Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 12, 2019

Mesenchymal stem cells as a treatment for multiple sclerosis: a focus on experimental animal studies

  • Ahmed Lotfy ORCID logo EMAIL logo , Nourhan S. Ali , Mai Abdelgawad and Mohamed Salama

Abstract

Multiple sclerosis (MS) is a progressive and debilitating neurological condition in which the immune system abnormally attacks the myelin sheath insulating the nerves. Mesenchymal stem cells (MSCs) are found in most adult tissues and play a significant systemic role in self-repair. MSCs have promising therapeutic effects in many diseases, such as autoimmune diseases, including MS. MSCs have been tested in MS animal models, such as experimental autoimmune encephalomyelitis. Other studies have combined other agents with MSCs, genetically modified MSCs, or used culture medium from MSCs. In this review, we will summarize these studies and compare the main factors in each study, such as the source of MSCs, the type of animal model, the route of injection, the number of injected cells, and the mechanism of action.

Acknowledgment

This work was supported by Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University.

  1. Conflicting interest statement: The authors declare no conflict of interest.

References

Abramowski, P., Krasemann, S., Ernst, T., Lange, C., Ittrich, H., Schweizer, M., Zander, A.R., Martin, R., and Fehse, B. (2016). Mesenchymal stromal/stem cells do not ameliorate experimental autoimmune encephalomyelitis and are not detectable in the central nervous system of transplanted mice. Stem Cells Dev. 25, 1134–1148.10.1089/scd.2016.0020Search in Google Scholar PubMed

Alchi, B., Jayne, D., Labopin, M., Demin, A., Sergeevicheva, V., Alexander, T., Gualandi, F., Gruhn, B., Ouyang, J., Rzepecki, P., et al. (2013). Autologous haematopoietic stem cell transplantation for systemic lupus erythematosus: data from the European Group for Blood and Marrow Transplantation registry. Lupus 22, 245–253.10.1177/0961203312470729Search in Google Scholar PubMed

Anderson, P., Gonzalez-Rey, E., O’Valle, F., Martin, F., Oliver, F.J., and Delgado, M. (2017). Allogeneic adipose-derived mesenchymal stromal cells ameliorate experimental autoimmune encephalomyelitis by regulating self-reactive T cell responses and dendritic cell function. Stem Cells Int. 2017, 2389753.10.1155/2017/2389753Search in Google Scholar PubMed PubMed Central

Atkins, H.L. and Freedman, M.S. (2017). Five questions answered: a review of autologous hematopoietic stem cell transplantation for the treatment of multiple sclerosis. Neurotherapeutics 14, 888–893.10.1007/s13311-017-0564-5Search in Google Scholar PubMed PubMed Central

Bai, L., Lennon, D.P., Eaton, V., Maier, K., Caplan, A.I., Miller, S.D., and Miller, R.H. (2009). Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia 57, 1192–1203.10.1002/glia.20841Search in Google Scholar PubMed PubMed Central

Bai, L., Lennon, D.P., Caplan, A.I., DeChant, A., Hecker, J., Kranso, J., Zaremba, A., and Miller, R.H. (2012). Hepatocyte growth factor mediates mesenchymal stem cell-induced recovery in multiple sclerosis models. Nat. Neurosci. 15, 862–870.10.1038/nn.3109Search in Google Scholar PubMed PubMed Central

Baldassari, L.E. and Cohen, J.A. (2018). Mesenchymal stem cell-derived neural progenitor cells in progressive multiple sclerosis: great expectations. EBioMedicine 29, 5–6.10.1016/j.ebiom.2018.02.021Search in Google Scholar PubMed PubMed Central

Benvenuto, F., Voci, A., Carminati, E., Gualandi, F., Mancardi, G., Uccelli, A., and Vergani, L. (2015). Human mesenchymal stem cells target adhesion molecules and receptors involved in T cell extravasation. Stem Cell Res. Ther. 6, 245.10.1186/s13287-015-0222-ySearch in Google Scholar PubMed PubMed Central

Bosca, I., Coret, F., Valero, C., Pascual, A.M., Magraner, M.J., Landete, L., and Casanova, B. (2008). Effect of relapses over early progression of disability in multiple sclerosis patients treated with beta-interferon. Mult. Scler. 14, 636–639.10.1177/1352458507086666Search in Google Scholar PubMed

