Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 5, 2022

The role and mechanism of tryptophan – kynurenine metabolic pathway in depression

  • Xiaoli Gong , Rui Chang , Ju Zou , Sijie Tan EMAIL logo and Zeyi Huang EMAIL logo

Abstract

Major depressive disorder (MDD) is a common mental illness characterized by persistent low mood and anhedonia, normally accompanied with cognitive impairment. Due to its rising incidence and high rate of recurrence and disability, MDD poses a substantial threat to patients’ physical and mental health, as well as a significant economic cost to society. However, the etiology and pathogenesis of MDD are still unclear. Chronic inflammation may cause indoleamine-2,3-dioxygenase (IDO) to become overactive throughout the body and brain, resulting in excess quinolinic acid (QUIN) and less kynuric acid (KYNA) in the brain. QUIN’s neurotoxicity damages glial cells and neurons, accelerates neuronal apoptosis, hinders neuroplasticity, and causes depression due to inflammation. Therefore, abnormal TRP-KYN metabolic pathway and its metabolites have been closely related to MDD, suggesting changes in the TRP-KYN metabolic pathway might contribute to MDD. In addition, targeting TRP-KYN with traditional Chinese medicine showed promising treatment effects for MDD. This review summarizes the recent studies on the TRP-KYN metabolic pathway and its metabolites in depression, which would provide a theoretical basis for exploring the etiology and pathogenesis of depression.


Corresponding author: Sijie Tan, Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, 28 W. Chang Sheng Road, Hengyang 421001, Hunan, China, E-mail: ; and Zeyi Huang, Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China; and Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, 28 W. Chang Sheng Road, Hengyang 421001, Hunan, China, E-mail:

Xiaoli Gong and Rui Chang contributed equally to this paper.


Funding source: Hunan Provincial Natural Science Foundation

Award Identifier / Grant number: 2019JJ40250

Funding source: Outstanding Youth Project of Hunan Education Department

Award Identifier / Grant number: 18B262

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by grants from Hunan Provincial Natural Science Foundation (2019JJ40250) and Outstanding Youth Project of Hunan Education Department (18B262).

  3. Conflict of interest statement: The authors declare that they have no Conflict of interest.

References

Achtyes, E., Keaton, S.A., Smart, L., Burmeister, A.R., Heilman, P.L., Krzyzanowski, S., Nagalla, M., Guillemin, G.J., Escobar Galvis, M.L., Lim, C.K., et al.. (2020). Inflammation and kynurenine pathway dysregulation in post-partum women with severe and suicidal depression. Brain Behav. Immun. 83: 239–247, https://doi.org/10.1016/j.bbi.2019.10.017.Search in Google Scholar PubMed PubMed Central

Amori, L., Guidetti, P., Pellicciari, R., Kajii, Y., and Schwarcz, R. (2009a). On the relationship between the two branches of the kynurenine pathway in the rat brain in vivo. J Neurochem 109: 316–325, https://doi.org/10.1111/j.1471-4159.2009.05893.x.Search in Google Scholar PubMed PubMed Central

Amori, L., Wu, H.Q., Marinozzi, M., Pellicciari, R., Guidetti, P., and Schwarcz, R. (2009b). Specific inhibition of kynurenate synthesis enhances extracellular dopamine levels in the rodent striatum. Neuroscience 159: 196–203, https://doi.org/10.1016/j.neuroscience.2008.11.055.Search in Google Scholar PubMed PubMed Central

Baranyi, A., Meinitzer, A., Breitenecker, R.J., Amouzadeh-Ghadikolai, O., Stauber, R., and Rothenhäusler, H.B. (2015). Quinolinic acid responses during interferon-α-induced depressive symptomatology in patients with chronic hepatitis C infection – a novel aspect for depression and inflammatory hypothesis. PLoS One 10: e0137022, https://doi.org/10.1371/journal.pone.0137022.Search in Google Scholar PubMed PubMed Central

Barik, S. (2020). The uniqueness of tryptophan in biology: properties, metabolism, interactions and localization in proteins. Int. J. Mol. Sci. 21, https://doi.org/10.3390/ijms21228776.Search in Google Scholar PubMed PubMed Central

Berlinguer-Palmini, R., Masi, A., Narducci, R., Cavone, L., Maratea, D., Cozzi, A., Sili, M., Moroni, F., and Mannaioni, G. (2013). GPR35 activation reduces Ca2+ transients and contributes to the kynurenic acid-dependent reduction of synaptic activity at CA3-CA1 synapses. PLoS One 8: e82180, https://doi.org/10.1371/journal.pone.0082180.Search in Google Scholar PubMed PubMed Central

Bosi, A., Banfi, D., Bistoletti, M., Giaroni, C., and Baj, A. (2020). Tryptophan metabolites along the microbiota-gut-brain axis: an interkingdom communication system influencing the gut in health and disease. Int. J. Tryptophan Res. 13: 1178646920928984, https://doi.org/10.1177/1178646920928984.Search in Google Scholar PubMed PubMed Central

