Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 10, 2021

Supercapacitor electrode materials: addressing challenges in mechanism and charge storage

  • Sayed Y. Attia , Saad G. Mohamed ORCID logo EMAIL logo , Yosry F. Barakat , Hamdy H. Hassan and Wail Al Zoubi EMAIL logo

Abstract

In recent years, rapid technological advances have required the development of energy-related devices. In this regard, Supercapacitors (SCs) have been reported to be one of the most potential candidates to meet the demands of human’s sustainable development owing to their unique properties such as outstanding cycling life, safe operation, low processing cost, and high power density compared to the batteries. This review describes the concise aspects of SCs including charge-storage mechanisms and scientific principles design of SCs as well as energy-related performance. In addition, the most important performance parameters of SCs, such as the operating potential window, electrolyte, and full cell voltage, are reviewed. Researches on electrode materials are crucial to SCs because they play a pivotal role in the performance of SCs. This review outlines recent research progress of carbon-based materials, transition metal oxides, sulfides, hydroxides, MXenes, and metal nitrides. Finally, we give a brief outline of SCs’ strategic direction for future growth.


Corresponding authors: Saad G. Mohamed, Mining and Metallurgy Engineering Department, Tabbin Institute for Metallurgical Studies, (TIMS), Tabbin, Helwan 109, Cairo 11421, Egypt; and Wail Al Zoubi, Materials Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea, E-mail: (S. G. Mohamed), (W. A. Zoubi)

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abbas, Q.; Ratajczak, P.; Babuchowska, P.; Le Comte, A.; Bélanger, D.; Brousse, T.; Béguin, F. Strategies to improve the performance of carbon/carbon capacitors in salt aqueous electrolytes. J. Electrochem. Soc. 2015, 162(5), A5148–A5157; https://doi.org/10.1149/2.0241505jes.Search in Google Scholar

Alhabeb, M.; Maleski, K.; Mathis, T. S.; Sarycheva, A.; Hatter, C. B.; Uzun, S.; Levitt, A.; Gogotsi, Y. Selective etching of silicon from Ti3SiC2 (MAX) to obtain 2D titanium carbide (MXene). Angew. Chem. Int. Ed. 2018, 57(19), 5444–5448; https://doi.org/10.1002/anie.201802232.Search in Google Scholar

Aloqayli, S.; Ranaweera, C.; Wang, Z.; Siam, K.; Kahol, P.; Tripathi, P.; Srivastava, O.; Gupta, B. K.; Mishra, S.; Perez, F. Nanostructured cobalt oxide and cobalt sulfide for flexible, high performance and durable supercapacitors. Energy Storage Mater. 2017, 8, 68–76; https://doi.org/10.1016/j.ensm.2017.05.006.Search in Google Scholar

Anasori, B.; Xie, Y.; Beidaghi, M.; Lu, J.; Hosler, B. C.; Hultman, L.; Kent, P. R.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 2015a, 9(10), 9507–9516; https://doi.org/10.1021/acsnano.5b03591.Search in Google Scholar

Anasori, B.; Dahlqvist, M.; Halim, J.; Moon, E. J.; Lu, J.; Hosler, B. C.; Caspi, E. a. N.; May, S. J.; Hultman, L.; Eklund, P. Experimental and theoretical characterization of ordered MAX phases Mo2TiAlC2 and Mo2Ti2AlC3. J. Appl. Phys. 2015b, 118(9), 094304; https://doi.org/10.1063/1.4929640.Search in Google Scholar

Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2(2), 1–17; https://doi.org/10.1038/natrevmats.2016.98.Search in Google Scholar

Ania, C. O.; Khomenko, V.; Raymundo‐Piñero, E.; Parra, J. B.; Beguin, F. The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template. Adv. Funct. Mater. 2007, 17(11), 1828–1836; https://doi.org/10.1002/adfm.200600961.Search in Google Scholar

Arbizzani, C.; Mastragostino, M.; Soavi, F. New trends in electrochemical supercapacitors. J. Power Sources 2001, 100(1–2), 164–170; https://doi.org/10.1016/s0378-7753(01)00892-8.Search in Google Scholar

Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J.-M.; Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. In Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group; World Scientific, 2011; pp 148–159.10.1142/9789814317665_0022Search in Google Scholar

Armand, M.; Tarascon, J.-M. Building better batteries. Nature 2008, 451(7179), 652–657; https://doi.org/10.1038/451652a.Search in Google Scholar PubMed

Attia, S. Y.; Barakat, Y. F.; Hassan, H. H.; Mohamed, S. G. A single-step synthesis and direct growth of microspheres containing the nanoflakes-like structure of Zn0. 76Co0. 24S as a high-performance electrode for supercapacitors. J. Energy Storage 2020, 29, 101349; https://doi.org/10.1016/j.est.2020.101349.Search in Google Scholar

Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 2014, 7(5), 1597–1614; https://doi.org/10.1039/c3ee44164d.Search in Google Scholar

Bai, W.; Tong, H.; Gao, Z.; Yue, S.; Xing, S.; Dong, S.; Shen, L.; He, J.; Zhang, X.; Liang, Y. Preparation of ZnCo 2 O 4 nanoflowers on a 3D carbon nanotube/nitrogen-doped graphene film and its electrochemical capacitance. J. Mater. Chem. 2015, 3(43), 21891–21898; https://doi.org/10.1039/c5ta05798a.Search in Google Scholar

Balogun, M.-S.; Qiu, W.; Wang, W.; Fang, P.; Lu, X.; Tong, Y. Recent advances in metal nitrides as high-performance electrode materials for energy storage devices. J. Mater. Chem. 2015, 3(4), 1364–1387; https://doi.org/10.1039/c4ta05565a.Search in Google Scholar

Barsoum, M. W. The MN+ 1AXN phases: a new class of solids: thermodynamically stable nanolaminates. Prog. Solid State Chem. 2000, 28(1-4), 201–281; https://doi.org/10.1016/s0079-6786(00)00006-6.Search in Google Scholar

Béguin, F.; Presser, V.; Balducci, A.; Frackowiak, E. Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 2014, 26(14), 2219–2251; https://doi.org/10.1002/adma.201304137.Search in Google Scholar PubMed

Bhise, S. C.; Awale, D. V.; Vadiyar, M. M.; Patil, S. K.; Kokare, B. N.; Kolekar, S. S. Facile synthesis of CuO nanosheets as electrode for supercapacitor with long cyclic stability in novel methyl imidazole-based ionic liquid electrolyte. J. Solid State Electrochem. 2017, 21(9), 2585–2591; https://doi.org/10.1007/s10008-016-3490-2.Search in Google Scholar

Bichat, M.; Raymundo-Piñero, E.; Béguin, F. High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte. Carbon 2010, 48(15), 4351–4361; https://doi.org/10.1016/j.carbon.2010.07.049.Search in Google Scholar

Borenstein, A.; Hanna, O.; Attias, R.; Luski, S.; Brousse, T.; Aurbach, D. Carbon-based composite materials for supercapacitor electrodes: a review. J. Mater. Chem. 2017, 5(25), 12653–12672; https://doi.org/10.1039/c7ta00863e.Search in Google Scholar

Brousse, T.; Bélanger, D.; Long, J. W. To be or not to be pseudocapacitive? J. Electrochem. Soc. 2015, 162(5), A5185–A5189; https://doi.org/10.1149/2.0201505jes.Search in Google Scholar

Campbell, P.; Merrill, M.; Wood, B.; Montalvo, E.; Worsley, M.; Baumann, T.; Biener, J. Battery/supercapacitor hybrid via non-covalent functionalization of graphene macro-assemblies. J. Mater. Chem. 2014, 2(42), 17764–17770; https://doi.org/10.1039/c4ta03605k.Search in Google Scholar

Chen, G. Z. Supercapacitor and supercapattery as emerging electrochemical energy stores. Int. Mater. Rev. 2017, 62(4), 173–202; https://doi.org/10.1080/09506608.2016.1240914.Search in Google Scholar

Chen, T.; Dai, L. Flexible supercapacitors based on carbon nanomaterials. J. Mater. Chem. 2014, 2(28), 10756–10775; https://doi.org/10.1039/c4ta00567h.Search in Google Scholar

Chen, K.; Xue, D. Cu-based materials as high-performance electrodes toward electrochemical energy storage. Funct. Mater. Lett. 2014, 7(01), 1430001; https://doi.org/10.1142/s1793604714300011.Search in Google Scholar

Chen, L. F.; Huang, Z. H.; Liang, H. W.; Guan, Q. F.; Yu, S. H. Bacterial‐cellulose‐derived carbon nanofiber@ MnO2 and nitrogen‐doped carbon nanofiber electrode materials: an asymmetric supercapacitor with high energy and power density. Adv. Mater. 2013a, 25(34), 4746–4752; https://doi.org/10.1002/adma.201204949.Search in Google Scholar PubMed

Chen, H.; Jiang, J.; Zhang, L.; Wan, H.; Qi, T.; Xia, D. Highly conductive NiCo 2 S 4 urchin-like nanostructures for high-rate pseudocapacitors. Nanoscale 2013b, 5(19), 8879–8883; https://doi.org/10.1039/c3nr02958a.Search in Google Scholar PubMed

Chen, X.; Wang, H.; Yi, H.; Wang, X.; Yan, X.; Guo, Z. Anthraquinone on porous carbon nanotubes with improved supercapacitor performance. J. Phys. Chem. C 2014a, 118(16), 8262–8270; https://doi.org/10.1021/jp5009626.Search in Google Scholar

Chen, W.; Xia, C.; Alshareef, H. N. One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors. ACS Nano 2014b, 8(9), 9531–9541; https://doi.org/10.1021/nn503814y.Search in Google Scholar PubMed

Chen, H.; Hu, L.; Chen, M.; Yan, Y.; Wu, L. Nickel–cobalt layered double hydroxide nanosheets for high‐performance supercapacitor electrode materials. Adv. Funct. Mater. 2014c, 24(7), 934–942; https://doi.org/10.1002/adfm.201301747.Search in Google Scholar