Cobo, M., Anderson, P., Benabdellah, K., Toscano, M.G., Munoz, P., Garcia-Perez, A., Gutierrez, I., Delgado, M., and Martin, F. (2013). Mesenchymal stem cells expressing vasoactive intestinal peptide ameliorate symptoms in a model of chronic multiple sclerosis. Cell Transplant. 22, 839–854.10.3727/096368912X657404Search in Google Scholar PubMed

Cohen, J.A., Imrey, P.B., Planchon, S.M., Bermel, R.A., Fisher, E., Fox, R.J., Bar-Or, A., Sharp, S.L., Skaramagas, T.T., Jagodnik, P., et al. (2018). Pilot trial of intravenous autologous culture-expanded mesenchymal stem cell transplantation in multiple sclerosis. Mult. Scler. 24, 501–511.10.1177/1352458517703802Search in Google Scholar

Confavreux, C. and Vukusic, S. (2006). Natural history of multiple sclerosis: a unifying concept. Brain 129, 606–616.10.1093/brain/awl007Search in Google Scholar

Connick, P., Kolappan, M., Crawley, C., Webber, D.J., Patani, R., Michell, A.W., Du, M.Q., Luan, S.L., Altmann, D.R., Thompson, A.J., et al. (2012). Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol. 11, 150–156.10.1016/S1474-4422(11)70305-2Search in Google Scholar

Constantin, G., Marconi, S., Rossi, B., Angiari, S., Calderan, L., Anghileri, E., Gini, B., Bach, S.D., Martinello, M., Bifari, F., et al. (2009). Adipose-derived mesenchymal stem cells ameliorate chronic experimental autoimmune encephalomyelitis. Stem Cells 27, 2624–2635.10.1002/stem.194Search in Google Scholar PubMed

Dahbour, S., Jamali, F., Alhattab, D., Al-Radaideh, A., Ababneh, O., Al-Ryalat, N., Al-Bdour, M., Hourani, B., Msallam, M., Rasheed, M., et al. (2017). Mesenchymal stem cells and conditioned media in the treatment of multiple sclerosis patients: clinical, ophthalmological and radiological assessments of safety and efficacy. CNS Neurosci. Ther. 23, 866–874.10.1111/cns.12759Search in Google Scholar PubMed PubMed Central

de Paula, A.S.A., Malmegrim, K.C., Panepucci, R.A., Brum, D.S., Barreira, A.A., Carlos Dos Santos, A., Araujo, A.G., Covas, D.T., Oliveira, M.C., Moraes, D.A., et al. (2015). Autologous haematopoietic stem cell transplantation reduces abnormalities in the expression of immune genes in multiple sclerosis. Clin. Sci. (Lond.) 128, 111–120.10.1042/CS20140095Search in Google Scholar PubMed

Donders, R., Vanheusden, M., Bogie, J.F., Ravanidis, S., Thewissen, K., Stinissen, P., Gyselaers, W., Hendriks, J.J., and Hellings, N. (2015). Human Wharton’s jelly-derived stem cells display immunomodulatory properties and transiently improve rat experimental autoimmune encephalomyelitis. Cell Transplant. 24, 2077–2098.10.3727/096368914X685104Search in Google Scholar PubMed

Fisher-Shoval, Y., Barhum, Y., Sadan, O., Yust-Katz, S., Ben-Zur, T., Lev, N., Benkler, C., Hod, M., Melamed, E., and Offen, D. (2012). Transplantation of placenta-derived mesenchymal stem cells in the EAE mouse model of MS. J. Mol. Neurosci. 48, 176–184.10.1007/s12031-012-9805-6Search in Google Scholar PubMed

Freedman, M.S., Bar-Or, A., Atkins, H.L., Karussis, D., Frassoni, F., Lazarus, H., Scolding, N., Slavin, S., Le Blanc, K., and Uccelli, A. (2010). The therapeutic potential of mesenchymal stem cell transplantation as a treatment for multiple sclerosis: consensus report of the International MSCT Study Group. Mult. Scler. 16, 503–510.10.1177/1352458509359727Search in Google Scholar PubMed