Braidy, N., Grant, R., Adams, S., Brew, B.J., and Guillemin, G.J. (2009). Mechanism for quinolinic acid cytotoxicity in human astrocytes and neurons. Neurotox. Res. 16: 77–86, https://doi.org/10.1007/s12640-009-9051-z.Search in Google Scholar PubMed

Braidy, N., Grant, R., Adams, S., and Guillemin, G.J. (2010). Neuroprotective effects of naturally occurring polyphenols on quinolinic acid-induced excitotoxicity in human neurons. FEBS J. 277: 368–382, https://doi.org/10.1111/j.1742-4658.2009.07487.x.Search in Google Scholar PubMed

Brasso, C., Bellino, S., Blua, C., Bozzatello, P., and Rocca, P. (2022). The impact of SARS-CoV-2 infection on youth mental health: a narrative review. Biomedicines 10, https://doi.org/10.3390/biomedicines10040772.Search in Google Scholar PubMed PubMed Central

Bremner, J.D., Narayan, M., Anderson, E.R., Staib, L.H., Miller, H.L., and Charney, D.S. (2000). Hippocampal volume reduction in major depression. Am. J. Psychiatr. 157: 115–118, https://doi.org/10.1176/ajp.157.1.115.Search in Google Scholar PubMed

Cao, X., Yang, F., Zheng, J., Wang, X., and Huang, Q. (2022). Aberrant structure MRI in Parkinson’s disease and comorbidity with depression based on multinomial tensor regression analysis. J. Personalized Med. 12, https://doi.org/10.3390/jpm12010089.Search in Google Scholar PubMed PubMed Central

Capuron, L., Ravaud, A., Neveu, P.J., Miller, A.H., Maes, M., and Dantzer, R. (2002). Association between decreased serum tryptophan concentrations and depressive symptoms in cancer patients undergoing cytokine therapy. Mol. Psychiatr. 7: 468–473, https://doi.org/10.1038/sj.mp.4000995.Search in Google Scholar PubMed

Cheng, D., Chang, H., Ma, S., Guo, J., She, G., Zhang, F., Li, L., Li, X., and Lu, Y. (2018). Tiansi liquid modulates gut microbiota composition and tryptophan⁻kynurenine metabolism in rats with hydrocortisone-induced depression. Molecules 23, https://doi.org/10.3390/molecules23112832.Search in Google Scholar PubMed PubMed Central

Chiarugi, A., Calvani, M., Meli, E., Traggiai, E., and Moroni, F. (2001). Synthesis and release of neurotoxic kynurenine metabolites by human monocyte-derived macrophages. J. Neuroimmunol. 120: 190–198, https://doi.org/10.1016/s0165-5728(01)00418-0.Search in Google Scholar PubMed

Clark, S.M., Pocivavsek, A., Nicholson, J.D., Notarangelo, F.M., Langenberg, P., McMahon, R.P., Kleinman, J.E., Hyde, T.M., Stiller, J., Postolache, T.T., et al.. (2016). Reduced kynurenine pathway metabolism and cytokine expression in the prefrontal cortex of depressed individuals. J. Psychiatry Neurosci. 41: 386–394, https://doi.org/10.1503/jpn.150226.Search in Google Scholar PubMed PubMed Central

Colín-González, A.L., Maldonado, P.D., and Santamaría, A. (2013). 3-Hydroxykynurenine: an intriguing molecule exerting dual actions in the central nervous system. Neurotoxicology 34: 189–204, https://doi.org/10.1016/j.neuro.2012.11.007.Search in Google Scholar PubMed

Comai, S., Bertazzo, A., Brughera, M., and Crotti, S. (2020). Tryptophan in health and disease. Adv. Clin. Chem. 95: 165–218.10.1016/bs.acc.2019.08.005Search in Google Scholar PubMed

Correll, C.U., Detraux, J., De Lepeleire, J., and De Hert, M. (2015). Effects of antipsychotics, antidepressants and mood stabilizers on risk for physical diseases in people with schizophrenia, depression and bipolar disorder. World Psychiatr. 14: 119–136, https://doi.org/10.1002/wps.20204.Search in Google Scholar PubMed PubMed Central

Dehhaghi, M., Kazemi Shariat Panahi, H., and Guillemin, G.J. (2019). Microorganisms, tryptophan metabolism, and kynurenine pathway: a complex interconnected loop influencing human health status. Int. J. Tryptophan Res. 12: 1178646919852996, https://doi.org/10.1177/1178646919852996.Search in Google Scholar PubMed PubMed Central

Desbonnet, L., Garrett, L., Clarke, G., Bienenstock, J., and Dinan, T.G. (2008). The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. J. Psychiatr. Res. 43: 164–174, https://doi.org/10.1016/j.jpsychires.2008.03.009.Search in Google Scholar PubMed