Chen, K.; Song, S.; Liu, F.; Xue, D. Structural design of graphene for use in electrochemical energy storage devices. Chem. Soc. Rev. 2015, 44(17), 6230–6257; https://doi.org/10.1039/c5cs00147a.Search in Google Scholar PubMed

Chen, L.; Dahlqvist, M.; Lapauw, T.; Tunca, B.; Wang, F.; Lu, J.; Meshkian, R.; Lambrinou, K.; Blanpain, B.; Vleugels, J. Theoretical prediction and synthesis of (Cr2/3Zr1/3)2AlC i-MAX phase. Inorg. Chem. 2018, 57(11), 6237–6244; https://doi.org/10.1021/acs.inorgchem.8b00021.Search in Google Scholar PubMed

Chen, Y.; Zhang, X.; Xu, C.; Xu, H. The fabrication of asymmetry supercapacitor based on MWCNTs/MnO2/PPy composites. Electrochim. Acta 2019, 309, 424–431; https://doi.org/10.1016/j.electacta.2019.04.072.Search in Google Scholar

Cheng, Y.; Zhang, H.; Lu, S.; Varanasi, C. V.; Liu, J. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes. Nanoscale 2013, 5(3), 1067–1073; https://doi.org/10.1039/c2nr33136e.Search in Google Scholar PubMed

Cheng, M.; Duan, S.; Fan, H.; Su, X.; Cui, Y.; Wang, R. Core@ shell CoO@ Co3O4 nanocrystals assembling mesoporous microspheres for high performance asymmetric supercapacitors. Chem. Eng. J. 2017, 327, 100–108; https://doi.org/10.1016/j.cej.2017.06.042.Search in Google Scholar

Chien, H. C.; Cheng, W. Y.; Wang, Y. H.; Lu, S. Y. Ultrahigh specific capacitances for supercapacitors achieved by nickel cobaltite/carbon aerogel composites. Adv. Funct. Mater. 2012, 22(23), 5038–5043; https://doi.org/10.1002/adfm.201201176.Search in Google Scholar

Chmiola, J.; Largeot, C.; Taberna, P. L.; Simon, P.; Gogotsi, Y. Desolvation of ions in subnanometer pores and its effect on capacitance and double‐layer theory. Angew. Chem. Int. Ed. 2008, 47(18), 3392–3395; https://doi.org/10.1002/anie.200704894.Search in Google Scholar PubMed

Cho, Y. J.; Im, H. S.; Kim, H. S.; Myung, Y.; Back, S. H.; Lim, Y. R.; Jung, C. S.; Jang, D. M.; Park, J.; Cha, E. H. Tetragonal phase germanium nanocrystals in lithium ion batteries. ACS Nano 2013, 7(10), 9075–9084; https://doi.org/10.1021/nn403674z.Search in Google Scholar PubMed

Choi, D.; Blomgren, G. E.; Kumta, P. N. Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors. Adv. Mater. 2006, 18(9), 1178–1182, https://doi.org/10.1002/adma.200502471.Search in Google Scholar

Choi, N. S.; Chen, Z.; Freunberger, S. A.; Ji, X.; Sun, Y. K.; Amine, K.; Yushin, G.; Nazar, L. F.; Cho, J.; Bruce, P. G. Challenges facing lithium batteries and electrical double‐layer capacitors. Angew. Chem. Int. Ed. 2012, 51(40), 9994–10024; https://doi.org/10.1002/anie.201201429.Search in Google Scholar PubMed

Choi, C.; Ashby, D. S.; Butts, D. M.; DeBlock, R. H.; Wei, Q.; Lau, J.; Dunn, B. Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 2020, 5(1), 5–19; https://doi.org/10.1038/s41578-019-0142-z.Search in Google Scholar

Christopher, K.; Dimitrios, R. A review on energy comparison of hydrogen production methods from renewable energy sources. Energy Environ. Sci. 2012, 5(5), 6640–6651; https://doi.org/10.1039/c2ee01098d.Search in Google Scholar

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488(7411), 294–303; https://doi.org/10.1038/nature11475.Search in Google Scholar PubMed

Conway, B. E. Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage. J. Electrochem. Soc. 1991, 138(6), 1539; https://doi.org/10.1149/1.2085829.Search in Google Scholar

Conway, B. E. Electrochemical supercapacitors: Scientific Fundamentals and Technological Applications; Springer Science & Business Media: Springer, Boston, MA. 2013.Search in Google Scholar

Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 2010, 110(11), 6474–6502; https://doi.org/10.1021/cr100246c.Search in Google Scholar PubMed

Dahlqvist, M.; Lu, J.; Meshkian, R.; Tao, Q.; Hultman, L.; Rosen, J. Prediction and synthesis of a family of atomic laminate phases with Kagomé-like and in-plane chemical ordering. Sci. Adv. 2017, 3(7), e1700642; https://doi.org/10.1126/sciadv.1700642.Search in Google Scholar PubMed PubMed Central

Dahlqvist; Petruhins; Lu, J.; Hultman, L.; Rosen, J. Origin of chemically ordered atomic laminates (i-MAX): expanding the elemental space by a theoretical/experimental approach. ACS Nano. 2018, 12(8): 7761–7770, https://doi.org/10.1021/acsnano.8b01774.Search in Google Scholar PubMed

Dai, C.-S.; Chien, P.-Y.; Lin, J.-Y.; Chou, S.-W.; Wu, W.-K.; Li, P.-H.; Wu, K.-Y.; Lin, T.-W. Hierarchically structured Ni3S2/carbon nanotube composites as high performance cathode materials for asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2013, 5(22), 12168–12174; https://doi.org/10.1021/am404196s.Search in Google Scholar PubMed

Dam, D. T.; Wang, X.; Lee, J.-M. Mesoporous ITO/NiO with a core/shell structure for supercapacitors. Nano Energy 2013, 2(6), 1303–1313; https://doi.org/10.1016/j.nanoen.2013.06.011.Search in Google Scholar

Das, B.; Behm, M.; Lindbergh, G.; Reddy, M.; Chowdari, B. High performance metal nitrides, MN (M = Cr, Co) nanoparticles for non-aqueous hybrid supercapacitors. Adv. Powder Technol. 2015, 26(3), 783–788; https://doi.org/10.1016/j.apt.2015.02.001.Search in Google Scholar

Davies, A.; Yu, A. Material advancements in supercapacitors: from activated carbon to carbon nanotube and graphene. Can. J. Chem. Eng. 2011, 89(6), 1342–1357; https://doi.org/10.1002/cjce.20586.Search in Google Scholar

Demarconnay, L.; Raymundo-Piñero, E.; Béguin, F. A symmetric carbon/carbon supercapacitor operating at 1.6 V by using a neutral aqueous solution. Electrochem. Commun. 2010, 12(10), 1275–1278; https://doi.org/10.1016/j.elecom.2010.06.036.Search in Google Scholar

Deori, K.; Ujjain, S. K.; Sharma, R. K.; Deka, S. Morphology controlled synthesis of nanoporous Co3O4 nanostructures and their charge storage characteristics in supercapacitors. ACS Appl. Mater. Interfaces 2013, 5(21), 10665–10672; https://doi.org/10.1021/am4027482.Search in Google Scholar PubMed

Dey, M. K.; Sahoo, P. K.; Satpati, A. K. Electrochemically deposited layered MnO2 films for improved supercapacitor. J. Electroanal. Chem. 2017, 788, 175–183; https://doi.org/10.1016/j.jelechem.2017.01.063.Search in Google Scholar

Dhibar, S.; Das, C. K. Electrochemical performances of silver nanoparticles decorated polyaniline/graphene nanocomposite in different electrolytes. J. Alloys Compd. 2015, 653, 486–497; https://doi.org/10.1016/j.jallcom.2015.08.158.Search in Google Scholar

Dillon, A. Carbon nanotubes for photoconversion and electrical energy storage. Chem. Rev. 2010, 110(11), 6856–6872; https://doi.org/10.1021/cr9003314.Search in Google Scholar PubMed

Dong, Y.; Wu, Z.-S.; Ren, W.; Cheng, H.-M.; Bao, X. Graphene: a promising 2D material for electrochemical energy storage. Sci. Bull. 2017, 62(10), 724–740; https://doi.org/10.1016/j.scib.2017.04.010.Search in Google Scholar

Du, W.; Wang, Z.; Zhu, Z.; Hu, S.; Zhu, X.; Shi, Y.; Pang, H.; Qian, X. Facile synthesis and superior electrochemical performances of CoNi 2 S 4/graphene nanocomposite suitable for supercapacitor electrodes. J. Mater. Chem. 2014, 2(25), 9613–9619; https://doi.org/10.1039/c4ta00414k.Search in Google Scholar

Dunn, B.; Kamath, H.; Tarascon, J.-M. Electrical energy storage for the grid: a battery of choices. Science 2011, 334(6058), 928–935; https://doi.org/10.1126/science.1212741.Search in Google Scholar PubMed

Dupont, M. F.; Donne, S. W. Separating the faradaic and non-faradaic contributions to the total capacitance for different manganese dioxide phases. J. Electrochem. Soc. 2015, 162(5), A5096–A5105; https://doi.org/10.1149/2.0161505jes.Search in Google Scholar

El-Kady, M. F.; Kaner, R. B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and onchip energy storage. Nat. Commun. 2013, 4, 1475; https://doi.org/10.1038/ncomms2446.Search in Google Scholar PubMed

El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335(6074), 1326–1330; https://doi.org/10.1126/science.1216744.Search in Google Scholar

El-Kady, M. F.; Ihns, M.; Li, M.; Hwang, J. Y.; Mousavi, M. F.; Chaney, L.; Lech, A. T.; Kaner, R. B. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage. Proc. Natl. Acad. Sci. Unit. States Am. 2015, 112(14), 4233–4238; https://doi.org/10.1073/pnas.1420398112.Search in Google Scholar

El-Kady, M. F.; Shao, Y.; Kaner, R. B. Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater. 2016, 1(7), 1–14; https://doi.org/10.1038/natrevmats.2016.33.Search in Google Scholar

Ellis, B. L.; Lee, K. T.; Nazar, L. F. Positive electrode materials for Li-ion and Li-batteries. Chem. Mater. 2010, 22(3), 691–714; https://doi.org/10.1021/cm902696j.Search in Google Scholar