Genc, B., Bozan, H.R., Genc, S., and Genc, K. (2019). Stem cell therapy for multiple sclerosis. Adv. Exp. Med. Biol. 1084:145–174.10.1007/5584_2018_247Search in Google Scholar PubMed

Gerdoni, E., Gallo, B., Casazza, S., Musio, S., Bonanni, I., Pedemonte, E., Mantegazza, R., Frassoni, F., Mancardi, G., Pedotti, R., et al. (2007). Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis. Ann. Neurol. 61, 219–227.10.1002/ana.21076Search in Google Scholar PubMed

Giacoppo, S., Thangavelu, S.R., Diomede, F., Bramanti, P., Conti, P., Trubiani, O., and Mazzon, E. (2017). Anti-inflammatory effects of hypoxia-preconditioned human periodontal ligament cell secretome in an experimental model of multiple sclerosis: a key role of IL-37. FASEB J. 31, 5592–5608.10.1096/fj.201700524RSearch in Google Scholar PubMed PubMed Central

Gordon, D., Pavlovska, G., Glover, C.P., Uney, J.B., Wraith, D., and Scolding, N.J. (2008). Human mesenchymal stem cells abrogate experimental allergic encephalomyelitis after intraperitoneal injection, and with sparse CNS infiltration. Neurosci. Lett. 448, 71–73.10.1016/j.neulet.2008.10.040Search in Google Scholar PubMed PubMed Central

Grigoriadis, N., Lourbopoulos, A., Lagoudaki, R., Frischer, J.M., Polyzoidou, E., Touloumi, O., Simeonidou, C., Deretzi, G., Kountouras, J., Spandou, E., et al. (2011). Variable behavior and complications of autologous bone marrow mesenchymal stem cells transplanted in experimental autoimmune encephalomyelitis. Exp. Neurol. 230, 78–89.10.1016/j.expneurol.2011.02.021Search in Google Scholar PubMed

Harris, V.K., Faroqui, R., Vyshkina, T., and Sadiq, S.A. (2012). Characterization of autologous mesenchymal stem cell-derived neural progenitors as a feasible source of stem cells for central nervous system applications in multiple sclerosis. Stem Cells Transl. Med. 1, 536–547.10.5966/sctm.2012-0015Search in Google Scholar PubMed PubMed Central

Harris, V.K., Stark, J., Vyshkina, T., Blackshear, L., Joo, G., Stefanova, V., Sara, G., and Sadiq, S.A. (2018). Phase I trial of intrathecal mesenchymal stem cell-derived neural progenitors in progressive multiple sclerosis. EBioMedicine 29, 23–30.10.1016/j.ebiom.2018.02.002Search in Google Scholar PubMed PubMed Central

Hou, Y., Heon Ryu, C., Jun, J.A., Kim, S.M., Jeong, C.H., and Jeun, S.S. (2014). Interferon beta-secreting mesenchymal stem cells combined with minocycline attenuate experimental autoimmune encephalomyelitis. J. Neuroimmunol. 274, 20–27.10.1016/j.jneuroim.2014.06.001Search in Google Scholar PubMed

Jadasz, J.J., Aigner, L., Rivera, F.J., and Kury, P. (2012). The remyelination Philosopher’s Stone: stem and progenitor cell therapies for multiple sclerosis. Cell Tissue Res. 349, 331–347.10.1007/s00441-012-1331-xSearch in Google Scholar PubMed

Jiang, H., Zhang, Y., Tian, K., Wang, B., and Han, S. (2017). Amelioration of experimental autoimmune encephalomyelitis through transplantation of placental derived mesenchymal stem cells. Sci. Rep. 7, 41837.10.1038/srep41837Search in Google Scholar PubMed PubMed Central

Karussis, D., Karageorgiou, C., Vaknin-Dembinsky, A., Gowda-Kurkalli, B., Gomori, J.M., Kassis, I., Bulte, J.W., Petrou, P., Ben-Hur, T., Abramsky, O., et al. (2010). Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch. Neurol. 67, 1187–1194.10.1001/archneurol.2010.248Search in Google Scholar PubMed PubMed Central