Deussing, J.M. and Arzt, E. (2018). P2X7 Receptor: a potential therapeutic target for depression? Trends Mol. Med. 24: 736–747, https://doi.org/10.1016/j.molmed.2018.07.005.Search in Google Scholar PubMed

Dong, M., Wang, S.B., Li, Y., Xu, D.D., Ungvari, G.S., Ng, C.H., Chow, I.H.I., and Xiang, Y.T. (2018). Prevalence of suicidal behaviors in patients with major depressive disorder in China: a comprehensive meta-analysis. J. Affect. Disord. 225: 32–39, https://doi.org/10.1016/j.jad.2017.07.043.Search in Google Scholar PubMed

Donnapee, S., Li, J., Yang, X., Ge, A.H., Donkor, P.O., Gao, X.M., and Chang, Y.X. (2014). Cuscuta chinensis Lam.: a systematic review on ethnopharmacology, phytochemistry and pharmacology of an important traditional herbal medicine. J. Ethnopharmacol. 157: 292–308, https://doi.org/10.1016/j.jep.2014.09.032.Search in Google Scholar PubMed

Elovainio, M., Hurme, M., Jokela, M., Pulkki-Råback, L., Kivimäki, M., Hintsanen, M., Hintsa, T., Lehtimäki, T., Viikari, J., Raitakari, O.T., et al.. (2012). Indoleamine 2, 3-dioxygenase activation and depressive symptoms: results from the Young Finns Study. Psychosom. Med. 74: 675–681, https://doi.org/10.1097/psy.0b013e318266d0f5.Search in Google Scholar PubMed

Erhardt, S., Lim, C.K., Linderholm, K.R., Janelidze, S., Lindqvist, D., Samuelsson, M., Lundberg, K., Postolache, T.T., Träskman-Bendz, L., Guillemin, G.J., et al.. (2013). Connecting inflammation with glutamate agonism in suicidality. Neuropsychopharmacology 38: 743–752, https://doi.org/10.1038/npp.2012.248.Search in Google Scholar PubMed PubMed Central

Farooq, R.K., Tanti, A., Ainouche, S., Roger, S., Belzung, C., and Camus, V. (2018). A P2X7 receptor antagonist reverses behavioural alterations, microglial activation and neuroendocrine dysregulation in an unpredictable chronic mild stress (UCMS) model of depression in mice. Psychoneuroendocrinology 97: 120–130, https://doi.org/10.1016/j.psyneuen.2018.07.016.Search in Google Scholar PubMed

Fekadu, N., Basha, H., Meresa, A., Degu, S., Girma, B., and Geleta, B. (2017). Diuretic activity of the aqueous crude extract and hot tea infusion of Moringa stenopetala (Baker f.) Cufod. leaves in rats. J. Exp. Pharmacol. 9: 73–80, https://doi.org/10.2147/jep.s133778.Search in Google Scholar

Fitzgerald, P., Cassidy Eugene, M., Clarke, G., Scully, P., Barry, S., Quigley Eamonn, M.M., Shanahan, F., Cryan, J., and Dinan Timothy, G. (2008). Tryptophan catabolism in females with irritable bowel syndrome: relationship to interferon-γ, severity of symptoms and psychiatric co-morbidity. Neuro Gastroenterol. Motil. 20: 1291–1297, https://doi.org/10.1111/j.1365-2982.2008.01195.x.Search in Google Scholar PubMed

Friedrich, M.J. (2017). Depression is the leading cause of disability around the world. J. Am. Med. Assoc. 317: 1517, https://doi.org/10.1001/jama.2017.3826.Search in Google Scholar PubMed

Fuertig, R., Azzinnari, D., Bergamini, G., Cathomas, F., Sigrist, H., Seifritz, E., Vavassori, S., Luippold, A., Hengerer, B., Ceci, A., et al.. (2016). Mouse chronic social stress increases blood and brain kynurenine pathway activity and fear behaviour: both effects are reversed by inhibition of indoleamine 2, 3-dioxygenase. Brain Behav. Immun. 54: 59–72, https://doi.org/10.1016/j.bbi.2015.12.020.Search in Google Scholar PubMed

Fujigaki, H., Yamamoto, Y., and Saito, K. (2017). L-Tryptophan-kynurenine pathway enzymes are therapeutic target for neuropsychiatric diseases: focus on cell type differences. Neuropharmacology 112: 264–274, https://doi.org/10.1016/j.neuropharm.2016.01.011.Search in Google Scholar PubMed

Gadad, B.S., Jha, M.K., Czysz, A., Furman, J.L., Mayes, T.L., Emslie, M.P., and Trivedi, M.H. (2018). Peripheral biomarkers of major depression and antidepressant treatment response: current knowledge and future outlooks. J. Affect. Disord. 233: 3–14, https://doi.org/10.1016/j.jad.2017.07.001.Search in Google Scholar PubMed PubMed Central

