Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) November 30, 2017

The truth is out there: the metal-π interactions in crystal of Cr(CO)3(pcp) as revealed by the study of vibrational smearing of electron density

  • Anna A. Kovalenko , Yulia V. Nelyubina , Alexander A. Korlyukov , Konstantin A. Lyssenko and Ivan V. Ananyev EMAIL logo

Abstract

The vibrational smearing of electron density was studied in the crystal of complex of Cr(CO)3 with [2.2]paracyclophane. The combination of theoretical and experimental methods, including periodic calculations and screening of DFT calculated and multipole-decomposed electron densities, was utilized to reveal the vibrational smearing of electron density and its influence on the multipole-constructed electron density. The multipole model, commonly used to treat the high-resolution X-ray diffraction data, was shown to be rather inaccurate in description of electron density and its vibrational smearing in metal-π complex where the interchange between diatomic interactions can occur. Namely, some bond critical points can be hidden while analyzing multipole-decomposed electron density with proved effects of vibrational smearing even if the deconvolution problem is overcome by using the invariom approach. On the contrary, the recently proposed “clouds of critical point variation” (CCPV) approach is demonstrated as the route to gather all reasonable bonding trends and to reconstruct static electron density pattern in metal-π complexes.

Acknowledgments

I.V. Ananyev is grateful to the grant # 16-33-60133 of the Russian Foundation for Basic Research for financial support. K.A. Lyssenko was supported by the Russian Science Foundation project # 14-13-00884. Yu.V. Nelyubina acknowledges financial support from the Foundation of the President of the Russian Federation (Project MK-6224.2016.3).

References

[1] P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev.1964, 136, B864.10.1103/PhysRev.136.B864Search in Google Scholar

[2] C. F. Matta, R. J. Boyd, The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design, Wiley-VCH Verlag GmbH & Co. KgaA, Weinheim 2007.10.1002/9783527610709Search in Google Scholar

[3] R. F. W. Bader, T. T. Nguyen-Dang, Y. Tal, A topological theory of molecular structure. Rep. Prog. Phys.1981, 44, 893.10.1088/0034-4885/44/8/002Search in Google Scholar

[4] Q. K. Timerghazin, G. Peslherbe, Non-nuclear attractor of electron density as a manifestation of the solvated electron. J. Chem. Phys.2007, 127, 064108.10.1063/1.2747250Search in Google Scholar PubMed

[5] L. J. Farrugia, H. M. Senn, Metal − metal and metal − ligand bonding at a QTAIM catastrophe: a combined experimental and theoretical charge density study on the alkylidyne cluster Fe3(μ-H)(μ-COMe)(CO)10. J. Phys. Chem. A2010, 114, 13418.10.1021/jp1098624Search in Google Scholar PubMed

[6] L. J. Farrugia, C. Evans, M. Tegel, Chemical bonds without “Chemical Bonding”? A combined experimental and theoretical charge density study on an iron trimethylenemethane complex. J. Phys. Chem. A2006, 110, 7952.10.1021/jp061846dSearch in Google Scholar PubMed

[7] A. A. Low, M. B. Hall, Nature of metal-metal interactions in systems with bridging ligands. 2. Electronic and molecular structure of the cyclopentadienylnitrosylcobalt dimer and related molecules. Inorg. Chem.1993, 32, 3880.10.1021/ic00070a019Search in Google Scholar

[8] J. Hernandez-Trujilo, C. F. Matta, Hydrogen–hydrogen bonding in biphenyl revisited. Struct. Chem.2007, 18, 849.10.1007/s11224-007-9231-5Search in Google Scholar

[9] K. Eskandari, C. V. Alsenoy, Hydrogen–hydrogen onteraction in planar biphenyl: a theoretical study based on the interacting quantum atoms and hirshfeld atomic energy partitioning methods. J. Comp. Chem.2014, 35, 1883.10.1002/jcc.23698Search in Google Scholar PubMed

[10] S. Jenkins, J. R. Maza, T. Xu, D. Jiajun, S. R. Kirk, Biphenyl: a stress tensor and vector-based perspective explored within the quantum theory of atoms in molecules. Int. J. Quantum Chem.2015, 115, 1678.10.1002/qua.25006Search in Google Scholar