Kassis, I., Grigoriadis, N., Gowda-Kurkalli, B., Mizrachi-Kol, R., Ben-Hur, T., Slavin, S., Abramsky, O., and Karussis, D. (2008). Neuroprotection and immunomodulation with mesenchymal stem cells in chronic experimental autoimmune encephalomyelitis. Arch. Neurol. 65, 753–761.10.1001/archneur.65.6.753Search in Google Scholar PubMed

Kassis, I., Petrou, P., Halimi, M., and Karussis, D. (2013). Mesenchymal stem cells (MSC) derived from mice with experimental autoimmune encephalomyelitis (EAE) suppress EAE and have similar biological properties with MSC from healthy donors. Immunol. Lett. 154, 70–76.10.1016/j.imlet.2013.06.002Search in Google Scholar PubMed

Khezri, S., Abtahi Froushani, S.M., and Shahmoradi, M. (2018). Nicotine augments the beneficial effects of mesenchymal stem cell-based therapy in rat model of multiple sclerosis. Immunol. Invest. 47, 113–124.10.1080/08820139.2017.1391841Search in Google Scholar PubMed

Kim, M.J., Lim, J.Y., Park, S.A., Park, S.I., Kim, W.S., Ryu, C.H., andJeun, S.S. (2018). Effective combination of methylprednisolone and interferon beta-secreting mesenchymal stem cells in a model of multiple sclerosis. J. Neuroimmunol. 314, 81–88.10.1016/j.jneuroim.2017.11.010Search in Google Scholar PubMed

Kurte, M., Bravo-Alegria, J., Torres, A., Carrasco, V., Ibanez, C., Vega-Letter, A.M., Fernandez-O’Ryan, C., Irarrazabal, C.E., Figueroa, F.E., Fuentealba, R.A., et al. (2015). Intravenous administration of bone marrow-derived mesenchymal stem cells induces a switch from classical to atypical symptoms in experimental autoimmune encephalomyelitis. Stem Cells Int. 2015, 140170.10.1155/2015/140170Search in Google Scholar PubMed PubMed Central

Li, X.L., Zhang, Z.C., Zhang, B., Jiang, H., Yu, C.M., Zhang, W.J., Yan, X., and Wang, M.X. (2014). Atorvastatin calcium in combination with methylprednisolone for the treatment of multiple sclerosis relapse. Int. Immunopharmacol. 23, 546–549.10.1016/j.intimp.2014.10.004Search in Google Scholar PubMed

Liao, W., Pham, V., Liu, L., Riazifar, M., Pone, E.J., Zhang, S.X., Ma, F., Lu, M., Walsh, C.M., and Zhao, W. (2016). Mesenchymal stem cells engineered to express selectin ligands and IL-10 exert enhanced therapeutic efficacy in murine experimental autoimmune encephalomyelitis. Biomaterials 77, 87–97.10.1016/j.biomaterials.2015.11.005Search in Google Scholar PubMed PubMed Central

Liu, R., Zhang, Z., Lu, Z., Borlongan, C., Pan, J., Chen, J., Qian, L., Liu, Z., Zhu, L., Zhang, J., et al. (2013). Human umbilical cord stem cells ameliorate experimental autoimmune encephalomyelitis by regulating immunoinflammation and remyelination. Stem Cells Dev. 22, 1053–1062.10.1089/scd.2012.0463Search in Google Scholar PubMed

Lunn, J.S., Sakowski, S.A., and Feldman, E.L. (2014). Concise review: stem cell therapies for amyotrophic lateral sclerosis: recent advances and prospects for the future. Stem Cells 32, 1099–1109.10.1002/stem.1628Search in Google Scholar PubMed PubMed Central

Mahfouz, M.M., Abdelsalam, R.M., Masoud, M.A., Mansour, H.A., Ahmed-Farid, O.A., and Kenawy, S.A. (2017). The neuroprotective effect of mesenchymal stem cells on an experimentally induced model for multiple sclerosis in mice. J. Biochem. Mol. Toxicol. 31, e21936.10.1002/jbt.21936Search in Google Scholar PubMed

Mandoj, C., Renna, R., Plantone, D., Sperduti, I., Cigliana, G., Conti, L., and Koudriavtseva, T. (2015). Anti-annexin antibodies, cholesterol levels and disability in multiple sclerosis. Neurosci. Lett. 606, 156–160.10.1016/j.neulet.2015.08.054Search in Google Scholar PubMed