Gao, K., Mu, C.L., Farzi, A., and Zhu, W.Y. (2020). Tryptophan metabolism: a link between the gut microbiota and brain. Adv. Nutr. 11: 709–723, https://doi.org/10.1093/advances/nmz127.Search in Google Scholar PubMed PubMed Central

Ghio, L., Gotelli, S., Cervetti, A., Respino, M., Natta, W., Marcenaro, M., Serafini, G., Vaggi, M., Amore, M., and Belvederi Murri, M. (2015). Duration of untreated depression influences clinical outcomes and disability. J. Affect. Disord. 175: 224–228, https://doi.org/10.1016/j.jad.2015.01.014.Search in Google Scholar PubMed

González Esquivel, D., Ramírez-Ortega, D., Pineda, B., Castro, N., Ríos, C., and Pérez de la Cruz, V. (2017). Kynurenine pathway metabolites and enzymes involved in redox reactions. Neuropharmacology 112: 331–345, https://doi.org/10.1016/j.neuropharm.2016.03.013.Search in Google Scholar PubMed

Grant, R.S. and Kapoor, V. (1998). Murine glial cells regenerate NAD, after peroxide-induced depletion, using either nicotinic acid, nicotinamide, or quinolinic acid as substrates. J. Neurochem. 70: 1759–1763, https://doi.org/10.1046/j.1471-4159.1998.70041759.x.Search in Google Scholar PubMed

Guillemin, G.J., Cullen, K.M., Lim, C.K., Smythe, G.A., Garner, B., Kapoor, V., Takikawa, O., and Brew, B.J. (2007). Characterization of the kynurenine pathway in human neurons. J. Neurosci. 27: 12884–12892, https://doi.org/10.1523/jneurosci.4101-07.2007.Search in Google Scholar PubMed PubMed Central

Henter, I.D., Park, L.T., and Zarate, C.A.Jr. (2021). Novel glutamatergic modulators for the treatment of mood disorders: current status. CNS Drugs 35: 527–543, https://doi.org/10.1007/s40263-021-00816-x.Search in Google Scholar PubMed PubMed Central

Hestad, K.A., Engedal, K., Whist, J.E., and Farup, P.G. (2017). The relationships among tryptophan, kynurenine, indoleamine 2, 3-dioxygenase, depression, and neuropsychological performance. Front. Psychol. 8: 1561, https://doi.org/10.3389/fpsyg.2017.01561.Search in Google Scholar PubMed PubMed Central

Huang, Z. and Tan, S. (2021). P2X7 receptor as a potential target for major depressive disorder. Curr. Drug Targets 22: 1108–1120, https://doi.org/10.2174/1389450122666210120141908.Search in Google Scholar PubMed

Kazemi, A., Noorbala, A.A., Azam, K., Eskandari, M.H., and Djafarian, K. (2019). Effect of probiotic and prebiotic vs placebo on psychological outcomes in patients with major depressive disorder: a randomized clinical trial. Clin. Nutr. 38: 522–528, https://doi.org/10.1016/j.clnu.2018.04.010.Search in Google Scholar PubMed

Kowalska, K., Krzywoszański, Ł., Droś, J., Pasińska, P., Wilk, A., and Klimkowicz-Mrowiec, A. (2020). Early depression independently of other neuropsychiatric conditions, influences disability and mortality after stroke (research study-part of PROPOLIS study). Biomedicines 8: 509, https://doi.org/10.3390/biomedicines8110509.Search in Google Scholar PubMed PubMed Central

Kupferberg, A., Bicks, L., and Hasler, G. (2016). Social functioning in major depressive disorder. Neurosci. Biobehav. Rev. 69: 313–332, https://doi.org/10.1016/j.neubiorev.2016.07.002.Search in Google Scholar PubMed

Kuwano, N., Kato, T.A., Setoyama, D., Sato-Kasai, M., Shimokawa, N., Hayakawa, K., Ohgidani, M., Sagata, N., Kubo, H., Kishimoto, J., et al.. (2018). Tryptophan-kynurenine and lipid related metabolites as blood biomarkers for first-episode drug-naïve patients with major depressive disorder: an exploratory pilot case-control study. J. Affect. Disord. 231: 74–82, https://doi.org/10.1016/j.jad.2018.01.014.Search in Google Scholar PubMed

Lam, K.Y.C., Wu, Q.Y., Hu, W.H., Yao, P., Wang, H.Y., Dong, T.T.X., and Tsim, K.W.K. (2019). Asarones from Acori tatarinowii rhizoma stimulate expression and secretion of neurotrophic factors in cultured astrocytes. Neurosci. Lett. 707: 134308, https://doi.org/10.1016/j.neulet.2019.134308.Search in Google Scholar PubMed

Leonard, B.E. (2006). HPA and immune axes in stress: involvement of the serotonergic system. Neuroimmunomodulation 13: 268–276, https://doi.org/10.1159/000104854.Search in Google Scholar PubMed

