Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) March 7, 2022

Unique supramolecular assembly of a synthetic achiral α, γ-hybrid tripeptide

  • Arpita Dutta EMAIL logo , Suven Das , Purak Das , Suvendu Maity , Prasanta Ghosh and Soumya Shankha Biswas

Abstract

An achiral tripeptide, namely, Boc-γ-Abu-m-ABA-Aib-OMe (γ-Abu: γ−amino butyric acid; m-ABA: meta-aminobenzoic acid) was synthesized by solution phase procedure. The α, γ-hybrid peptide was designed in such a way that two dissimilar γ−amino acids, one flexible and another rigid, were positioned sidewise along with α-amino isobutyric acid (Aib) as C-terminal residue. The single crystal X-ray diffraction analysis revealed that two kinks were generated around centrally placed m-ABA. Interestingly, the peptide self-assembled via three intermolecular N–H···O and one intermolecular C–H···O hydrogen bonding interactions to supramlecular helical architecture.


Corresponding author: Arpita Dutta, Department of Chemistry, Rishi Bankim Chandra Evening College, Naihati, 24-Parganas (N), Pin-743165, India, E-mail:

Acknowledgments

AD acknowledges laboratory facilities at R. B. C. Evening College, Naihati. PD is greateful to SERB (DST), India for fellowship [No.TAR/2018/000228].

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Pieters, B. J. G. E., van Eldijk, M. B., Nolte, R. J. M., Mecinović, J. Natural supramolecular protein assemblies. Chem. Soc. Rev. 2016, 45, 24–39; https://doi.org/10.1039/c5cs00157a.Search in Google Scholar PubMed

2. Savyasachi, A. J., Kotova, O., Shanmugaraju, S., Bradberry, S. J., Ó’Máille, G. M., Gunnlaugsson, T. Supramolecular chemistry: a toolkit for soft functional materials and organic particles. Chem 2017, 3, 764–811; https://doi.org/10.1016/j.chempr.2017.10.006.Search in Google Scholar

3. Williams, G. T., Haynes, C. J. E., Fares, M., Caltagirone, C., Hiscock, J. R., Gale, P. A. Advances in applied supramolecular technologies. Chem. Soc. Rev. 2021, 50, 2737–2763; https://doi.org/10.1039/d0cs00948b.Search in Google Scholar PubMed

4. Sheehan, F., Sementa, D., Jain, A., Kumar, M., Tayarani-Najjaran, M., Kroiss, D., Ulijn, R. V. Peptide-based supramolecular systems chemistry. Chem. Rev. 2021, 121, 13869–13914; https://doi.org/10.1021/acs.chemrev.1c00089.Search in Google Scholar PubMed

5. Lehn, J.-M. From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. Chem. Soc. Rev. 2007, 36, 151–160; https://doi.org/10.1039/b616752g.Search in Google Scholar PubMed

6. Ulijn, R. V., Smith, A. M. Designing peptide based nanomaterials. Chem. Soc. Rev. 2008, 37, 664–675; https://doi.org/10.1039/b609047h.Search in Google Scholar PubMed

7. Yuan, C., Ji, W., Xing, R., Li, J., Gazit, E., Yan, X. Hierarchically oriented organization in supramolecular peptide crystals. Nat. Rev. Chem. 2019, 3, 567–588; https://doi.org/10.1038/s41570-019-0129-8.Search in Google Scholar

8. De Santis, E., Ryadnov, M. G. Peptide self-assembly for nanomaterials: the old new kid on the block. Chem. Soc. Rev. 2015, 44, 8288–8300; https://doi.org/10.1039/c5cs00470e.Search in Google Scholar PubMed

9. Levin, A., Hakala, T. A., Schnaider, L., Bernardes, G. J. L., Gazit, E., Knowles, T. P. J. Biomimetic peptide self-assembly for functional materials. Nat. Rev. Chem. 2020, 4, 615–634; https://doi.org/10.1038/s41570-020-0215-y.Search in Google Scholar

10. Giri, R. S., Mandal, B. Supramolecular helical assembly of small peptides. CrystEngComm 2022, 24, 10–32; https://doi.org/10.1039/d1ce01349a.Search in Google Scholar

11. Kar, S., Tai, Y. Marked difference in self-assembly, morphology, and cell viability of positional isomeric dipeptides generated by reversal of sequence. Soft Matter 2015, 11, 1345–1351; https://doi.org/10.1039/c4sm02537g.Search in Google Scholar PubMed

12. Dutta, A., Das, S., Das, P., Maity, S., Ghosh, P. Fibril formation through self-assembly of a simple glycine derivative and X-ray diffraction study. Z. Kristallogr. 2020, 235, 47–51; https://doi.org/10.1515/zkri-2019-0062.Search in Google Scholar