Endo, M.; Maeda, T.; Takeda, T.; Kim, Y.; Koshiba, K.; Hara, H.; Dresselhaus, M. Capacitance and pore-size distribution in aqueous and nonaqueous electrolytes using various activated carbon electrodes. J. Electrochem. Soc. 2001, 148(8), A910–A914; https://doi.org/10.1149/1.1382589.Search in Google Scholar

Fang, B.; Binder, L. A modified activated carbon aerogel for high-energy storage in electric double layer capacitors. J. Power Sources 2006, 163(1), 616–622; https://doi.org/10.1016/j.jpowsour.2006.09.014.Search in Google Scholar

Fic, K.; Lota, G.; Meller, M.; Frackowiak, E. Novel insight into neutral medium as electrolyte for high-voltage supercapacitors. Energy Environ. Sci. 2012, 5(2), 5842–5850; https://doi.org/10.1039/c1ee02262h.Search in Google Scholar

Frackowiak, E.; Beguin, F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon 2001, 39(6), 937–950; https://doi.org/10.1016/s0008-6223(00)00183-4.Search in Google Scholar

Fu, W.; Zhao, C.; Han, W.; Liu, Y.; Zhao, H.; Ma, Y.; Xie, E. Cobalt sulfide nanosheets coated on NiCo 2 S 4 nanotube arrays as electrode materials for high-performance supercapacitors. J. Mater. Chem. 2015, 3(19), 10492–10497; https://doi.org/10.1039/c5ta00742a.Search in Google Scholar

Fu, Q.; Wen, J.; Zhang, N.; Wu, L.; Zhang, M.; Lin, S.; Gao, H.; Zhang, X. Free-standing Ti 3 C 2 T x electrode with ultrahigh volumetric capacitance. RSC Adv. 2017, 7(20), 11998–12005; https://doi.org/10.1039/c7ra00126f.Search in Google Scholar

Gao, Q.; Demarconnay, L.; Raymundo-Piñero, E.; Béguin, F. Exploring the large voltage range of carbon/carbon supercapacitors in aqueous lithium sulfate electrolyte. Energy Environ. Sci. 2012a, 5(11), 9611–9617; https://doi.org/10.1039/c2ee22284a.Search in Google Scholar

Gao, H.; Xiao, F.; Ching, C. B.; Duan, H. High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2. ACS Appl. Mater. Interfaces 2012b, 4(5), 2801–2810; https://doi.org/10.1021/am300455d.Search in Google Scholar PubMed

Gao, H.; Xiao, F.; Ching, C. B.; Duan, H. Flexible all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene and Mn3O4 nanoparticle/graphene paper electrodes. ACS Appl. Mater. Interfaces 2012c, 4(12), 7020–7026; https://doi.org/10.1021/am302280b.Search in Google Scholar PubMed

Gao, Z.; Yang, W.; Wang, J.; Yan, H.; Yao, Y.; Ma, J.; Wang, B.; Zhang, M.; Liu, L. Electrochemical synthesis of layer-by-layer reduced graphene oxide sheets/polyaniline nanofibers composite and its electrochemical performance. Electrochim. Acta 2013, 91, 185–194; https://doi.org/10.1016/j.electacta.2012.12.119.Search in Google Scholar

Gao, X.; Xing, W.; Zhou, J.; Wang, G.; Zhuo, S.; Liu, Z.; Xue, Q.; Yan, Z. Superior capacitive performance of active carbons derived from Enteromorpha prolifera. Electrochim. Acta 2014a, 133, 459–466; https://doi.org/10.1016/j.electacta.2014.04.101.Search in Google Scholar

Gao, S.; Sun, Y.; Lei, F.; Liang, L.; Liu, J.; Bi, W.; Pan, B.; Xie, Y. Ultrahigh energy density realized by a single‐layer β‐Co (OH) 2 all‐solid‐state asymmetric supercapacitor. Angew. Chem. Int. Ed. 2014b, 53(47), 12789–12793; https://doi.org/10.1002/anie.201407836.Search in Google Scholar PubMed

Gao, X.; Chang, Q.; Hong, J.; Long, D.; Jin, G.; Xiao, X. Zinc cobalt sulfide microspheres as a high-performance electrode material for supercapacitors. ChemistrySelect 2018, 3(48), 13751–13758; https://doi.org/10.1002/slct.201803095.Search in Google Scholar

Ghidiu, M.; Naguib, M.; Shi, C.; Mashtalir, O.; Pan, L.; Zhang, B.; Yang, J.; Gogotsi, Y.; Billinge, S. J.; Barsoum, M. W. Synthesis and characterization of two-dimensional Nb 4 C 3 (MXene). Chem. Commun. 2014, 50(67), 9517–9520; https://doi.org/10.1039/c4cc03366c.Search in Google Scholar PubMed

Goodenough, J. B. Evolution of strategies for modern rechargeable batteries. Accounts Chem. Res. 2013, 46(5), 1053–1061; https://doi.org/10.1021/ar2002705.Search in Google Scholar PubMed

Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22(3), 587–603; https://doi.org/10.1021/cm901452z.Search in Google Scholar

Goodenough, J. B.; Park, K.-S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 2013, 135(4), 1167–1176; https://doi.org/10.1021/ja3091438.Search in Google Scholar PubMed

Gu, S.; Lou, Z.; Ma, X.; Shen, G. CuCo2O4 nanowires grown on a Ni wire for high-performance, flexible fiber supercapacitors. ChemElectroChem 2015, 2(7), 1042–1047; https://doi.org/10.1002/celc.201500020.Search in Google Scholar

Guo, C. X.; Chitre, A. A.; Lu, X. DNA-assisted assembly of carbon nanotubes and MnO 2 nanospheres as electrodes for high-performance asymmetric supercapacitors. Phys. Chem. Chem. Phys. 2014, 16(10), 4672–4678; https://doi.org/10.1039/c3cp54911a.Search in Google Scholar PubMed

Gupta, V.; Kusahara, T.; Toyama, H.; Gupta, S.; Miura, N. Potentiostatically deposited nanostructured α-Co (OH) 2: a high performance electrode material for redox-capacitors. Electrochem. Commun. 2007, 9(9), 2315–2319; https://doi.org/10.1016/j.elecom.2007.06.041.Search in Google Scholar

Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 2010, 110(11), 6595–6663; https://doi.org/10.1021/cr900356p.Search in Google Scholar PubMed

Halim, J.; Cook, K. M.; Naguib, M.; Eklund, P.; Gogotsi, Y.; Rosen, J.; Barsoum, M. W. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 2016, 362, 406–417; https://doi.org/10.1016/j.apsusc.2015.11.089.Search in Google Scholar

Halim, J.; Palisaitis, J.; Lu, J.; Thörnberg, J.; Moon, E.; Precner, M.; Eklund, P.; Persson, P. Å.; Barsoum, M.; Rosen, J. Synthesis of two-dimensional Nb1. 33C (MXene) with randomly distributed vacancies by etching of the quaternary solid solution (Nb2/3Sc1/3) 2AlC MAX phase. ACS Appl. Nano Mater. 2018, 1(6), 2455–2460; https://doi.org/10.1021/acsanm.8b00332.Search in Google Scholar

Halliday, D.; Resnick, R.; Walker, J. Fundamentals of Physics; John Wiley & Sons: Hoboken, NJ, USA. 2013.Search in Google Scholar

Hatta, F.; Yahya, M.; Ali, A.; Subban, R.; Harun, M.; Mohamad, A. Electrical conductivity studies on PVA/PVP-KOH alkaline solid polymer blend electrolyte. Ionics 2005, 11(5), 418–422; https://doi.org/10.1007/bf02430259.Search in Google Scholar

He, Y.; Chen, W.; Li, X.; Zhang, Z.; Fu, J.; Zhao, C.; Xie, E. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 2012a, 7(1), 174–182; https://doi.org/10.1021/nn304833s.Search in Google Scholar PubMed

He, G.; Li, J.; Chen, H.; Shi, J.; Sun, X.; Chen, S.; Wang, X. Hydrothermal preparation of Co3O4@ graphene nanocomposite for supercapacitor with enhanced capacitive performance. Mater. Lett. 2012b, 82, 61–63; https://doi.org/10.1016/j.matlet.2012.05.048.Search in Google Scholar

Hickey, H. V.; Villines, W. M. Elements of Electronics, 3rd ed. McGraw-Hill: NY, USA. 1970.Search in Google Scholar

Hong, M. S.; Lee, S. H.; Kim, S. W. Use of KCl aqueous electrolyte for 2 V manganese oxide/activated carbon hybrid capacitor. Electrochem. Solid State Lett. 2002, 5(10), A227–A230; https://doi.org/10.1149/1.1506463.Search in Google Scholar

Hope, M. A.; Forse, A. C.; Griffith, K. J.; Lukatskaya, M. R.; Ghidiu, M.; Gogotsi, Y.; Grey, C. P. NMR reveals the surface functionalisation of Ti 3 C 2 MXene. Phys. Chem. Chem. Phys. 2016, 18(7), 5099–5102; https://doi.org/10.1039/c6cp00330c.Search in Google Scholar PubMed

Hsu, Y.-K.; Chen, Y.-C.; Lin, Y.-G. Synthesis of copper sulfide nanowire arrays for high-performance supercapacitors. Electrochim. Acta 2014, 139, 401–407; https://doi.org/10.1016/j.electacta.2014.06.138.Search in Google Scholar

Hu, L.; Xu, K. Nonflammable electrolyte enhances battery safety. Proc. Natl. Acad. Sci. Unit. States Am. 2014, 111(9), 3205–3206; https://doi.org/10.1073/pnas.1401033111.Search in Google Scholar PubMed PubMed Central

Hu, L.; Choi, J. W.; Yang, Y.; Jeong, S.; La Mantia, F.; Cui, L.-F.; Cui, Y. Highly conductive paper for energy-storage devices. Proc. Natl. Acad. Sci. Unit. States Am. 2009, 106(51), 21490–21494; https://doi.org/10.1073/pnas.0908858106.Search in Google Scholar PubMed PubMed Central