Leonard, B.E. (2018). Inflammation and depression: a causal or coincidental link to the pathophysiology? Acta Neuropsychiatr. 30: 1–16, https://doi.org/10.1017/neu.2016.69.Search in Google Scholar PubMed

Liu, Y.N., Peng, Y.L., Liu, L., Wu, T.Y., Zhang, Y., Lian, Y.J., Yang, Y.Y., Kelley, K.W., Jiang, C.L., and Wang, Y.X. (2015). TNFα mediates stress-induced depression by upregulating indoleamine 2, 3-dioxygenase in a mouse model of unpredictable chronic mild stress. Eur. Cytokine Netw. 26: 15–25, https://doi.org/10.1684/ecn.2015.0362.Search in Google Scholar PubMed PubMed Central

Lovelace, M.D., Varney, B., Sundaram, G., Lennon, M.J., Lim, C.K., Jacobs, K., Guillemin, G.J., and Brew, B.J. (2017). Recent evidence for an expanded role of the kynurenine pathway of tryptophan metabolism in neurological diseases. Neuropharmacology 112: 373–388, https://doi.org/10.1016/j.neuropharm.2016.03.024.Search in Google Scholar PubMed

Lugo-Huitrón, R., Blanco-Ayala, T., Ugalde-Muñiz, P., Carrillo-Mora, P., Pedraza-Chaverrí, J., Silva-Adaya, D., Maldonado, P.D., Torres, I., Pinzón, E., Ortiz-Islas, E., et al.. (2011). On the antioxidant properties of kynurenic acid: free radical scavenging activity and inhibition of oxidative stress. Neurotoxicol. Teratol. 33: 538–547, https://doi.org/10.1016/j.ntt.2011.07.002.Search in Google Scholar PubMed

Maes, M., Yirmyia, R., Noraberg, J., Brene, S., Hibbeln, J., Perini, G., Kubera, M., Bob, P., Lerer, B., and Maj, M. (2009). The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression. Metab. Brain Dis. 24: 27–53, https://doi.org/10.1007/s11011-008-9118-1.Search in Google Scholar PubMed

Małaczewska, J., Siwicki, A.K., Wójcik, R.M., Turski, W.A., and Kaczorek, E. (2016). The effect of kynurenic acid on the synthesis of selected cytokines by murine splenocytes – in vitro and ex vivo studies. Cent. Eur. J. Immunol. 41: 39–46, https://doi.org/10.5114/ceji.2016.58815.Search in Google Scholar PubMed PubMed Central

Martos, D., Tuka, B., Tanaka, M., Vécsei, L., and Telegdy, G. (2022). Memory enhancement with kynurenic acid and its mechanisms in neurotransmission. Biomedicines 10: 849, https://doi.org/10.3390/biomedicines10040849.Search in Google Scholar PubMed PubMed Central

Moretti, S., Nucci, N., Menicali, E., Morelli, S., Bini, V., Colella, R., Mandarano, M., Sidoni, A., and Puxeddu, E. (2020). The aryl hydrocarbon receptor is expressed in thyroid carcinoma and appears to mediate epithelial-mesenchymal-transition. Cancers 12: 145, https://doi.org/10.3390/cancers12010145.Search in Google Scholar PubMed PubMed Central

Müller, N. and Schwarz, M.J. (2007). The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression. Mol. Psychiatr. 12: 988–1000, https://doi.org/10.1038/sj.mp.4002006.Search in Google Scholar PubMed

Myint, A.M. and Kim, Y.K. (2003). Cytokine-serotonin interaction through IDO: a neurodegeneration hypothesis of depression. Med. Hypotheses 61: 519–525, https://doi.org/10.1016/s0306-9877(03)00207-x.Search in Google Scholar PubMed

Myint, A.M. and Kim, Y.K. (2014). Network beyond IDO in psychiatric disorders: revisiting neurodegeneration hypothesis. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 48: 304–313, https://doi.org/10.1016/j.pnpbp.2013.08.008.Search in Google Scholar PubMed

Myint, A.M., Kim, Y.K., Verkerk, R., Scharpé, S., Steinbusch, H., and Leonard, B. (2007). Kynurenine pathway in major depression: evidence of impaired neuroprotection. J. Affect. Disord. 98: 143–151, https://doi.org/10.1016/j.jad.2006.07.013.Search in Google Scholar PubMed

Myint, A.M., Schwarz, M.J., and Müller, N. (2012). The role of the kynurenine metabolism in major depression. J. Neural. Transm. 119: 245–251, https://doi.org/10.1007/s00702-011-0741-3.Search in Google Scholar PubMed

Németh, H., Toldi, J., and Vécsei, L. (2005). Role of kynurenines in the central and peripheral nervous systems. Curr. Neurovascular Res. 2: 249–260, https://doi.org/10.2174/1567202054368326.Search in Google Scholar PubMed