[11] R. F. W. Bader, H. Essén, Characterization of atomic interactions. J. Chem. Phys.1984, 80, 1943.10.1063/1.446956Search in Google Scholar

[12] D. Cremer, E. Kraka, A description of the chemical bond in terms of local properties of electron density and energy. Croat. Chem. Acta1984, 57, 1259.Search in Google Scholar

[13] X. Fradera, M. A. Austen, R. F. W. Bader, The Lewis model and beyond. J. Phys. Chem. A1999, 103, 304.10.1021/jp983362qSearch in Google Scholar

[14] I. Alkorta, I. Rozas, J. Elguero, Bond length–electron density relationships: from covalent bonds to hydrogen bond interactions. Struct. Chem.1998, 9, 243.10.1023/A:1022424228462Search in Google Scholar

[15] C. S. Lopez, A. R. de Lera, Bond ellipticity as a measure of electron delocalization in structure and reactivity. Curr. Org. Chem.2011, 15, 3576.10.2174/138527211797636228Search in Google Scholar

[16] I. V. Ananyev, K. A. Lyssenko, A chemist’s point of view: the noncylindrical symmetry of electron density means nothing but still means something. Mendeleev Commun.2016, 26, 338.10.1016/j.mencom.2016.07.024Search in Google Scholar

[17] E. Espinosa, E. Molins, C. Lecomte, Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem. Phys. Lett.1998, 285, 170.10.1016/S0009-2614(98)00036-0Search in Google Scholar

[18] M. V. Vener, A. N. Egorova, A. V. Churakov, V. G. Tsirelson, Intermolecular hydrogen bond energies in crystals evaluated using electron density properties: DFT computations with periodic boundary conditions. J. Comp. Chem.2012, 33, 2303.10.1002/jcc.23062Search in Google Scholar PubMed

[19] I. V. Ananyev, V. A. Karnoukhova, A. O. Dmitrienko, K. A. Lyssenko, Toward a rigorous definition of a strength of any interaction between Bader’s atomic basins. J. Phys. Chem. A2017, 121, 4517.10.1021/acs.jpca.7b01495Search in Google Scholar PubMed

[20] M. G. Medvedev, I. S. Bushmarinov, J. Sun, J. P. Perdew, K. A. Lyssenko, Density functional theory is straying from the path toward the exact functional. Science2017, 355, 49.10.1126/science.aah5975Search in Google Scholar PubMed

[21] T. S. Koritsanszky, P. Coppens, Chemical applications of X-ray charge-density analysis. Chem. Rev.2001, 101, 1583.10.1021/cr990112cSearch in Google Scholar PubMed

[22] N. K. Hansen, P. Coppens, Testing aspherical atom refinements on small-molecule data sets. Acta Crystallogr.1978, A34, 909.10.1107/S0567739478001886Search in Google Scholar

[23] H.-B. Bürgi, S. C. Capelli, Dynamics of molecules in crystals from multi-temperature anisotropic displacement parameters. Acta Crystallogr.2000, A56, 403.10.1107/S0108767300005626Search in Google Scholar

[24] M. S. Schmøkel, S. Cenedese, J. Overgaard, M. R. V. Jørgensen†, Y.-S. Chen, C. Gatti, D. Stalke, B. B. Iversen, Testing the concept of hypervalency: charge density analysis of K2SO4. Inorg. Chem.2012, 51, 8607.10.1021/ic301372mSearch in Google Scholar PubMed

[25] R. Herbst-Irmer, J. Henn, J. J. Holstein, C. B. Hübschle, B. Dittrich, D. Stern, D. Kratzert, D. Stalke, Anharmonic motion in experimental charge density investigations. J. Phys. Chem.2013, 117, 633.10.1021/jp309985eSearch in Google Scholar PubMed

[26] J. R. Michael, T. Koritsanszky, Validation of convolution approximation to the thermal-average electron density. J. Math Chem.2015, 53, 250.10.1007/s10910-014-0425-ySearch in Google Scholar