Hu, L.; Qu, B.; Li, C.; Chen, Y.; Mei, L.; Lei, D.; Chen, L.; Li, Q.; Wang, T. Facile synthesis of uniform mesoporous ZnCo 2 O 4 microspheres as a high-performance anode material for Li-ion batteries. J. Mater. Chem. 2013, 1(18), 5596–5602; https://doi.org/10.1039/c3ta00085k.Search in Google Scholar

Hu, M.; Hu, T.; Li, Z.; Yang, Y.; Cheng, R.; Yang, J.; Cui, C.; Wang, X. Surface functional groups and interlayer water determine the electrochemical capacitance of Ti3C2 T x MXene. ACS Nano 2018, 12(4), 3578–3586; https://doi.org/10.1021/acsnano.8b00676.Search in Google Scholar PubMed

Huang, M.; Zhang, Y.; Li, F.; Zhang, L.; Ruoff, R. S.; Wen, Z.; Liu, Q. Self-assembly of mesoporous nanotubes assembled from interwoven ultrathin birnessite-type MnO2 nanosheets for asymmetric supercapacitors. Sci. Rep. 2014a, 4, 3878; https://doi.org/10.1038/srep03878.Search in Google Scholar PubMed PubMed Central

Huang, M.; Zhang, Y.; Li, F.; Wang, Z.; Hu, N.; Wen, Z.; Liu, Q. Merging of Kirkendall growth and Ostwald ripening: CuO@ MnO 2 core-shell architectures for asymmetric supercapacitors. Sci. Rep. 2014b, 4, 4518; https://doi.org/10.1038/srep04518.Search in Google Scholar PubMed PubMed Central

Huang, J.; Xu, P.; Cao, D.; Zhou, X.; Yang, S.; Li, Y.; Wang, G. Asymmetric supercapacitors based on β-Ni (OH) 2 nanosheets and activated carbon with high energy density. J. Power Sources 2014c, 246, 371–376; https://doi.org/10.1016/j.jpowsour.2013.07.105.Search in Google Scholar

Huang, M.; Li, F.; Dong, F.; Zhang, Y. X.; Zhang, L. L. MnO 2-based nanostructures for high-performance supercapacitors. J. Mater. Chem. 2015, 3(43), 21380–21423; https://doi.org/10.1039/c5ta05523g.Search in Google Scholar

Huang, Y.; Zhao, Y.; Bao, J.; Lian, J.; Cheng, M.; Li, H. Lawn-like FeCo2S4 hollow nanoneedle arrays on flexible carbon nanofiber film as binder-free electrodes for high-performance asymmetric pseudocapacitors. J. Alloys Compd. 2019, 772, 337–347; https://doi.org/10.1016/j.jallcom.2018.08.212.Search in Google Scholar

Hussain, I.; Lamiel, C.; Mohamed, S. G.; Vijayakumar, S.; Ali, A.; Shim, J.-J. Controlled synthesis and growth mechanism of zinc cobalt sulfide rods on Ni-foam for high-performance supercapacitors. J. Ind. Eng. Chem. 2019, 71, 250–259; https://doi.org/10.1016/j.jiec.2018.11.033.Search in Google Scholar

Hwang, J. Y.; El-Kady, M. F.; Wang, Y.; Wang, L.; Shao, Y.; Marsh, K.; Ko, J. M.; Kaner, R. B. Direct preparation and processing of graphene/RuO2 nanocomposite electrodes for high-performance capacitive energy storage. Nano Energy 2015, 18, 57–70; https://doi.org/10.1016/j.nanoen.2015.09.009.Search in Google Scholar

Izadi-Najafabadi, A.; Yamada, T.; Futaba, D. N.; Yudasaka, M.; Takagi, H.; Hatori, H.; Iijima, S.; Hata, K. High-power supercapacitor electrodes from single-walled carbon nanohorn/nanotube composite. ACS Nano 2011, 5(2), 811–819; https://doi.org/10.1021/nn1017457.Search in Google Scholar PubMed

Jeong, H. M.; Lee, J. W.; Shin, W. H.; Choi, Y. J.; Shin, H. J.; Kang, J. K.; Choi, J. W. Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett. 2011, 11(6), 2472–2477; https://doi.org/10.1021/nl2009058.Search in Google Scholar PubMed

Ji, J.; Zhang, L. L.; Ji, H.; Li, Y.; Zhao, X.; Bai, X.; Fan, X.; Zhang, F.; Ruoff, R. S. Nanoporous Ni (OH) 2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano 2013, 7(7), 6237–6243; https://doi.org/10.1021/nn4021955.Search in Google Scholar PubMed

Jiang, H.; Ma, J.; Li, C. Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes. Adv. Mater. 2012a, 24(30), 4197–4202; https://doi.org/10.1002/adma.201104942.Search in Google Scholar PubMed

Jiang, H.; Li, C.; Sun, T.; Ma, J. A green and high energy density asymmetric supercapacitor based on ultrathin MnO 2 nanostructures and functional mesoporous carbon nanotube electrodes. Nanoscale 2012b, 4(3), 807–812; https://doi.org/10.1039/c1nr11542a.Search in Google Scholar PubMed

Jiang, H.; Ma, J.; Li, C. Hierarchical porous NiCo 2 O 4 nanowires for high-rate supercapacitors. Chem. Commun. 2012c, 48(37), 4465–4467; https://doi.org/10.1039/c2cc31418e.Search in Google Scholar PubMed

Jiang, J.; Li, Y.; Liu, J.; Huang, X.; Yuan, C.; Lou, X. W. Recent advances in metal oxide‐based electrode architecture design for electrochemical energy storage. Adv. Mater. 2012d, 24(38), 5166–5180; https://doi.org/10.1002/adma.201202146.Search in Google Scholar PubMed

Jiang, H.; Lee, P. S.; Li, C. 3D carbon based nanostructures for advanced supercapacitors. Energy Environ. Sci. 2013, 6(1), 41–53; https://doi.org/10.1039/c2ee23284g.Search in Google Scholar

Ji, H.; Zhao, X.; Qiao, Z.; Jung, J.; Zhu, Y.; Lu, Y.; Zhang, L. L.; MacDonald, A. H.; Ruoff, R. S. Capacitance of carbon-based electrical double-layer capacitors. Nat. Commun. 2014, 5: 3317, https://doi.org/10.1038/ncomms4317.Search in Google Scholar PubMed

Jiang, S.; Shi, T.; Zhan, X.; Huang, Y.; Tang, Z. Superior electrochemical performance of carbon cloth electrode-based supercapacitors through surface activation and nitrogen doping. Ionics 2016, 22(10), 1881–1890; https://doi.org/10.1007/s11581-016-1723-0.Search in Google Scholar

Kaempgen, M.; Chan, C. K.; Ma, J.; Cui, Y.; Gruner, G. Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 2009, 9(5), 1872–1876; https://doi.org/10.1021/nl8038579.Search in Google Scholar PubMed

Khazaei, M.; Mishra, A.; Venkataramanan, N. S.; Singh, A. K.; Yunoki, S. Recent advances in MXenes: from fundamentals to applications. Curr Opin Solid State Mater Sci. 2019, 23(3): 164–178, https://doi.org/10.1016/j.cossms.2019.01.002.Search in Google Scholar

Khomenko, V.; Raymundo-Piñero, E.; Béguin, F. High-energy density graphite/AC capacitor in organic electrolyte. J. Power Sources 2008, 177(2), 643–651; https://doi.org/10.1016/j.jpowsour.2007.11.101.Search in Google Scholar

Kim, B. K.; Sy, S.; Yu, A.; Zhang, J. Electrochemical supercapacitors for energy storage and conversion. In Handbook of Clean Energy Systems, 2015, pp 1–25.10.1002/9781118991978.hces112Search in Google Scholar

Kondratenko, E. V.; Mul, G.; Baltrusaitis, J.; Larrazábal, G. O.; Pérez-Ramírez, J. Status and perspectives of CO 2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ. Sci. 2013, 6(11), 3112–3135; https://doi.org/10.1039/c3ee41272e.Search in Google Scholar

Kou, T.; Yao, B.; Liu, T.; Li, Y. Recent advances in chemical methods for activating carbon and metal oxide based electrodes for supercapacitors. J. Mater. Chem. 2017, 5(33), 17151–17173; https://doi.org/10.1039/c7ta05003h.Search in Google Scholar

Kötz, R.; Carlen, M. Principles and applications of electrochemical capacitors. Electrochim. Acta 2000, 45(15–16), 2483–2498; https://doi.org/10.1016/s0013-4686(00)00354-6.Search in Google Scholar

Largeot, C.; Portet, C.; Chmiola, J.; Taberna, P.-L.; Gogotsi, Y.; Simon, P. Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 2008, 130(9), 2730–2731; https://doi.org/10.1021/ja7106178.Search in Google Scholar PubMed

Lashof, D. A.; Ahuja, D. R. Relative contributions of greenhouse gas emissions to global warming. Nature 1990, 344(6266), 529–531; https://doi.org/10.1038/344529a0.Search in Google Scholar

Lee, H. Y.; Goodenough, J. B. Ideal supercapacitor behavior of amorphous V2O5· nH2O in potassium chloride (KCl) aqueous solution. J. Solid State Chem. 1999, 148(1), 81–84; https://doi.org/10.1006/jssc.1999.8367.Search in Google Scholar

Lee, J. S.; Tai Kim, S.; Cao, R.; Choi, N. S.; Liu, M.; Lee, K. T.; Cho, J. Metal–air batteries with high energy density: Li–air versus Zn–air. Adv. Energy Mater. 2011, 1(1), 34–50; https://doi.org/10.1002/aenm.201000010.Search in Google Scholar

Lee, J.; Choudhury, S.; Weingarth, D.; Kim, D.; Presser, V. High performance hybrid energy storage with potassium ferricyanide redox electrolyte. ACS Appl. Mater. Interfaces 2016, 8(36), 23676–23687; https://doi.org/10.1021/acsami.6b06264.Search in Google Scholar PubMed

Lei, Z.; Lu, L.; Zhao, X. The electrocapacitive properties of graphene oxide reduced by urea. Energy Environ. Sci. 2012, 5(4), 6391–6399; https://doi.org/10.1039/c1ee02478g.Search in Google Scholar