O’Connor, J.C., Lawson, M.A., André, C., Moreau, M., Lestage, J., Castanon, N., Kelley, K.W., and Dantzer, R. (2009). Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2, 3-dioxygenase activation in mice. Mol. Psychiatr. 14: 511–522, https://doi.org/10.1038/sj.mp.4002148.Search in Google Scholar PubMed PubMed Central

O’Mahony, S.M., Clarke, G., Borre, Y.E., Dinan, T.G., and Cryan, J.F. (2015). Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 277: 32–48, https://doi.org/10.1016/j.bbr.2014.07.027.Search in Google Scholar PubMed

Ogawa, S., Fujii, T., Koga, N., Hori, H., Teraishi, T., Hattori, K., Noda, T., Higuchi, T., Motohashi, N., and Kunugi, H. (2014). Plasma L-tryptophan concentration in major depressive disorder: new data and meta-analysis. J. Clin. Psychiatr. 75: e906–915, https://doi.org/10.4088/jcp.13r08908.Search in Google Scholar

Ogyu, K., Kubo, K., Noda, Y., Iwata, Y., Tsugawa, S., Omura, Y., Wada, M., Tarumi, R., Plitman, E., Moriguchi, S., et al.. (2018). Kynurenine pathway in depression: a systematic review and meta-analysis. Neurosci. Biobehav. Rev. 90: 16–25, https://doi.org/10.1016/j.neubiorev.2018.03.023.Search in Google Scholar PubMed

Onchev, G. (2021). Changes in psychopathology and mental health resilience. Front. Psychiatr. 12: 676492, https://doi.org/10.3389/fpsyt.2021.676492.Search in Google Scholar PubMed PubMed Central

Owe-Young, R., Webster, N.L., Mukhtar, M., Pomerantz, R.J., Smythe, G., Walker, D., Armati, P.J., Crowe, S.M., and Brew, B.J. (2008). Kynurenine pathway metabolism in human blood-brain-barrier cells: implications for immune tolerance and neurotoxicity. J. Neurochem. 105: 1346–1357, https://doi.org/10.1111/j.1471-4159.2008.05241.x.Search in Google Scholar PubMed

Oxenkrug, G.F. (2010). Metabolic syndrome, age-associated neuroendocrine disorders, and dysregulation of tryptophan-kynurenine metabolism. Ann. N. Y. Acad. Sci. 1199: 1–14, https://doi.org/10.1111/j.1749-6632.2009.05356.x.Search in Google Scholar PubMed

Oxenkrug, G.F. (2015). Increased plasma levels of xanthurenic and kynurenic acids in type 2 diabetes. Mol. Neurobiol. 52: 805–810, https://doi.org/10.1007/s12035-015-9232-0.Search in Google Scholar PubMed PubMed Central

Öztürk, M., Yalın Sapmaz, Ş., Kandemir, H., Taneli, F., and Aydemir, Ö. (2021). The role of the kynurenine pathway and quinolinic acid in adolescent major depressive disorder. Int. J. Clin. Pract. 75: e13739, https://doi.org/10.1111/ijcp.13739.Search in Google Scholar PubMed

Panfili, E., Gerli, R., Grohmann, U., and Pallotta, M.T. (2020). Amino acid metabolism in rheumatoid arthritis: friend or foe? Biomolecules 10: 1280, https://doi.org/10.3390/biom10091280.Search in Google Scholar PubMed PubMed Central

Peña-Vargas, C., Armaiz-Peña, G., and Castro-Figueroa, E. (2021). A biopsychosocial approach to grief, depression, and the role of emotional regulation. Behav. Sci. 11: 110, https://doi.org/10.3390/bs11080110.Search in Google Scholar PubMed PubMed Central

Perkins, M.N. and Stone, T.W. (1982). An iontophoretic investigation of the actions of convulsant kynurenines and their interaction with the endogenous excitant quinolinic acid. Brain Res. 247: 184–187, https://doi.org/10.1016/0006-8993(82)91048-4.Search in Google Scholar PubMed

Pitsillou, E., Bresnehan, S.M., Kagarakis, E.A., Wijoyo, S.J., Liang, J., Hung, A., and Karagiannis, T.C. (2020). The cellular and molecular basis of major depressive disorder: towards a unified model for understanding clinical depression. Mol. Biol. Rep. 47: 753–770, https://doi.org/10.1007/s11033-019-05129-3.Search in Google Scholar PubMed

Popova, V., Daly, E.J., Trivedi, M., Cooper, K., Lane, R., Lim, P., Mazzucco, C., Hough, D., Thase, M.E., Shelton, R.C., et al.. (2019). Efficacy and safety of flexibly dosed esketamine nasal spray combined with a newly initiated oral antidepressant in treatment-resistant depression: a randomized double-blind active-controlled study. Am. J. Psychiatr. 176: 428–438, https://doi.org/10.1176/appi.ajp.2019.19020172.Search in Google Scholar PubMed