Marin-Banasco, C., Benabdellah, K., Melero-Jerez, C., Oliver, B., Pinto-Medel, M.J., Hurtado-Guerrero, I., de Castro, F., Clemente, D., Fernandez, O., Martin, F., et al. (2017). Gene therapy with mesenchymal stem cells expressing IFN-β ameliorates neuroinflammation in experimental models of multiple sclerosis. Br. J. Pharmacol. 174, 238–253.10.1111/bph.13674Search in Google Scholar PubMed PubMed Central

Marzban, M., Mousavizadeh, K., Bakhshayesh, M., Vousooghi, N., Vakilzadeh, G., and Torkaman-Boutorabi, A. (2018). Effect of multiple intraperitoneal injections of human bone marrow Mesenchymal stem cells on cuprizone model of multiple sclerosis. Iran. Biomed. J. 22, 312–321.10.29252/ibj.22.5.312Search in Google Scholar PubMed PubMed Central

Meamar, R., Nematollahi, S., Dehghani, L., Mirmosayyeb, O., Shayegannejad, V., Basiri, K., and Tanhaei, A.P. (2016). The role of stem cell therapy in multiple sclerosis: an overview of the current status of the clinical studies. Adv. Biomed. Res. 5, 46.10.4103/2277-9175.178791Search in Google Scholar PubMed PubMed Central

Merzaban, J.S., Imitola, J., Starossom, S.C., Zhu, B., Wang, Y., Lee, J., Ali, A.J., Olah, M., Abuelela, A.F., Khoury, S.J., et al. (2015). Cell surface glycan engineering of neural stem cells augments neurotropism and improves recovery in a murine model of multiple sclerosis. Glycobiology 25, 1392–1409.10.1093/glycob/cwv046Search in Google Scholar PubMed PubMed Central

Mikaeili Agah, E., Parivar, K., and Joghataei, M.T. (2014). Therapeutic effect of transplanted human Wharton’s jelly stem cell-derived oligodendrocyte progenitor cells (hWJ-MSC-derived OPCs) in an animal model of multiple sclerosis. Mol. Neurobiol. 49, 625–632.10.1007/s12035-013-8543-2Search in Google Scholar PubMed

Mitra, N.K., Bindal, U., Eng Hwa, W., Chua, C.L., and Tan, C.Y. (2015). Evaluation of locomotor function and microscopic structure of the spinal cord in a mouse model of experimental autoimmune encephalomyelitis following treatment with syngeneic mesenchymal stem cells. Int. J. Clin. Exp. Pathol. 8, 12041–12052.Search in Google Scholar

Moghadam, S., Erfanmanesh, M., and Esmaeilzadeh, A. (2017). Interleukin 35 and hepatocyte growth factor; as a novel combined immune gene therapy for multiple sclerosis disease. Med. Hypotheses 109, 102–105.10.1016/j.mehy.2017.09.017Search in Google Scholar PubMed

Mohyeddin Bonab, M., Yazdanbakhsh, S., Lotfi, J., Alimoghaddom, K., Talebian, F., Hooshmand, F., Ghavamzadeh, A., and Nikbin, B. (2007). Does mesenchymal stem cell therapy help multiple sclerosis patients? Report of a pilot study. Iran. J. Immunol. 4, 50–57.Search in Google Scholar

Naderi, N. (2015). The perspectives of mesenchymal stem cell therapy in the treatment of multiple sclerosis. Iran. J. Pharm. Res. 14, 1–2.Search in Google Scholar

Orack, J.C., Deleidi, M., Pitt, D., Mahajan, K., Nicholas, J.A., Boster, A.L., Racke, M.K., Comabella, M., Watanabe, F., and Imitola, J. (2015). Concise review: modeling multiple sclerosis with stem cell biological platforms: toward functional validation of cellular and molecular phenotypes in inflammation-induced neurodegeneration. Stem Cells Transl. Med. 4, 252–260.10.5966/sctm.2014-0133Search in Google Scholar PubMed PubMed Central

Racosta, J.M. and Kimpinski, K. (2016). Autonomic dysfunction, immune regulation, and multiple sclerosis. Clin. Auton. Res. 26, 23–31.10.1007/s10286-015-0325-7Search in Google Scholar PubMed