Li, J.; Wang, X.; Huang, Q.; Gamboa, S.; Sebastian, P. Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor. J. Power Sources 2006, 158(1), 784–788; https://doi.org/10.1016/j.jpowsour.2005.09.045.Search in Google Scholar

Li, Z.; Xu, Z.; Wang, H.; Ding, J.; Zahiri, B.; Holt, C. M.; Tan, X.; Mitlin, D. Colossal pseudocapacitance in a high functionality–high surface area carbon anode doubles the energy of an asymmetric supercapacitor. Energy Environ. Sci. 2014, 7(5), 1708–1718; https://doi.org/10.1039/c3ee43979h.Search in Google Scholar

Li, X.; Shen, J.; Li, N.; Ye, M. Fabrication of γ-MnS/rGO composite by facile one-pot solvothermal approach for supercapacitor applications. J. Power Sources 2015, 282, 194–201; https://doi.org/10.1016/j.jpowsour.2015.02.057.Search in Google Scholar

Li, Y.; Gao, H.; Sun, Z.; Li, Q.; Xu, Y.; Ge, C.; Cao, Y. Tuning morphology and conductivity in two-step synthesis of zinc-cobalt oxide and sulfide hybrid nanoclusters as highly-performed electrodes for hybrid supercapacitors. J. Solid State Electrochem. 2018, 22(10), 3197–3207; https://doi.org/10.1007/s10008-018-4035-7.Search in Google Scholar

Li, B.; Tian, Z.; Li, H.; Yang, Z.; Wang, Y.; Wang, X. Self-supporting graphene aerogel electrode intensified by NiCo2S4 nanoparticles for asymmetric supercapacitor. Electrochim. Acta 2019a, 314, 32–39; https://doi.org/10.1016/j.electacta.2019.05.040.Search in Google Scholar

Li, H.; Li, Z.; Sun, M.; Wu, Z.; Shen, W.; Fu, Y. Q. Zinc cobalt sulfide nanoparticles as high performance electrode material for asymmetric supercapacitor. Electrochim. Acta 2019b, 319, 716–726; https://doi.org/10.1016/j.electacta.2019.07.033.Search in Google Scholar

Lin, J.; Zhang, C.; Yan, Z.; Zhu, Y.; Peng, Z.; Hauge, R. H.; Natelson, D.; Tour, J. M. 3-dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. Nano Lett. 2013, 13(1), 72–78; https://doi.org/10.1021/nl3034976.Search in Google Scholar PubMed

Lin, T.; Chen, I.-W.; Liu, F.; Yang, C.; Bi, H.; Xu, F.; Huang, F. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 2015, 350(6267), 1508–1513; https://doi.org/10.1126/science.aab3798.Search in Google Scholar PubMed

Lin, X.-Q.; Wang, W.-D.; Lü, Q.-F.; Jin, Y.-Q.; Lin, Q.; Liu, R. Nitrogen-doped graphene/carbon nanohorns composite as a high-performance supercapacitor electrode. J. Mater. Sci. Technol. 2017, 33(11), 1339–1345; https://doi.org/10.1016/j.jmst.2017.06.006.Search in Google Scholar

Liu, Y.; Peng, X. Recent advances of supercapacitors based on two-dimensional materials. Appl. Mater. Today 2017, 8, 104–115; https://doi.org/10.1016/j.apmt.2017.05.002.Search in Google Scholar

Liu, H.; Wang, J. One-pot synthesis of ZnCo2O4 nanorod anodes for high power Lithium ions batteries. Electrochim. Acta 2013, 92, 371–375; https://doi.org/10.1016/j.electacta.2012.12.115.Search in Google Scholar

Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced materials for energy storage. Adv. Mater. 2010a, 22(8), E28–E62; https://doi.org/10.1002/adma.200903328.Search in Google Scholar PubMed

Liu, C.; Yu, Z.; Neff, D.; Zhamu, A.; Jang, B. Z. Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 2010b, 10(12), 4863–4868; https://doi.org/10.1021/nl102661q.Search in Google Scholar PubMed

Liu, X.; Long, Q.; Jiang, C.; Zhan, B.; Li, C.; Liu, S.; Zhao, Q.; Huang, W.; Dong, X. Facile and green synthesis of mesoporous Co 3 O 4 nanocubes and their applications for supercapacitors. Nanoscale 2013a, 5(14), 6525–6529; https://doi.org/10.1039/c3nr00495c.Search in Google Scholar PubMed

Liu, Q.; Jin, J.; Zhang, J. NiCo2S4@graphene as a bifunctional electrocatalyst for oxygen reduction and evolution reactions. ACS Appl. Mater. Interfaces 2013b, 5(11), 5002–5008; https://doi.org/10.1021/am4007897.Search in Google Scholar PubMed

Liu, R.; Jiang, Z.; Liu, Q.; Zhu, X.; Liu, L.; Ni, L.; Shen, C. Novel red blood cell shaped α-Fe 2 O 3 microstructures and FeO (OH) nanorods as high capacity supercapacitors. RSC Adv. 2015a, 5(111), 91127–91133; https://doi.org/10.1039/c5ra14619d.Search in Google Scholar

Liu, S.; Mao, C.; Niu, Y.; Yi, F.; Hou, J.; Lu, S.; Jiang, J.; Xu, M.; Li, C. Facile synthesis of novel networked ultralong cobalt sulfide nanotubes and its application in supercapacitors. ACS Appl. Mater. Interfaces 2015b, 7(46), 25568–25573; https://doi.org/10.1021/acsami.5b08716.Search in Google Scholar PubMed

Liu, C.; Neale, Z. G.; Cao, G. Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater. Today 2016, 19(2), 109–123; https://doi.org/10.1016/j.mattod.2015.10.009.Search in Google Scholar

Liu, Q.; Lu, C.; Li, Y. Controllable synthesis of ultrathin nickel oxide sheets on carbon cloth for high-performance supercapacitors. RSC Adv. 2017, 7(37), 23143–23148; https://doi.org/10.1039/c6ra27550h.Search in Google Scholar

Long, J. W.; Swider, K. E.; Merzbacher, C. I.; Rolison, D. R. Voltametric characterization of ruthenium oxide-based aerogels and other RuO2 solids: the nature of capacitance in nanostructured materials. Langmuir 1999, 15(3), 780–785; https://doi.org/10.1021/la980785a.Search in Google Scholar

Long, J. W.; Brousse, T.; Bélanger, D. Electrochemical capacitors: fundamentals to applications. J. Electrochem. Soc. 2015, 162(5), Y3; https://doi.org/10.1149/2.0261505jes.Search in Google Scholar

Lu, M. Supercapacitors: Materials, Systems, and Applications; John Wiley & Sons, 2013.Search in Google Scholar

Lu, Y.; Zhang, S.; Yin, J.; Bai, C.; Zhang, J.; Li, Y.; Yang, Y.; Ge, Z.; Zhang, M.; Wei, L. Mesoporous activated carbon materials with ultrahigh mesopore volume and effective specific surface area for high performance supercapacitors. Carbon 2017a, 124, 64–71; https://doi.org/10.1016/j.carbon.2017.08.044.Search in Google Scholar

Lu, J.; Thore, A.; Meshkian, R.; Tao, Q.; Hultman, L.; Rosén, J. Theoretical and experimental exploration of a novel in-plane chemically ordered (Cr2/3M1/3) 2AlC i-MAX phase with M= Sc and Y. Cryst. Growth Des. 2017b, 17(11), 5704–5711; https://doi.org/10.1021/acs.cgd.7b00642.Search in Google Scholar

Luan, F.; Wang, G.; Ling, Y.; Lu, X.; Wang, H.; Tong, Y.; Liu, X.-X.; Li, Y. High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode. Nanoscale 2013, 5(17), 7984–7990; https://doi.org/10.1039/c3nr02710d.Search in Google Scholar PubMed

Luo, H.-M.; Zhang, F.-B.; Yang, P. Preparation and electrochemical properties of CPAC/Mn 3 O 4 nanocomposite electrode. J. Mater. Sci. Mater. Electron. 2013, 24(2), 601–606; https://doi.org/10.1007/s10854-012-0992-2.Search in Google Scholar

Luo, H.-M.; Chen, H.; Chen, Y.-Z.; Li, P.; Zhang, J.-Q.; Zhao, X. Simple synthesis of porous carbon materials for high-performance supercapacitors. J. Appl. Electrochem. 2016, 46(6), 703–712; https://doi.org/10.1007/s10800-016-0958-9.Search in Google Scholar

Ma, W.; Nan, H.; Gu, Z.; Geng, B.; Zhang, X. Superior performance asymmetric supercapacitors based on ZnCo 2 O 4@ MnO 2 core–shell electrode. J. Mater. Chem. 2015, 3(10), 5442–5448; https://doi.org/10.1039/c5ta00012b.Search in Google Scholar

Meher, S. K.; Rao, G. R. Ultralayered Co3O4 for high-performance supercapacitor applications. J. Phys. Chem. C 2011, 115(31), 15646–15654; https://doi.org/10.1021/jp201200e.Search in Google Scholar

Mei, B.-A.; Munteshari, O.; Lau, J.; Dunn, B.; Pilon, L. Physical interpretations of Nyquist plots for EDLC electrodes and devices. J. Phys. Chem. C 2018, 122(1), 194–206; https://doi.org/10.1021/acs.jpcc.7b10582.Search in Google Scholar

Meng, G.; Yang, Q.; Wu, X.; Wan, P.; Li, Y.; Lei, X.; Sun, X.; Liu, J. Hierarchical mesoporous NiO nanoarrays with ultrahigh capacitance for aqueous hybrid supercapacitor. Nano Energy 2016, 30, 831–839; https://doi.org/10.1016/j.nanoen.2016.09.012.Search in Google Scholar

Meshkian, R.; Tao, Q.; Dahlqvist, M.; Lu, J.; Hultman, L.; Rosen, J. Theoretical stability and materials synthesis of a chemically ordered MAX phase, Mo2ScAlC2, and its two-dimensional derivate Mo2ScC2 MXene. Acta Mater. 2017, 125, 476–480; https://doi.org/10.1016/j.actamat.2016.12.008.Search in Google Scholar