Prendergast, G.C., Metz, R., Muller, A.J., Merlo, L.M., and Mandik-Nayak, L. (2014). IDO2 in immunomodulation and autoimmune disease. Front. Immunol. 5: 585, https://doi.org/10.3389/fimmu.2014.00585.Search in Google Scholar PubMed PubMed Central

Purton, T., Staskova, L., Lane, M.M., Dawson, S.L., West, M., Firth, J., Clarke, G., Cryan, J.F., Berk, M., O’Neil, A., et al.. (2021). Prebiotic and probiotic supplementation and the tryptophan-kynurenine pathway: a systematic review and meta analysis. Neurosci. Biobehav. Rev. 123: 1–13, https://doi.org/10.1016/j.neubiorev.2020.12.026.Search in Google Scholar PubMed

Quak, J., Doornbos, B., Roest, A.M., Duivis, H.E., Vogelzangs, N., Nolen, W.A., Penninx, B.W., Kema, I.P., and de Jonge, P. (2014). Does tryptophan degradation along the kynurenine pathway mediate the association between pro-inflammatory immune activity and depressive symptoms? Psychoneuroendocrinology 45: 202–210, https://doi.org/10.1016/j.psyneuen.2014.03.013.Search in Google Scholar PubMed

Raison, C.L., Dantzer, R., Kelley, K.W., Lawson, M.A., Woolwine, B.J., Vogt, G., Spivey, J.R., Saito, K., and Miller, A.H. (2010). CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-α: relationship to CNS immune responses and depression. Mol. Psychiatr. 15: 393–403, https://doi.org/10.1038/mp.2009.116.Search in Google Scholar PubMed PubMed Central

Reyes Ocampo, J., Lugo Huitrón, R., González-Esquivel, D., Ugalde-Muñiz, P., Jiménez-Anguiano, A., Pineda, B., Pedraza-Chaverri, J., Ríos, C., and Pérez de la Cruz, V. (2014). Kynurenines with neuroactive and redox properties: relevance to aging and brain diseases. Oxid. Med. Cell. Longev. 2014: 646909.10.1155/2014/646909Search in Google Scholar PubMed PubMed Central

Rudzki, L., Ostrowska, L., Pawlak, D., Małus, A., Pawlak, K., Waszkiewicz, N., and Szulc, A. (2019). Probiotic Lactobacillus Plantarum 299v decreases kynurenine concentration and improves cognitive functions in patients with major depression: a double-blind, randomized, placebo controlled study. Psychoneuroendocrinology 100: 213–222, https://doi.org/10.1016/j.psyneuen.2018.10.010.Search in Google Scholar PubMed

Sadok, I., Gamian, A., and Staniszewska, M.M. (2017). Chromatographic analysis of tryptophan metabolites. J. Separ. Sci. 40: 3020–3045, https://doi.org/10.1002/jssc.201700184.Search in Google Scholar PubMed PubMed Central

Sáiz-Vázquez, O., Gracia-García, P., Ubillos-Landa, S., Puente-Martínez, A., Casado-Yusta, S., Olaya, B., and Santabárbara, J. (2021). Depression as a risk factor for alzheimer’s disease: a systematic review of longitudinal meta-analyses. J. Clin. Med. 10, https://doi.org/10.3390/jcm10091809.Search in Google Scholar PubMed PubMed Central

Savitz, J., Drevets, W.C., Smith, C.M., Victor, T.A., Wurfel, B.E., Bellgowan, P.S., Bodurka, J., Teague, T.K., and Dantzer, R. (2015). Putative neuroprotective and neurotoxic kynurenine pathway metabolites are associated with hippocampal and amygdalar volumes in subjects with major depressive disorder. Neuropsychopharmacology 40: 463–471, https://doi.org/10.1038/npp.2014.194.Search in Google Scholar PubMed PubMed Central

Smith, K. (2014). Mental health: a world of depression. Nature 515: 181, https://doi.org/10.1038/515180a.Search in Google Scholar PubMed

Steiner, J., Walter, M., Gos, T., Guillemin, G.J., Bernstein, H.G., Sarnyai, Z., Mawrin, C., Brisch, R., Bielau, H., Meyer zu Schwabedissen, L., et al.. (2011). Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: evidence for an immune-modulated glutamatergic neurotransmission? J. Neuroinflammation 8: 94, https://doi.org/10.1186/1742-2094-8-94.Search in Google Scholar PubMed PubMed Central

Stone, T.W. (2001). Endogenous neurotoxins from tryptophan. Toxicon 39: 61–73, https://doi.org/10.1016/s0041-0101(00)00156-2.Search in Google Scholar PubMed

Swardfager, W., Herrmann, N., Dowlati, Y., Oh, P.I., Kiss, A., Walker, S.E., and Lanctôt, K.L. (2009). Indoleamine 2, 3-dioxygenase activation and depressive symptoms in patients with coronary artery disease. Psychoneuroendocrinology 34: 1560–1566, https://doi.org/10.1016/j.psyneuen.2009.05.019.Search in Google Scholar PubMed