Rafei, M., Birman, E., Forner, K., and Galipeau, J. (2009a). Allogeneic mesenchymal stem cells for treatment of experimental autoimmune encephalomyelitis. Mol. Ther. 17, 1799–1803.10.1038/mt.2009.157Search in Google Scholar PubMed PubMed Central

Rafei, M., Campeau, P.M., Aguilar-Mahecha, A., Buchanan, M., Williams, P., Birman, E., Yuan, S., Young, Y.K., Boivin, M.N., Forner, K., et al. (2009b). Mesenchymal stromal cells ameliorate experimental autoimmune encephalomyelitis by inhibiting CD4 Th17 T cells in a CC chemokine ligand 2-dependent manner. J. Immunol. 182, 5994–6002.10.4049/jimmunol.0803962Search in Google Scholar PubMed

Rajan, T.S., Giacoppo, S., Diomede, F., Ballerini, P., Paolantonio, M., Marchisio, M., Piattelli, A., Bramanti, P., Mazzon, E., and Trubiani, O. (2016). The secretome of periodontal ligament stem cells from MS patients protects against EAE. Sci. Rep. 6, 38743.10.1038/srep38743Search in Google Scholar PubMed PubMed Central

Redondo, J., Sarkar, P., Kemp, K., Virgo, P.F., Pawade, J., Norton, A., Emery, D.C., Guttridge, M.G., Marks, D.I., Wilkins, A., et al. (2018). Reduced cellularity of bone marrow in multiple sclerosis with decreased MSC expansion potential and premature ageing in vitro. Mult. Scler. 24, 919–931.10.1177/1352458517711276Search in Google Scholar PubMed PubMed Central

Riordan, N.H., Morales, I., Fernandez, G., Allen, N., Fearnot, N.E., Leckrone, M.E., Markovich, D.J., Mansfield, D., Avila, D., Patel, A.N., et al. (2018). Clinical feasibility of umbilical cord tissue-derived mesenchymal stem cells in the treatment of multiple sclerosis. J. Transl. Med. 16, 57.10.1186/s12967-018-1433-7Search in Google Scholar PubMed PubMed Central

Rivera, F.J. and Aigner, L. (2012). Adult mesenchymal stem cell therapy for myelin repair in multiple sclerosis. Biol. Res. 45, 257–268.10.4067/S0716-97602012000300007Search in Google Scholar PubMed

Sargent, A., Bai, L., Shano, G., Karl, M., Garrison, E., Ranasinghe, L., Planchon, S.M., Cohen, J., and Miller, R.H. (2017). CNS disease diminishes the therapeutic functionality of bone marrow mesenchymal stem cells. Exp. Neurol. 295, 222–232.10.1016/j.expneurol.2017.06.013Search in Google Scholar PubMed PubMed Central

Scolding, N.J., Pasquini, M., Reingold, S.C., and Cohen, J.A. (2017). Cell-based therapeutic strategies for multiple sclerosis. Brain 140, 2776–2796.10.1093/brain/awx154Search in Google Scholar PubMed PubMed Central

Shalaby, S.M., Sabbah, N.A., Saber, T., and Abdel Hamid, R.A. (2016). Adipose-derived mesenchymal stem cells modulate the immune response in chronic experimental autoimmune encephalomyelitis model. IUBMB Life 68, 106–115.10.1002/iub.1469Search in Google Scholar PubMed

Shimojima, C., Takeuchi, H., Jin, S., Parajuli, B., Hattori, H., Suzumura, A., Hibi, H., Ueda, M., and Yamamoto, A. (2016). Conditioned medium from the stem cells of human exfoliated deciduous teeth ameliorates experimental autoimmune encephalomyelitis. J. Immunol. 196, 4164–4171.10.4049/jimmunol.1501457Search in Google Scholar PubMed

Shroff, G. (2018). A review on stem cell therapy for multiple sclerosis: special focus on human embryonic stem cells. Stem Cells Cloning Adv. Appl. 11, 1–11.10.2147/SCCAA.S135415Search in Google Scholar PubMed PubMed Central

Siatskas, C. and Bernard, C.C. (2009). Stem cell and gene therapeutic strategies for the treatment of multiple sclerosis. Curr. Mol. Med. 9, 992–1016.10.2174/156652409789712774Search in Google Scholar PubMed