Meshkian, R.; Dahlqvist, M.; Lu, J.; Wickman, B.; Halim, J.; Thörnberg, J.; Tao, Q.; Li, S.; Intikhab, S.; Snyder, J. W‐Based atomic laminates and their 2D derivative W1. 33C MXene with vacancy ordering. Adv. Mater. 2018, 30(21), 1706409; https://doi.org/10.1002/adma.201706409.Search in Google Scholar PubMed

Miller, J. R.; Simon, P. Electrochemical capacitors for energy management. Science 2008, 321(5889), 651–652; https://doi.org/10.1126/science.1158736.Search in Google Scholar PubMed

Mohamed, S. G.; Chen, C.-J.; Chen, C. K.; Hu, S.-F.; Liu, R.-S. High-performance lithium-ion battery and symmetric supercapacitors based on FeCo2O4 nanoflakes electrodes. ACS Appl. Mater. Interfaces 2014, 6(24), 22701–22708; https://doi.org/10.1021/am5068244.Search in Google Scholar PubMed

Mohamed, S. G.; Attia, S. Y.; Hassan, H. H. Spinel-structured FeCo2O4 mesoporous nanosheets as efficient electrode for supercapacitor applications. Microporous Mesoporous Mater. 2017, 251, 26–33; https://doi.org/10.1016/j.micromeso.2017.05.035.Search in Google Scholar

Mohamed, S. G.; Attia, S. Y.; Barakat, Y. F.; Hassan, H. H.; Zoubi, W. A. Hydrothermal synthesis of α‐MnS nanoflakes@ nitrogen and sulfur Co‐doped rGO for high‐performance hybrid supercapacitor. ChemistrySelect 2018a, 3(22), 6061–6072; https://doi.org/10.1002/slct.201801042.Search in Google Scholar

Mohamed, S. G.; Hussain, I.; Shim, J. J. One-step synthesis of hollow C-NiCo2S4 nanostructures for high-performance supercapacitor electrodes. Nanoscale 2018b, 10(14), 6620–6628; https://doi.org/10.1039/c7nr07338k.Search in Google Scholar PubMed

Nagaraju, D. H.; Wang, Q.; Beaujuge, P.; Alshareef, H. N. Two-dimensional heterostructures of V 2 O 5 and reduced graphene oxide as electrodes for high energy density asymmetric supercapacitors. J. Mater. Chem. 2014, 2(40), 17146–17152; https://doi.org/10.1039/c4ta03731f.Search in Google Scholar

Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two‐dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23(37), 4248–4253; https://doi.org/10.1002/adma.201102306.Search in Google Scholar PubMed

Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional transition metal carbides. ACS Nano 2012, 6(2), 1322–1331; https://doi.org/10.1021/nn204153h.Search in Google Scholar PubMed

Naguib, M.; Halim, J.; Lu, J.; Cook, K. M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J. Am. Chem. Soc. 2013, 135(43), 15966–15969; https://doi.org/10.1021/ja405735d.Search in Google Scholar PubMed

Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th anniversary article: MXenes: a new family of two‐dimensional materials. Adv. Mater. 2014, 26(7), 992–1005; https://doi.org/10.1002/adma.201304138.Search in Google Scholar PubMed

Naik, K. K.; Sahoo, S.; Rout, C. S. Facile electrochemical growth of spinel copper cobaltite nanosheets for non-enzymatic glucose sensing and supercapacitor applications. Microporous Mesoporous Mater. 2017, 244: 226–234, https://doi.org/10.1016/j.micromeso.2016.10.036.Search in Google Scholar

Naoi, K.; Naoi, W.; Aoyagi, S.; Miyamoto, J.-i.; Kamino, T. New generation “nanohybrid supercapacitor”. Accounts Chem. Res. 2013, 46(5), 1075–1083; https://doi.org/10.1021/ar200308h.Search in Google Scholar PubMed

Nocera, D. G. Living healthy on a dying planet. Chem. Soc. Rev. 2009, 38(1), 13–15; https://doi.org/10.1039/b820660k.Search in Google Scholar PubMed

Noori, A.; El-Kady, M. F.; Rahmanifar, M. S.; Kaner, R. B.; Mousavi, M. F. Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chem. Soc. Rev. 2019, 48(5), 1272–1341; https://doi.org/10.1039/c8cs00581h.Search in Google Scholar PubMed

O’Neill, L.; Johnston, C.; Grant, P. S. Enhancing the supercapacitor behaviour of novel Fe3O4/FeOOH nanowire hybrid electrodes in aqueous electrolytes. J. Power Sources 2015, 274, 907–915; https://doi.org/10.1016/j.jpowsour.2014.09.151.Search in Google Scholar

Ou, T.-M.; Hsu, C.-T.; Hu, C.-C. Synthesis and characterization of sodium-doped MnO2 for the aqueous asymmetric supercapacitor application. J. Electrochem. Soc. 2015, 162(5), A5124–A5132; https://doi.org/10.1149/2.0191505jes.Search in Google Scholar

Pandolfo, A. G.; Hollenkamp, A. F. Carbon properties and their role in supercapacitors. J. Power Sources 2006, 157(1), 11–27; https://doi.org/10.1016/j.jpowsour.2006.02.065.Search in Google Scholar

Patake, V.; Lokhande, C. Chemical synthesis of nano-porous ruthenium oxide (RuO2) thin films for supercapacitor application. Appl. Surf. Sci. 2008, 254(9), 2820–2824; https://doi.org/10.1016/j.apsusc.2007.10.044.Search in Google Scholar

Patil, U.; Kulkarni, S.; Jamadade, V.; Lokhande, C. Chemically synthesized hydrous RuO2 thin films for supercapacitor application. J. Alloys Compd. 2011, 509(5), 1677–1682; https://doi.org/10.1016/j.jallcom.2010.09.133.Search in Google Scholar

Péan, C.; Daffos, B.; Merlet, C.; Rotenberg, B.; Taberna, P.-L.; Simon, P.; Salanne, M. Single electrode capacitances of porous carbons in neat ionic liquid electrolyte at 100 C: a combined experimental and modeling approach. J. Electrochem. Soc. 2015, 162(5), A5091–A5095; https://doi.org/10.1149/2.0151505jes.Search in Google Scholar

Pendashteh, A.; Mousavi, M. F.; Rahmanifar, M. S. Fabrication of anchored copper oxide nanoparticles on graphene oxide nanosheets via an electrostatic coprecipitation and its application as supercapacitor. Electrochim. Acta 2013, 88, 347–357; https://doi.org/10.1016/j.electacta.2012.10.088.Search in Google Scholar

Pendashteh, A.; Rahmanifar, M. S.; Kaner, R. B.; Mousavi, M. F. Facile synthesis of nanostructured CuCo 2 O 4 as a novel electrode material for high-rate supercapacitors. Chem. Commun. 2014, 50(16), 1972–1975; https://doi.org/10.1039/c3cc48773c.Search in Google Scholar PubMed

Pendashteh, A.; Palma, J.; Anderson, M.; Marcilla, R. Nanostructured porous wires of iron cobaltite: novel positive electrode for high-performance hybrid energy storage devices. J. Mater. Chem. 2015, 3(32), 16849–16859; https://doi.org/10.1039/c5ta02701b.Search in Google Scholar

Perera, S. D.; Patel, B.; Nijem, N.; Roodenko, K.; Seitz, O.; Ferraris, J. P.; Chabal, Y. J.; Balkus, K. J.Jr. Vanadium oxide nanowire–carbon nanotube binder‐free flexible electrodes for supercapacitors. Adv. Energy Mater. 2011, 1(5), 936–945; https://doi.org/10.1002/aenm.201100221.Search in Google Scholar

Pohlmann, S.; Ramirez-Castro, C.; Balducci, A. The influence of conductive salt ion selection on EDLC electrolyte characteristics and carbon-electrolyte interaction. J. Electrochem. Soc. 2015, 162(5), A5020–A5030; https://doi.org/10.1149/2.0041505jes.Search in Google Scholar

Portet, C.; Yang, Z.; Korenblit, Y.; Gogotsi, Y.; Mokaya, R.; Yushin, G. Electrical double-layer capacitance of zeolite-templated carbon in organic electrolyte. J. Electrochem. Soc. 2009, 156(1), A1–A6; https://doi.org/10.1149/1.3002375.Search in Google Scholar

Presser, V.; Heon, M.; Gogotsi, Y. Carbide‐derived carbons–from porous networks to nanotubes and graphene. Adv. Funct. Mater. 2011, 21(5), 810–833; https://doi.org/10.1002/adfm.201002094.Search in Google Scholar

Qu, Q.; Zhang, P.; Wang, B.; Chen, Y.; Tian, S.; Wu, Y.; Holze, R. Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors. J. Phys. Chem. C 2009, 113(31), 14020–14027; https://doi.org/10.1021/jp8113094.Search in Google Scholar

Quan, H.; Cheng, B.; Chen, D.; Su, X.; Xiao, Y.; Lei, S. One-pot synthesis of α-MnS/nitrogen-doped reduced graphene oxide hybrid for high-performance asymmetric supercapacitors. Electrochim. Acta 2016, 210, 557–566; https://doi.org/10.1016/j.electacta.2016.05.031.Search in Google Scholar

Rakhi, R. B.; Ahmed, B.; Anjum, D.; Alshareef, H. N. Direct chemical synthesis of MnO2 nanowhiskers on transition-metal carbide surfaces for supercapacitor applications. ACS Appl. Mater. Interfaces 2016, 8(29), 18806–18814; https://doi.org/10.1021/acsami.6b04481.Search in Google Scholar PubMed

Raymundo-Pinero, E.; Kierzek, K.; Machnikowski, J.; Béguin, F. Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 2006, 44(12), 2498–2507; https://doi.org/10.1016/j.carbon.2006.05.022.Search in Google Scholar

