Burdett, J. K., Lee, S. J. Am. Chem. Soc. 1983, 105, 1079–1083; https://doi.org/10.1021/ja00343a001.Search in Google Scholar

38. Meyer, H.-J., Festkörperchemie, Janiak, C., Meyer, H.-J., Gudat, D., Kurz, P. Riedel – Moderne Anorganische Chemie, 5th ed.; De Gruyter: Berlin, 2018, Chapter 2.10.1515/9783110441635Search in Google Scholar

39. Pöttgen, R., Gulden, T., Simon, A. GIT Labor Fachz. 1999, 43, 133–136.Search in Google Scholar

40. Kußmann, D., Hoffmann, R.-D., Pöttgen, R. Z. Anorg. Allg. Chem. 1998, 624, 1727–1735.10.1002/(SICI)1521-3749(1998110)624:11<1727::AID-ZAAC1727>3.0.CO;2-0Search in Google Scholar

41. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74; https://doi.org/10.1107/s0021889877012898.Search in Google Scholar

42. Protheus Thermal Analysis (version 5.2.0); Netzsch-Gerätebau GmbH: Selb (Germany), 2010.Search in Google Scholar

43. Hohenberg, P., Kohn, W. Phys. Rev. 1964, 136, B864–B871; https://doi.org/10.1103/physrev.136.b864.Search in Google Scholar

44. Kohn, W., Sham, L. J. Phys. Rev. 1965, 140, A1133–A1138; https://doi.org/10.1103/physrev.140.a1133.Search in Google Scholar

45. Perdew, J. P., Burke, K., Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865–3868; https://doi.org/10.1103/physrevlett.77.3865.Search in Google Scholar

46. Eyert, V. The Augmented Spherical Wave Method. A Comprehensive Treatment, Lecture Notes in Physics; Springer: Heidelberg, 2007.Search in Google Scholar

47. Hoffmann, R. Angew. Chem. Int. Ed. Engl. 1987, 26, 846–878; https://doi.org/10.1002/anie.198708461.Search in Google Scholar

48. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352.10.1515/zkri-2014-1737Search in Google Scholar

49. Palatinus, L. Acta Crystallogr. 2013, B69, 1–16; https://doi.org/10.1107/s2052519212051366.Search in Google Scholar

50. Palatinus, L., Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790; https://doi.org/10.1107/s0021889807029238.Search in Google Scholar

51. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Search in Google Scholar

52. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar

53. Hellner, E. Z. Metallkd. 1950, 41, 401–406; https://doi.org/10.1515/ijmr-1950-411106.Search in Google Scholar

54. O’Keeffe, M., Andersson, S. Acta Crystallogr. 1977, A33, 914–923.10.1107/S0567739477002228Search in Google Scholar

55. Bärnighausen, H. Commun. Math. Chem. 1980, 9, 139–175.10.1007/BF01674443Search in Google Scholar

56. Müller, U. Z. Anorg. Allg. Chem. 2004, 630, 1519–1537.10.1002/zaac.200400250Search in Google Scholar

57. Müller, U. International Tables for Crystallography, Vol. A1, Symmetry Relations Between Space Groups; John Wiley & Sons: Chichester, United Kingdom, 2010.Search in Google Scholar

58. Müller, U. Symmetriebeziehungen zwischen verwandten Kristallstrukturen; Vieweg + Teubner Verlag: Wiesbaden, Germany, 2012.10.1007/978-3-8348-8342-1Search in Google Scholar

59. Pham, J., Miller, G. J. Inorg. Chem. 2018, 57, 4039–4049; https://doi.org/10.1021/acs.inorgchem.8b00214.Search in Google Scholar PubMed

60. Zumdick, M. F., Pöttgen, R. Z. Kristallogr. 1999, 214, 90–97.10.1524/zkri.1999.214.2.90Search in Google Scholar

61. Touzani, R. S., Mbarki, M., Chen, X., Fokwa, B. P. T. Eur. J. Inorg. Chem. 2016, 2016, 4104–4110; https://doi.org/10.1002/ejic.201600689.Search in Google Scholar

62. Lukachuk, M., Pöttgen, R. Z. Kristallogr. 2003, 218, 767–787; https://doi.org/10.1524/zkri.218.12.767.20545.Search in Google Scholar

63. Paulsen, C., Kösters, J., Seidel, S., Kuwata, Y., Kotegawa, H., Tou, H., Sugawara, H., Harima, H., Pöttgen, R. Z. Kristallogr. 2022, 237; https://doi.org/10.1515/zkri-2021-2058.Search in Google Scholar

64. Matar, S. F. Prog. Solid State Chem. 2013, 41, 55–85; https://doi.org/10.1016/j.progsolidstchem.2013.03.001.Search in Google Scholar

65. Parida, P., Kashikar, R., Jena, A., Nanda, B. R. K. J. Phys. Chem. Solid. 2018, 123, 133–149; https://doi.org/10.1016/j.jpcs.2018.04.009.Search in Google Scholar

66. Ekwall, G., Westgren, A. Ark. Kemi Mineral. Geol. 1940, 14B, 1–8.Search in Google Scholar

67. Schubert, K., Anderko, K. Z. Metallkd. 1951, 42, 321–325; https://doi.org/10.1515/ijmr-1951-421101.Search in Google Scholar

68. Hlukhyy, V., Rodewald, U. C., Pöttgen, R. Z. Anorg. Allg. Chem. 2005, 631, 2997–3001; https://doi.org/10.1002/zaac.200500294.Search in Google Scholar

Received: 2022-02-24
Accepted: 2022-03-13
Published Online: 2022-03-28
Published in Print: 2022-06-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.6.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2022-0020/html
Scroll to top button