Siatskas, C., Payne, N.L., Short, M.A., and Bernard, C.C. (2010). A consensus statement addressing mesenchymal stem cell transplantation for multiple sclerosis: it’s time! Stem Cell Rev. 6, 500–506.10.1007/s12015-010-9173-ySearch in Google Scholar PubMed

Singh, S.P., Jadhav, S.H., Chaturvedi, C.P., and Nityanand, S. (2017). Therapeutic efficacy of multipotent adult progenitor cells versus mesenchymal stem cells in experimental autoimmune encephalomyelitis. Regen. Med. 12, 377–396.10.2217/rme-2016-0109Search in Google Scholar PubMed

Soundara Rajan, T., Giacoppo, S., Diomede, F., Bramanti, P., Trubiani, O., and Mazzon, E. (2017). Human periodontal ligament stem cells secretome from multiple sclerosis patients suppresses NALP3 inflammasome activation in experimental autoimmune encephalomyelitis. Int. J. Immunopathol. Pharmacol. 30, 238–252.10.1177/0394632017722332Search in Google Scholar PubMed PubMed Central

Strong, A.L., Bowles, A.C., Wise, R.M., Morand, J.P., Dutreil, M.F., Gimble, J.M., and Bunnell, B.A. (2016). Human adipose stromal/stem cells from obese donors show reduced efficacy in halting disease progression in the experimental autoimmune encephalomyelitis model of multiple sclerosis. Stem Cells 34, 614–626.10.1002/stem.2272Search in Google Scholar PubMed PubMed Central

Tian, K.W., Zhang, Y.Y., Jiang, H., and Han, S. (2018). Intravenous C16 and angiopoietin-1 improve the efficacy of placenta-derived mesenchymal stem cell therapy for EAE. Sci. Rep. 8, 4649.10.1038/s41598-018-22867-9Search in Google Scholar PubMed PubMed Central

Togha, M., Jahanshahi, M., Alizadeh, L., Jahromi, S.R., Vakilzadeh, G., Alipour, B., Gorji, A., and Ghaemi, A. (2017). Rapamycin augments immunomodulatory properties of bone marrow-derived mesenchymal stem cells in experimental autoimmune encephalomyelitis. Mol. Neurobiol. 54, 2445–2457.10.1007/s12035-016-9840-3Search in Google Scholar PubMed

Torkaman, M., Ghollasi, M., Mohammadnia-Afrouzi, M., Salimi, A., and Amari, A. (2017). The effect of transplanted human Wharton’s jelly mesenchymal stem cells treated with IFN-gamma on experimental autoimmune encephalomyelitis mice. Cell. Immunol. 311, 1–12.10.1016/j.cellimm.2016.09.012Search in Google Scholar PubMed

Trubiani, O., Giacoppo, S., Ballerini, P., Diomede, F., Piattelli, A., Bramanti, P., and Mazzon, E. (2016). Alternative source of stem cells derived from human periodontal ligament: a new treatment for experimental autoimmune encephalomyelitis. Stem Cell Res. Ther. 7, 1.10.1186/s13287-015-0253-4Search in Google Scholar PubMed PubMed Central

Uccelli, A. and Mancardi, G. (2010). Stem cell transplantation in multiple sclerosis. Curr. Opin. Neurol. 23, 218–225.10.1097/WCO.0b013e328338b7edSearch in Google Scholar PubMed

Walczak, A., Siger, M., Ciach, A., Szczepanik, M., and Selmaj, K. (2013). Transdermal application of myelin peptides in multiple sclerosis treatment. JAMA Neurol. 70, 1105–1109.10.1001/jamaneurol.2013.3022Search in Google Scholar PubMed

Wang, X., Kimbrel, E.A., Ijichi, K., Paul, D., Lazorchak, A.S., Chu, J., Kouris, N.A., Yavanian, G.J., Lu, S.J., Pachter, J.S., et al. (2014). Human ESC-derived MSCs outperform bone marrow MSCs in the treatment of an EAE model of multiple sclerosis. Stem Cell Rep. 3, 115–130.10.1016/j.stemcr.2014.04.020Search in Google Scholar PubMed PubMed Central