[27] J. R. Michael, T. Koritsanszky, Computational analysis of thermal-motion effects on the topological properties of the electron density. Acta Crystallogr.2015, A71, 225.10.1107/S2053273315001199Search in Google Scholar PubMed

[28] C. Foroutan-Nejad, S. Shahbazian, R. Marek, Toward a consistent interpretation of the QTAIM: tortuous link between chemical bonds, interactions, and bond/line paths. Chem. Eur. J.2014, 20, 1.10.1002/chem.201402177Search in Google Scholar PubMed

[29] D. M. Ivanov, A. S. Novikov, I. V. Ananyev, Yu. V. Kirina, V. Yu. Kukushkin, Halogen bonding between metal centers and halocarbons. Chem. Commun.2016, 52, 5565.10.1039/C6CC01107ASearch in Google Scholar PubMed

[30] L. J. Farrugia, C. Evans, D. Lentz, M. Roemer, The QTAIM approach to chemical bonding between transition metals and carbocyclic rings: a combined experimental and theoretical study of (η5-C5H5)Mn(CO)3, (η6-C6H6)Cr(CO)3, and (E)-{(η5-C5H4)CF=CF(η5-C5H4)}(η5-C5H5)2Fe2. J. Am. Chem. Soc.2009, 131, 1251.10.1021/ja808303jSearch in Google Scholar PubMed

[31] J. M. Bak, S. Domagala, C. Hubschle, C. Jelsch, B. Dittrich, P. M. Dominiak, Verification of structural and electrostatic properties obtained by the use of different pseudoatom databases. Acta Crystallogr. A2011, 67, 141.10.1107/S0108767310049731Search in Google Scholar PubMed

[32] V. Pichon-Pesme, C. Lecomte, H. Lachekar, On building a data-bank of transferable experimental electron-density parameters – application to polypeptides. J. Phys. Chem.1995, 99, 6242.10.1021/j100016a071Search in Google Scholar

[33] V. Pichon-Pesme, C. Jelsch, B. Guillot, C. Lecomte, A comparison between experimental and theoretical aspherical-atom scattering factors for charge-density refinement of large molecules. Acta Crystallogr. A2004, 60, 204.10.1107/S0108767304004246Search in Google Scholar PubMed

[34] A. Volkov, X. Li, T. Koritsanszky, P. Coppens, Ab initio quality electrostatic atomic and molecular properties including intermolecular energies from a transferable theoretical pseudoatom databank. J. Phys. Chem. A2004, 108, 4283.10.1021/jp0379796Search in Google Scholar

[35] P. M. Dominiak, A. Volkov, X. Li, M. Messerschmidt, P. Coppens, A theoretical databank of transferable aspherical atoms and its application to electrostatic interaction energy calculations of macromolecules. J. Chem. Theory Comput.2007, 3, 232.10.1021/ct6001994Search in Google Scholar PubMed

[36] B. Dittrich, T. Koritsanszky, A. Volkov, S. Mebs, P. Luger, Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Ed. Engl.2007, 46, 2935.10.1002/anie.200603901Search in Google Scholar PubMed

[37] C. B. Hubschle, P. Luger, B. Dittrich, Automation of invariom and of experimental charge density modelling of organic molecules with the preprocessor program invariomtool. J. Appl. Crystallogr.2007, 40, 623.10.1107/S0021889807016524Search in Google Scholar

[38] Y. V. Nelyubina, K. A. Lyssenko, Probing ionic crystals by the invariom approach: an electron density study of guanidinium chloride and carbonate. Chem. Eur. J.2015, 21, 9733.10.1002/chem.201500296Search in Google Scholar PubMed

[39] Yu. V. Nelyubina, A. A. Korlyukov, K. A. Lyssenko, I. V. Fedyanin, Transferable aspherical atom modelling of electron density in highly-symmetric crystals: a case study of alkali-metal nitrates. Inorg. Chem.2017, 56, 4689.10.1021/acs.inorgchem.7b00340Search in Google Scholar