Tanaka, M., Bohár, Z., and Vécsei, L. (2020a). Are kynurenines accomplices or principal villains in dementia? Maintenance of kynurenine metabolism. Molecules 25, https://doi.org/10.3390/molecules25030564.Search in Google Scholar PubMed PubMed Central

Tanaka, M., Toldi, J., and Vécsei, L. (2020b). Exploring the etiological links behind neurodegenerative diseases: inflammatory cytokines and bioactive kynurenines. Int. J. Mol. Sci. 21, https://doi.org/10.3390/ijms21072431.Search in Google Scholar PubMed PubMed Central

Tanaka, M., Török, N., and Vécsei, L. (2021a). Are 5-HT(1) receptor agonists effective anti-migraine drugs? Expet Opin. Pharmacother. 22: 1221–1225, https://doi.org/10.1080/14656566.2021.1910235.Search in Google Scholar PubMed

Tanaka, M., Tóth, F., Polyák, H., Szabó, Á., Mándi, Y., and Vécsei, L. (2021b). Immune influencers in action: metabolites and enzymes of the tryptophan-kynurenine metabolic pathway. Biomedicines 9, https://doi.org/10.3390/biomedicines9070734.Search in Google Scholar PubMed PubMed Central

Van der Leek, A.P., Yanishevsky, Y., and Kozyrskyj, A.L. (2017). The kynurenine pathway as a novel link between allergy and the gut microbiome. Front. Immunol. 8: 1374, https://doi.org/10.3389/fimmu.2017.01374.Search in Google Scholar PubMed PubMed Central

Vécsei, L., Szalárdy, L., Fülöp, F., and Toldi, J. (2013). Kynurenines in the CNS: recent advances and new questions. Nat. Rev. Drug Discov. 12: 64–82, https://doi.org/10.1038/nrd3793.Search in Google Scholar PubMed

Verdonk, F., Petit, A.C., Abdel-Ahad, P., Vinckier, F., Jouvion, G., de Maricourt, P., De Medeiros, G.F., Danckaert, A., Van Steenwinckel, J., Blatzer, M., et al.. (2019). Microglial production of quinolinic acid as a target and a biomarker of the antidepressant effect of ketamine. Brain Behav. Immun. 81: 361–373, https://doi.org/10.1016/j.bbi.2019.06.033.Search in Google Scholar PubMed

Yohn, C.N., Gergues, M.M., and Samuels, B.A. (2017). The role of 5-HT receptors in depression. Mol. Brain 10: 28, https://doi.org/10.1186/s13041-017-0306-y.Search in Google Scholar PubMed PubMed Central

Zhang, K., Wang, F., Yang, J.Y., Wang, L.J., Pang, H.H., Su, G.Y., Ma, J., Song, S.J., Xiong, Z.L., and Wu, C.F. (2015). Analysis of main constituents and mechanisms underlying antidepressant-like effects of Xiaochaihutang in mice. J. Ethnopharmacol. 175: 48–57, https://doi.org/10.1016/j.jep.2015.08.031.Search in Google Scholar PubMed

Zhou, W., Dantzer, R., Budac, D.P., Walker, A.K., Mao-Ying, Q.L., Lee, A.W., Heijnen, C.J., and Kavelaars, A. (2015). Peripheral indoleamine 2, 3-dioxygenase 1 is required for comorbid depression-like behavior but does not contribute to neuropathic pain in mice. Brain Behav. Immun. 46: 147–153, https://doi.org/10.1016/j.bbi.2015.01.013.Search in Google Scholar PubMed PubMed Central

Zhu, X., Jing, L., Chen, C., Shao, M., Fan, Q., Diao, J., Liu, Y., Lv, Z., and Sun, X. (2015). Danzhi Xiaoyao San ameliorates depressive-like behavior by shifting toward serotonin via the downregulation of hippocampal indoleamine 2, 3-dioxygenase. J. Ethnopharmacol. 160: 86–93, https://doi.org/10.1016/j.jep.2014.11.031.Search in Google Scholar PubMed

Zonis, S., Pechnick, R.N., Ljubimov, V.A., Mahgerefteh, M., Wawrowsky, K., Michelsen, K.S., and Chesnokova, V. (2015). Chronic intestinal inflammation alters hippocampal neurogenesis. J. Neuroinflammation 12: 65, https://doi.org/10.1186/s12974-015-0281-0.Search in Google Scholar PubMed PubMed Central

Zunszain, P.A., Anacker, C., Cattaneo, A., Carvalho, L.A., and Pariante, C.M. (2011). Glucocorticoids, cytokines and brain abnormalities in depression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 35: 722–729, https://doi.org/10.1016/j.pnpbp.2010.04.011.Search in Google Scholar PubMed PubMed Central

Received: 2022-04-25
Accepted: 2022-07-13
Published Online: 2022-09-05
Published in Print: 2023-04-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.6.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2022-0047/html
Scroll to top button