Roldán, S.; Blanco, C.; Granda, M.; Menéndez, R.; Santamaría, R. Towards a further generation of high‐energy carbon‐based capacitors by using redox‐active electrolytes. Angew. Chem. Int. Ed. 2011, 50(7), 1699–1701; https://doi.org/10.1002/anie.201006811.Search in Google Scholar PubMed

Rolison, D. R.; Long, J. W.; Lytle, J. C.; Fischer, A. E.; Rhodes, C. P.; McEvoy, T. M.; Bourg, M. E.; Lubers, A. M. Multifunctional 3D nanoarchitectures for energy storage and conversion. Chem. Soc. Rev. 2009, 38(1), 226–252; https://doi.org/10.1039/b801151f.Search in Google Scholar PubMed

Salitra, G.; Soffer, A.; Eliad, L.; Cohen, Y.; Aurbach, D. Carbon electrodes for double‐layer capacitors I. Relations between ion and pore dimensions. J. Electrochem. Soc. 2000, 147(7), 2486; https://doi.org/10.1149/1.1393557.Search in Google Scholar

Salunkhe, R. R.; Kamachi, Y.; Torad, N. L.; Hwang, S. M.; Sun, Z.; Dou, S. X.; Kim, J. H.; Yamauchi, Y. Fabrication of symmetric supercapacitors based on MOF-derived nanoporous carbons. J. Mater. Chem. 2014, 2(46), 19848–19854; https://doi.org/10.1039/c4ta04277h.Search in Google Scholar

Samui, A. B.; Sivaraman, P. 11 - S olid polymer electrolytes for supercapacitors. In Polymer Electrolytes; Sequeira, C.; Santos, D., Eds. Woodhead Publishing, 2010; pp 431–470.10.1533/9781845699772.2.431Search in Google Scholar

Seker, E.; Reed, M. L.; Begley, M. R. Nanoporous gold: fabrication, characterization, and applications. Materials 2009, 2(4), 2188–2215; https://doi.org/10.3390/ma2042188.Search in Google Scholar

Senthilkumar, S.; Selvan, R. K. Fabrication and performance studies of a cable-type flexible asymmetric supercapacitor. Phys. Chem. Chem. Phys. 2014, 16(29), 15692–15698; https://doi.org/10.1039/c4cp00955j.Search in Google Scholar PubMed

Service, R. F. Materials science. New’supercapacitor’promises to pack more electrical punch. Science 2006, 313(5789), 902; https://doi.org/10.1126/science.313.5789.902.Search in Google Scholar PubMed

Shan, Y.; Gao, L. Formation and characterization of multi-walled carbon nanotubes/Co3O4 nanocomposites for supercapacitors. Mater. Chem. Phys. 2007, 103(2–3), 206–210; https://doi.org/10.1016/j.matchemphys.2007.02.038.Search in Google Scholar

Shao, Y.; El-Kady, M. F.; Wang, L. J.; Zhang, Q.; Li, Y.; Wang, H.; Mousavi, M. F.; Kaner, R. B. Graphene-based materials for flexible supercapacitors. Chem. Soc. Rev. 2015, 44(11), 3639–3665; https://doi.org/10.1039/c4cs00316k.Search in Google Scholar PubMed

Shao, Y.; El-Kady, M. F.; Sun, J.; Li, Y.; Zhang, Q.; Zhu, M.; Wang, H.; Dunn, B.; Kaner, R. B. Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 2018, 118(18), 9233–9280; https://doi.org/10.1021/acs.chemrev.8b00252.Search in Google Scholar

Sharma, K.; Arora, A.; Tripathi, S. K. Review of supercapacitors: materials and devices. J. Energy Storage 2019, 21, 801–825; https://doi.org/10.1016/j.est.2018.11.022.Search in Google Scholar

Shen, L.; Yu, L.; Wu, H. B.; Yu, X.-Y.; Zhang, X.; Lou, X. W. D. Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nat. Commun. 2015a, 6(1), 1–8; https://doi.org/10.1038/ncomms7694.Search in Google Scholar

Shen, L.; Wang, J.; Xu, G.; Li, H.; Dou, H.; Zhang, X. NiCo2S4 nanosheets grown on nitrogen‐doped carbon foams as an advanced electrode for supercapacitors. Adv. Energy Mater. 2015b, 5(3), 1400977; https://doi.org/10.1002/aenm.201400977.Search in Google Scholar

Shiraishi, S.; Kurihara, H.; Okabe, K.; Hulicova, D.; Oya, A. Electric double layer capacitance of highly pure single-walled carbon nanotubes (HiPco™ Buckytubes™) in propylene carbonate electrolytes. Electrochem. Commun. 2002, 4(7), 593–598; https://doi.org/10.1016/s1388-2481(02)00382-x.Search in Google Scholar

Sillars, F. B.; Fletcher, S. I.; Mirzaeian, M.; Hall, P. J. Variation of electrochemical capacitor performance with room temperature ionic liquid electrolyte viscosity and ion size. Phys. Chem. Chem. Phys. 2012, 14(17), 6094–6100; https://doi.org/10.1039/c2cp40089h.Search in Google Scholar PubMed

Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nature Mater. 2008, 7, 845–854; https://doi.org/10.1038/nmat2297.Search in Google Scholar PubMed

Singh, A.; Roberts, A. J.; Slade, R. C.; Chandra, A. High electrochemical performance in asymmetric supercapacitors using MWCNT/nickel sulfide composite and graphene nanoplatelets as electrodes. J. Mater. Chem. 2014, 2(39), 16723–16730; https://doi.org/10.1039/c4ta02870h.Search in Google Scholar

Sk, M. M.; Yue, C. Y.; Ghosh, K.; Jena, R. K. Review on advances in porous nanostructured nickel oxides and their composite electrodes for high-performance supercapacitors. J. Power Sources 2016, 308, 121–140; https://doi.org/10.1016/j.jpowsour.2016.01.056.Search in Google Scholar

Soundiraraju, B.; George, B. K. Two-dimensional titanium nitride (Ti2N) MXene: synthesis, characterization, and potential application as surface-enhanced Raman scattering substrate. ACS Nano 2017, 11(9), 8892–8900; https://doi.org/10.1021/acsnano.7b03129.Search in Google Scholar PubMed

Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett. 2008, 8(10), 3498–3502; https://doi.org/10.1021/nl802558y.Search in Google Scholar PubMed

Su, F.; Miao, M. Asymmetric carbon nanotube–MnO2 two-ply yarn supercapacitors for wearable electronics. Nanotechnology 2014, 25(13), 135401; https://doi.org/10.1088/0957-4484/25/13/135401.Search in Google Scholar PubMed

Su, C.-I.; Wang, C.-M.; Lu, K.-W.; Shih, W.-C. Evaluation of activated carbon fiber applied in supercapacitor electrodes. Fibers Polym. 2014, 15(8), 1708–1714; https://doi.org/10.1007/s12221-014-1708-4.Search in Google Scholar

Sumboja, A.; Foo, C. Y.; Wang, X.; Lee, P. S. Large areal mass, flexible and free‐standing reduced graphene oxide/manganese dioxide paper for asymmetric supercapacitor device. Adv. Mater. 2013, 25(20), 2809–2815; https://doi.org/10.1002/adma.201205064.Search in Google Scholar PubMed

Sun, W.; Du, Y.; Wu, G.; Gao, G.; Zhu, H.; Shen, J.; Zhang, K.; Cao, G. Constructing metallic zinc–cobalt sulfide hierarchical core–shell nanosheet arrays derived from 2D metal–organic-frameworks for flexible asymmetric supercapacitors with ultrahigh specific capacitance and performance. J. Mater. Chem. 2019, 7(12), 7138–7150; https://doi.org/10.1039/c8ta12153b.Search in Google Scholar

Tang, Z.; Tang, C. h.; Gong, H. A high energy density asymmetric supercapacitor from nano‐architectured Ni (OH) 2/Carbon nanotube electrodes. Adv. Funct. Mater. 2012, 22(6), 1272–1278; https://doi.org/10.1002/adfm.201102796.Search in Google Scholar

Tang, Y.; Chen, T.; Yu, S.; Qiao, Y.; Mu, S.; Hu, J.; Gao, F. Synthesis of graphene oxide anchored porous manganese sulfide nanocrystals via the nanoscale Kirkendall effect for supercapacitors. J. Mater. Chem. 2015, 3(24), 12913–12919; https://doi.org/10.1039/c5ta02480c.Search in Google Scholar

Tao, Q.; Dahlqvist, M.; Lu, J.; Kota, S.; Meshkian, R.; Halim, J.; Palisaitis, J.; Hultman, L.; Barsoum, M. W.; Persson, P. O. Two-dimensional Mo 1.33 C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering. Nat. Commun. 2017, 8(1), 1–7; https://doi.org/10.1038/ncomms14949.Search in Google Scholar PubMed PubMed Central

Tao, K.; Han, X.; Cheng, Q.; Yang, Y.; Yang, Z.; Ma, Q.; Han, L. A zinc cobalt sulfide nanosheet array derived from a 2D bimetallic metal–organic frameworks for high‐performance supercapacitors. Chem. Eur J. 2018, 24(48), 12584–12591; https://doi.org/10.1002/chem.201800960.Search in Google Scholar PubMed

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367, https://doi.org/10.1038/35104644.Search in Google Scholar PubMed

Tong, H.; Bai, W.; Yue, S.; Gao, Z.; Lu, L.; Shen, L.; Dong, S.; Zhu, J.; He, J.; Zhang, X. Zinc cobalt sulfide nanosheets grown on nitrogen-doped graphene/carbon nanotube film as a high-performance electrode for supercapacitors. J. Mater. Chem. 2016, 4(29), 11256–11263; https://doi.org/10.1039/c6ta02249a.Search in Google Scholar

Torad, N. L.; Salunkhe, R. R.; Li, Y.; Hamoudi, H.; Imura, M.; Sakka, Y.; Hu, C. C.; Yamauchi, Y. Electric double‐layer capacitors based on highly graphitized nanoporous carbons derived from ZIF‐67. Chem. Eur J. 2014, 20(26), 7895–7900; https://doi.org/10.1002/chem.201400089.Search in Google Scholar PubMed