[40] B. Dittrich, C. M. Wandtke, A. Meents, K. Proepper, K. C. Mondal, P. P. Samuel, N. A. Sk, A. P. Singh, H. W. Roesky, N. Sidhu, Aspherical-atom modeling of coordination compounds by single-crystal X-ray diffraction allows the correct metal atom to be identified. ChemPhysChem2015, 16, 412.10.1002/cphc.201402600Search in Google Scholar PubMed

[41] B. Dittrich, C. Schürmann, C. B. Hübschle, Invariom modeling of disordered structures: case studies on a dipeptide, an amino acid, and cefaclor, a cephalosporin antibiotic. Z. Kristallogr.2016, 231, 725.10.1515/zkri-2016-1955Search in Google Scholar

[42] J. J. Holstein, C. B. Hubschle, B. Dittrich, Electrostatic properties of nine fluoroquinolone antibiotics derived directly from their crystal structure refinements. CrystEngComm2012, 14, 2520.10.1039/C1CE05966ASearch in Google Scholar

[43] B. Dittrich, M. A. Spackman, Can the interaction density be measured? The example of the non-standard amino acid sarcosine. Acta Crystallogr. A2007, 63, 426.10.1107/S0108767307039116Search in Google Scholar PubMed

[44] R. Kalinowski, B. Dittrich, C. B. Hubschle, C. Paulmann, P. Luger, Experimental charge density of L-alanyl-L-prolyl-L-alanine hydrate: classical multipole and invariom approach, analysis of intra- and intermolecular topological properties. Acta Crystallogr. B2007, 63, 753.10.1107/S0108768107030388Search in Google Scholar PubMed

[45] P. Luger, M. Weber, C. Hubschle, R. Tacke, Electron densities of bexarotene and disila-bexarotene from invariom application: a comparative study. Org. Biomol. Chem.2013, 11, 2348.10.1039/c3ob27346fSearch in Google Scholar PubMed

[46] B. Dittrich, M. Weber, R. Kalinowski, S. Grabowski, C. B. Hubschle, P. Luger, How to easily replace the independent atom model – the example of bergenin, a potential anti-HIV agent of traditional Asian medicine. Acta Crystallogr. B2009, 65, 749.10.1107/S0108768109046060Search in Google Scholar PubMed

[47] M. Weber, S. Grabowski, A. Hazra, S. Naskar, S. Banerjee, N. B. Mondal, P. Luger, Electron density of two bioactive oligocyclic indole and oxindole derivatives obtained from low-order X-ray data and invariom application. Chem. Asian J.2011, 6, 1390.10.1002/asia.201000650Search in Google Scholar PubMed

[48] J. Bacsa, M. Okello, P. Singh, V. Nair, Solid-state tautomeric structure and invariom refinement of a novel and potent HIV integrase inhibitor. Acta Crystallogr. C2013, 69, 285.10.1107/S0108270113003806Search in Google Scholar PubMed PubMed Central

[49] Y. V. Nelyubina, A. A. Korlyukov, K. A. Lyssenko, Probing weak intermolecular interactions by using the invariom approach: a comparative study of s-Tetrazine. Chem. Eur. J.2014, 20, 6978.10.1002/chem.201304551Search in Google Scholar PubMed

[50] Y. V. Nelyubina, A. A. Korlyukov, K. A. Lyssenko, Invariom approach as a new tool in electron density studies of ionic liquids: a model case of 1-butyl-2,3-dimethylimidazolium chloride BDMIM[Cl]. RSC Adv.2015, 5, 75360.10.1039/C5RA13752GSearch in Google Scholar

[51] Yu. V. Nelyubina, I. V. Ananyev, V. V. Novikov, K. A. Lyssenko, Invariom approach to electron density studies of open-shell compounds: the case of an organic nitroxide radical. RSC Adv.2016, 6, 91694.10.1039/C6RA21365KSearch in Google Scholar

[52] I. V. Ananyev, Yu. V. Nelyubina, K. A. Lyssenko, Methodical aspects of experimental studies for the relationship of static and dynamic features of crystal structure: application of various atomic scattering factors to study the vibrational characteristics of molecular crystals. Russ. Chem. Bull. Int. Ed.2014, 63, 2224.10.1007/s11172-014-0726-0Search in Google Scholar