Wang, D., Li, S.P., Fu, J.S., Bai, L., and Guo, L. (2016). Resveratrol augments therapeutic efficiency of mouse bone marrow mesenchymal stem cell-based therapy in experimental autoimmune encephalomyelitis. Int. J. Dev. Neurosci. 49, 60–66.10.1016/j.ijdevneu.2016.01.005Search in Google Scholar PubMed

Wang, Y.L., Xue, P., Xu, C.Y., Wang, Z., Liu, X.S., Hua, L.L., Bai, H.Y., Zeng, Z.L., Duan, H.F., and Li, J.F. (2018). SPK1-transfected UCMSC has better therapeutic activity than UCMSC in the treatment of experimental autoimmune encephalomyelitis model of multiple sclerosis. Sci. Rep. 8, 1756.10.1038/s41598-018-19703-5Search in Google Scholar PubMed PubMed Central

Wilkins, A., Kemp, K., Ginty, M., Hares, K., Mallam, E., and Scolding, N. (2009). Human bone marrow-derived mesenchymal stem cells secrete brain-derived neurotrophic factor which promotes neuronal survival in vitro. Stem Cell Res. 3, 63–70.10.1016/j.scr.2009.02.006Search in Google Scholar PubMed

Yamout, B., Hourani, R., Salti, H., Barada, W., El-Hajj, T., Al-Kutoubi, A., Herlopian, A., Baz, E.K., Mahfouz, R., Khalil-Hamdan, R., et al. (2010). Bone marrow mesenchymal stem cell transplantation in patients with multiple sclerosis: a pilot study. J. Neuroimmunol. 227, 185–189.10.1016/j.jneuroim.2010.07.013Search in Google Scholar PubMed

Yousefi, F., Ebtekar, M., Soleimani, M., Soudi, S., and Hashemi, S.M. (2013). Comparison of in vivo immunomodulatory effects of intravenous and intraperitoneal administration of adipose-tissue mesenchymal stem cells in experimental autoimmune encephalomyelitis (EAE). Int. Immunopharmacol. 17, 608–616.10.1016/j.intimp.2013.07.016Search in Google Scholar PubMed

Yousefi, F., Ebtekar, M., Soudi, S., Soleimani, M., and Hashemi, S.M. (2016). In vivo immunomodulatory effects of adipose-derived mesenchymal stem cells conditioned medium in experimental autoimmune encephalomyelitis. Immunol. Lett. 172, 94–105.10.1016/j.imlet.2016.02.016Search in Google Scholar PubMed

Yu, J.W., Li, Y.H., Song, G.B., Yu, J.Z., Liu, C.Y., Liu, J.C., Zhang, H.F., Yang, W.F., Wang, Q., Yan, Y.P., et al. (2016). Synergistic and superimposed effect of bone marrow-derived mesenchymal stem cells combined with fasudil in experimental autoimmune encephalomyelitis. J. Mol. Neurosci. 60, 486–497.10.1007/s12031-016-0819-3Search in Google Scholar PubMed

Zafranskaya, M.M., Nizheharodova, D.B., Yurkevich, M.Y., Lamouskaya, N.V., Motuzova, Y.M., Bagatka, S.S., Ivanchik, H.I., and Fedulov, A.S. (2013). In vitro assessment of mesenchymal stem cells immunosuppressive potential in multiple sclerosis patients. Immunol. Lett. 149, 9–18.10.1016/j.imlet.2012.10.010Search in Google Scholar PubMed

Zappia, E., Casazza, S., Pedemonte, E., Benvenuto, F., Bonanni, I., Gerdoni, E., Giunti, D., Ceravolo, A., Cazzanti, F., Frassoni, F., et al. (2005). Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 106, 1755–1761.10.1182/blood-2005-04-1496Search in Google Scholar PubMed

Zhu, J., Zhang, J., Li, Q., Du, Y., Qiao, B., and Hu, X. (2012). Transplanting of mesenchymal stem cells may affect proliferation and function of CD4(+)T cells in experimental autoimmune encephalomyelitis. Exp. Clin. Transplant. 10, 492–500.10.6002/ect.2011.0197Search in Google Scholar PubMed

Received: 2019-03-24
Accepted: 2019-06-14
Published Online: 2019-10-12
Published in Print: 2020-01-28

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2019-0040/html
Scroll to top button