13. Koley, P., Pramanik, A. Nanostructures from single amino acid-based molecules: stability, fibrillation, encapsulation, and fabrication of silver nanoparticles. Adv. Funct. Mater. 2011, 21, 4126–4136; https://doi.org/10.1002/adfm.201101465.Search in Google Scholar

14. Kim, S., Kim, J. H., Lee, J. S., Park, C. B. Beta-sheet-forming, self-assembled peptide nanomaterials towards optical, energy, and healthcare applications. Small 2015, 11, 3623–3640; https://doi.org/10.1002/smll.201500169.Search in Google Scholar PubMed

15. Konar, A. D. Can a single pyridine dicarboxylic acid be ample enough to nucleate supramolecular double helices in enantiomeric pseudopeptides? CrystEngComm 2013, 15, 2466–2473; https://doi.org/10.1039/c3ce26912d.Search in Google Scholar

16. Shankar, S., Rahim, J. U., Rai, R. Self-assembly in peptides containing β- and γ-amino acids. Curr. Protein Pept. Sci. 2020, 21, 584–597; https://doi.org/10.2174/1389203721666200127112244.Search in Google Scholar PubMed

17. Dutt, A., Drew, M. G. B., Pramanik, A. β-sheet mediated self-assembly of dipeptides of ω-amino acids and remarkable fibrillation in the solid state. Org. Biomol. Chem. 2005, 3, 2250–2254; https://doi.org/10.1039/b504112k.Search in Google Scholar PubMed

18. Dutta, A., Das, S., Das, P., Maity, S., Ghosh, P. Solid state self-assembly and morphology of a rigid non-coded γ-amino acid inserted tripeptide. Z. Kristallogr. 2021, 236, 123–127; https://doi.org/10.1515/zkri-2021-2006.Search in Google Scholar

19. Sarkar, R., Debnath, M., Maji, K., Haldar, D. Solvent assisted structural diversity: supramolecular sheet and double helix of a short aromatic γ-peptide. RSC Adv. 2015, 5, 76257–76262; https://doi.org/10.1039/c5ra12831e.Search in Google Scholar

20. Dutta, A., Kar, S., Frohlich, R., Koley, P., Pramanik, A. A terminally modified pseudopeptide (Gly-m-aminobenzoic acid) produces supramolecular helix, staircase and water-mediated β-sheet through self-assembly. ARKIVOC 2009, ii, 31–43; https://doi.org/10.3998/ark.5550190.0010.204.Search in Google Scholar

21. Schweitzer-Stenner, R., Gonzales, W., Bourne, G. T., Feng, J. A., Marshall, G. R. Conformational manifold of α-aminoisobutyric acid (Aib) containing alanine-based tripeptides in aqueous solution explored by vibrational spectroscopy, electronic circular dichroism spectroscopy, and molecular dynamics simulations. J. Am. Chem. Soc. 2007, 129, 13095–13109; https://doi.org/10.1021/ja0738430.Search in Google Scholar

22. Zieleniewski, F., Woolfson, D. N., Clayden, J. Automated solid-phase concatenation of Aib residues to form long, water-soluble, helical peptides. Chem. Commun. 2020, 56, 12049–12052; https://doi.org/10.1039/d0cc04698a.Search in Google Scholar

23. Konar, A. D. mABA inserted supramolecular triple helix formation in the solid state in synthetic tripeptides containing β-cyanoalanine and Aib as corner residues. CrystEngComm 2012, 14, 6689–6694; https://doi.org/10.1039/c2ce25527h.Search in Google Scholar

24. Haldar, D., Maji, S. K., Sheldrick, W. S., Banerjee, A. First crystallographic signature of the highly ordered supramolecular helical assemblage from a tripeptide containing a non-coded amino acid. Tetrahedron Lett. 2002, 43, 2653–2656; https://doi.org/10.1016/s0040-4039(02)00283-6.Search in Google Scholar

25. Jana, P., Maity, S., Maity, S. K., Haldar, D. A new peptide motif in the formation of supramolecular double helices. Chem. Commun. 2011, 47, 2092–2094; https://doi.org/10.1039/c0cc04244g.Search in Google Scholar PubMed

26. Bodanszky, M., Bodanszky, A. The Practice of Peptide Synthesis; Spinger-Verlag: New York, 1984; pp. 1–282.10.1007/978-3-642-96835-8Search in Google Scholar

27. Bruker, smart, saint and sadabs; Bruker AXS Inc.: Madison, 2000.Search in Google Scholar

28. Sheldrick, G. M. A short history of shelx. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar PubMed

29. Sheldrick, G. M. Crystal structure refinement with shelxl. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

30. Farrugia, L. J. WinGX and ORTEP for windows: an update. J. Appl. Crystallogr. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2022-0002).


Received: 2022-01-14
Accepted: 2022-02-17
Published Online: 2022-03-07
Published in Print: 2022-03-28

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2022-0002/html
Scroll to top button