[53] K. Yu. Suponitsky, D. Antonov, L. N. Puntus, A. F. Smol’yakov, F. Kajzar, I. Rau, B. Sahraoui, K. Lyssenko, Quadratic susceptibility and first hyperpolarizability of the complex of Cr(CO)3 with [2.2]-paracyclophane. Opt. Mater.2013, 36, 146.10.1016/j.optmat.2013.04.015Search in Google Scholar

[54] I. V. Ananyev, M. G. Medvedev, S. M. Aldoshin, I. L. Eremenko, K. A. Lyssenko, Vibrational smearing of the electron density as function of the strength and directionality of interatomic interactions: nonvalent interactions of a nitro group within an islandtype crystal [Fe(NO)2(SC6H4NO2)]2. Russ. Chem. Bull. Int. Ed.2016, 65, 1473.10.1007/s11172-016-1474-0Search in Google Scholar

[55] G. Sheldrick, A short history of SHELX. Acta Crystallogr.2008, A64, 112.10.1107/S0108767307043930Search in Google Scholar PubMed

[56] A. Volkov, P. Macchi, L. Farrugia, C. Gatti, P. Mallinson, T. Richter, T. Koritsanszky, XD2006 - a computer program for multipole refinement, topological analysis of charge densities and evaluation of intermolecular energies from experimental or theoretical structure factors, 2006.Search in Google Scholar

[57] D. Jayatilaka, B. Dittrich, X-ray structure refinement using aspherical atomic density functions obtained from quantum-mechanical calculations. Acta Crystallogr.2008, A64, 383.10.1107/S0108767308005709Search in Google Scholar PubMed

[58] S. C. Capelli, H. B. Burgi, B. Dittrich, S. Grabowsky, D. Jayatilaka, Hirshfeld atom refinement. IUCrJ.2014, 1, 361.10.1107/S2052252514014845Search in Google Scholar PubMed PubMed Central

[59] M. Woińska, S. Grabowsky, P. M. Dominiak, K. Wozniak, D. Jayatilaka, Hydrogen atoms can be located accurately and precisely by x-ray crystallography. Sci. Adv.2016, 2, e1600192.10.1126/sciadv.1600192Search in Google Scholar PubMed PubMed Central

[60] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr.2009, 42, 339.10.1107/S0021889808042726Search in Google Scholar

[61] C. B. Hubschle, B. Dittrich, MoleCoolQt – a molecule viewer for charge-density research. J. Appl. Crystallogr.2011, 44, 238.10.1107/S0021889810042482Search in Google Scholar PubMed PubMed Central

[62] B. Dittrich, C. B. Hubschle, K. Propper, F. Dietrich, T. Stolper, J. J. Holstein, The generalized invariom database (GID). Acta Crystallogr. B2013, 69, 91.10.1107/S2052519213002285Search in Google Scholar PubMed

[63] A. Stash, V. Tsirelson, WinXPRO: a program for calculating crystal and molecular properties using multipole parameters of the electron density. J. Appl. Crystallogr.2002, 35, 371.10.1107/S0021889802003230Search in Google Scholar

[64] D. Kirzhnits, Quantum corrections to the Thomas-Fermi equation. Sov. Phys. JETP1957, 5, 64.Search in Google Scholar

[65] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford CT 2016.Search in Google Scholar

[66] T. Keith, AIMAll (Version 16.08.17), TK Gristmill Software, Overland Park KS, USA 2016.Search in Google Scholar

[67] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B1999, 59, 1758.10.1103/PhysRevB.59.1758Search in Google Scholar

[68] S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory. J. Comp. Chem.2011, 32, 1456.10.1002/jcc.21759Search in Google Scholar

[69] G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium. Phys. Rev. B1994, 49, 14251.10.1103/PhysRevB.49.14251Search in Google Scholar

[70] G. Kresse, J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci.1996, 6, 15.10.1016/0927-0256(96)00008-0Search in Google Scholar

[71] G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B1996, 54, 11169.10.1103/PhysRevB.54.11169Search in Google Scholar

[72] A. Otero-de-la-Roza, E. R. Johnson, V. Luaña, Critic2: a program for real-space analysis of quantum chemical interactions in solids. Comp. Phys. Comm.2014, 185, 1007.10.1016/j.cpc.2013.10.026Search in Google Scholar

[73] J. W. Eaton, D. Bateman, S. Hauberg, R. Wehbring, GNU Octave version 4.2.0 manual: a high-level interactive language for numerical computations. 2016.Search in Google Scholar

[74] T. A. Keith, R. F. W. Bader, Y. Aray, Structural homeomorphism between the electron density and the virial field. Int. J. Quantum Chem.1996, 57, 183.10.1002/(SICI)1097-461X(1996)57:2<183::AID-QUA4>3.0.CO;2-USearch in Google Scholar

[75] A. M. Pendas, E. Francisco, M. A. Blanco, C. Gatti, Bond paths as privileged exchange channels. Chem. Eur. J.2007, 13, 9362.10.1002/chem.200700408Search in Google Scholar

[76] A. O. Borissova, M. Yu. Antipin, K. A. Lyssenko, Mutual influence of cyclopentadienyl and carbonyl ligands in cymantrene: QTAIM study. J. Phys. Chem. A2009, 113, 10845.10.1021/jp905841rSearch in Google Scholar

[77] C. Adamo, V. Barone, Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys.1999, 110, 6158.10.1063/1.478522Search in Google Scholar

[78] C. Orben, B. Dittrich, Invariom point charges. Acta Crystallogr.2014, A70, C973.10.1107/S2053273314090263Search in Google Scholar

[79] Y. Zhao, D. G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements. Theor. Chem. Acc.2008, 120, 2158.10.1007/s00214-007-0310-xSearch in Google Scholar

[80] Y. Zhao, D. G. Truhlar, Density functional for spectroscopy: no long-range self-interaction error, good performance for Rydberg and charge-transfer states, and better performance on average than B3LYP for ground states. J. Phys. Chem. A2006, 110, 13126.10.1021/jp066479kSearch in Google Scholar PubMed

[81] Y. Zhao, D. G. Truhlar, A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J. Chem. Phys.2006, 125, 194101.10.1063/1.2370993Search in Google Scholar PubMed

[82] R. K. Raju, A. A. Bengali, E. N. Brothers, A unified set of experimental organometallic data used to evaluate modern theoretical methods. Dalton Trans.2016, 45, 13766.10.1039/C6DT02763FSearch in Google Scholar PubMed

[83] T. Schwabe, S. Grimme, Double-hybrid density functionals with long-range dispersion corrections: higher accuracy and extended applicability. Phys. Chem. Chem. Phys.2007, 9, 3397.10.1039/b704725hSearch in Google Scholar PubMed

[84] A. P. Scott, L. Radom, Harmonic vibrational frequencies: an evaluation of Hartree − Fock, Møller − Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J. Phys. Chem.1996, 100, 16502.10.1021/jp960976rSearch in Google Scholar

[85] R. F. W. Bader, C. F. Matta, Bonding to titanium. Inorg. Chem.2001, 40, 5603.10.1021/ic010165oSearch in Google Scholar PubMed

[86] S. Webb, T. Iordanov, S. Hammes-Schiffer, Multiconfigurational nuclear-electronic orbital approach: Incorporation of nuclear quantum effects in electronic structure calculations. J. Chem. Phys.2002, 117, 4106.10.1063/1.1494980Search in Google Scholar

[87] J. Netzel, S. van Smaalen, Topological properties of hydrogen bonds and covalent bonds from charge densities obtained by the maximum entropy method (MEM). Acta Crystallogr.2009, B65, 624.10.1107/S0108768109026767Search in Google Scholar PubMed PubMed Central


Supplemental Material:

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2017-2085).


Received: 2017-6-29
Accepted: 2017-10-2
Published Online: 2017-11-30
Published in Print: 2018-5-24

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2017-2085/html
Scroll to top button