Tran, M. H.; Schäfer, T.; Shahraei, A.; Dürrschnabel, M.; Molina-Luna, L.; Kramm, U. I.; Birkel, C. S. Adding a new member to the MXene family: synthesis, structure, and electrocatalytic activity for the hydrogen evolution reaction of V4C3T x. ACS Appl. Energy Mater. 2018, 1(8), 3908–3914; https://doi.org/10.1021/acsaem.8b00652.Search in Google Scholar

Trasatti, S.; Kurzweil, P. Electrochemical supercapacitors as versatile energy stores. Platin. Met. Rev. 1994, 38(2), 46–56.Search in Google Scholar

Urbankowski, P.; Anasori, B.; Makaryan, T.; Er, D.; Kota, S.; Walsh, P. L.; Zhao, M.; Shenoy, V. B.; Barsoum, M. W.; Gogotsi, Y. Synthesis of two-dimensional titanium nitride Ti 4 N 3 (MXene). Nanoscale 2016, 8(22), 11385–11391; https://doi.org/10.1039/c6nr02253g.Search in Google Scholar PubMed

VahidMohammadi, A.; Hadjikhani, A.; Shahbazmohamadi, S.; Beidaghi, M. Two-dimensional vanadium carbide (MXene) as a high-capacity cathode material for rechargeable aluminum batteries. ACS Nano 2017, 11(11), 11135–11144; https://doi.org/10.1021/acsnano.7b05350.Search in Google Scholar PubMed

Vidyadharan, B.; Aziz, R. A.; Misnon, I. I.; Kumar, G. M. A.; Ismail, J.; Yusoff, M. M.; Jose, R. High energy and power density asymmetric supercapacitors using electrospun cobalt oxide nanowire anode. J. Power Sources 2014, 270, 526–535; https://doi.org/10.1016/j.jpowsour.2014.07.134.Search in Google Scholar

Wan, H.; Ji, X.; Jiang, J.; Yu, J.; Miao, L.; Zhang, L.; Bie, S.; Chen, H.; Ruan, Y. Hydrothermal synthesis of cobalt sulfide nanotubes: the size control and its application in supercapacitors. J. Power Sources 2013a, 243, 396–402; https://doi.org/10.1016/j.jpowsour.2013.06.027.Search in Google Scholar

Wan, H.; Jiang, J.; Yu, J.; Xu, K.; Miao, L.; Zhang, L.; Chen, H.; Ruan, Y. NiCo 2 S 4 porous nanotubes synthesis via sacrificial templates: high-performance electrode materials of supercapacitors. CrystEngComm 2013b, 15(38), 7649–7651; https://doi.org/10.1039/c3ce41243a.Search in Google Scholar

Wang, Y.; Xia, Y. Recent progress in supercapacitors: from materials design to system construction. Adv. Mater. 2013, 25(37), 5336–5342; https://doi.org/10.1002/adma.201301932.Search in Google Scholar PubMed

Wang, K.; Zou, W.; Quan, B.; Yu, A.; Wu, H.; Jiang, P.; Wei, Z. An all‐solid‐state flexible micro‐supercapacitor on a chip. Adv. Energy Mater. 2011a, 1(6), 1068–1072; https://doi.org/10.1002/aenm.201100488.Search in Google Scholar

Wang, H.; Wu, H.; Chang, Y.; Chen, Y.; Hu, Z. Tert-butylhydroquinone-decorated graphene nanosheets and their enhanced capacitive behaviors. Chin. Sci. Bull. 2011b, 56(20), 2092–2097; https://doi.org/10.1007/s11434-011-4424-0.Search in Google Scholar

Wang, Q.; Jiao, L.; Du, H.; Yang, J.; Huan, Q.; Peng, W.; Si, Y.; Wang, Y.; Yuan, H. Facile synthesis and superior supercapacitor performances of three-dimensional cobalt sulfide hierarchitectures. CrystEngComm 2011c, 13(23), 6960–6963; https://doi.org/10.1039/c1ce06082a.Search in Google Scholar

Wang, G.; Zhang, L.; Zhang, J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012a, 41(2), 797–828; https://doi.org/10.1039/c1cs15060j.Search in Google Scholar PubMed

Wang, H.; Zhang, D.; Yan, T.; Wen, X.; Shi, L.; Zhang, J. Graphene prepared via a novel pyridine–thermal strategy for capacitive deionization. J. Mater. Chem. 2012b, 22(45), 23745–23748; https://doi.org/10.1039/c2jm35340g.Search in Google Scholar

Wang, H.; Holt, C. M.; Li, Z.; Tan, X.; Amirkhiz, B. S.; Xu, Z.; Olsen, B. C.; Stephenson, T.; Mitlin, D. Graphene-nickel cobaltite nanocomposite asymmetrical supercapacitor with commercial level mass loading. Nano. Res. 2012c, 5(9), 605–617; https://doi.org/10.1007/s12274-012-0246-x.Search in Google Scholar

Wang, F.; Xiao, S.; Hou, Y.; Hu, C.; Liu, L.; Wu, Y. Electrode materials for aqueous asymmetric supercapacitors. RSC Adv. 2013a, 3(32), 13059–13084; https://doi.org/10.1039/c3ra23466e.Search in Google Scholar

Wang, H.; Forse, A. C.; Griffin, J. M.; Trease, N. M.; Trognko, L.; Taberna, P.-L.; Simon, P.; Grey, C. P. In situ NMR spectroscopy of supercapacitors: insight into the charge storage mechanism. J. Am. Chem. Soc. 2013b, 135(50), 18968–18980; https://doi.org/10.1021/ja410287s.Search in Google Scholar PubMed PubMed Central

Wang, G.; Wang, H.; Lu, X.; Ling, Y.; Yu, M.; Zhai, T.; Tong, Y.; Li, Y. Solid‐state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv. Mater. 2014a, 26(17), 2676–2682; https://doi.org/10.1002/adma.201304756.Search in Google Scholar PubMed

Wang, C.; Xu, J.; Yuen, M. F.; Zhang, J.; Li, Y.; Chen, X.; Zhang, W. Hierarchical composite electrodes of nickel oxide nanoflake 3D graphene for high‐performance pseudocapacitors. Adv. Funct. Mater. 2014b, 24(40), 6372–6380; https://doi.org/10.1002/adfm.201401216.Search in Google Scholar

Wang, Y.; Lei, Y.; Li, J.; Gu, L.; Yuan, H.; Xiao, D. Synthesis of 3D-nanonet hollow structured Co3O4 for high capacity supercapacitor. ACS Appl. Mater. Interfaces 2014c, 6(9), 6739–6747; https://doi.org/10.1021/am500464n.Search in Google Scholar PubMed

Wang, L. J.; El‐Kady, M. F.; Dubin, S.; Hwang, J. Y.; Shao, Y.; Marsh, K.; McVerry, B.; Kowal, M. D.; Mousavi, M. F.; Kaner, R. B. Flash converted graphene for ultra‐high power supercapacitors. Adv. Energy Mater. 2015a, 5(18), 1500786; https://doi.org/10.1002/aenm.201500786.Search in Google Scholar

Wang, K.; Dong, X.; Zhao, C.; Qian, X.; Xu, Y. Facile synthesis of Cu2O/CuO/RGO nanocomposite and its superior cyclability in supercapacitor. Electrochim. Acta 2015b, 152, 433–442; https://doi.org/10.1016/j.electacta.2014.11.171.Search in Google Scholar

Wang, Y.; Song, Y.; Xia, Y. Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 2016a, 45(21), 5925–5950; https://doi.org/10.1039/c5cs00580a.Search in Google Scholar PubMed

Wang, B.; Hu, C.; Dai, L. Functionalized carbon nanotubes and graphene-based materials for energy storage. Chem. Commun. 2016b, 52(100), 14350–14360; https://doi.org/10.1039/c6cc05581h.Search in Google Scholar PubMed

Wang, Y.; Liu, Y.; Liu, W.; Zhang, G.; Liu, G.; Chen, H. Large-scale synthesis of highly porous carbon nanosheets for supercapacitor electrodes. J. Alloys Compd. 2016c, 677, 105–111; https://doi.org/10.1016/j.jallcom.2016.03.232.Search in Google Scholar

Wang, Q.; Yan, J.; Fan, Z. Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy Environ. Sci. 2016d, 9(3), 729–762; https://doi.org/10.1039/c5ee03109e.Search in Google Scholar

Wang, S.; Sun, S.; Li, S.; Gong, F.; Li, Y.; Wu, Q.; Song, P.; Fang, S.; Wang, P. Time and temperature dependent multiple hierarchical NiCo 2 O 4 for high-performance supercapacitors. Dalton Trans. 2016e, 45(17), 7469–7475; https://doi.org/10.1039/c6dt00436a.Search in Google Scholar PubMed

Wang, X.; Lou, M.; Yuan, X.; Dong, W.; Dong, C.; Bi, H.; Huang, F. Nitrogen and oxygen dual-doped carbon nanohorn for electrochemical capacitors. Carbon 2017a, 118, 511–516; https://doi.org/10.1016/j.carbon.2017.03.071.Search in Google Scholar

Wang, K.; Song, Y.; Yan, R.; Zhao, N.; Tian, X.; Li, X.; Guo, Q.; Liu, Z. High capacitive performance of hollow activated carbon fibers derived from willow catkins. Appl. Surf. Sci. 2017b, 394, 569–577; https://doi.org/10.1016/j.apsusc.2016.10.161.Search in Google Scholar

Wang, Q.; Ma, Y.; Liang, X.; Zhang, D.; Miao, M. Flexible supercapacitors based on carbon nanotube-MnO2 nanocomposite film electrode. Chem. Eng. J. 2019, 371, 145–153; https://doi.org/10.1016/j.cej.2019.04.021.Search in Google Scholar

Watanabe, M.; Thomas, M. L.; Zhang, S.; Ueno, K.; Yasuda, T.; Dokko, K. Application of ionic liquids to energy storage and conversion materials and devices. Chem. Rev. 2017, 117(10), 7190–7239; https://doi.org/10.1021/acs.chemrev.6b00504.Search in Google Scholar PubMed

Wei, W.; Cui, X.; Chen, W.; Ivey, D. G. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 2011, 40(3), 1697–1721; https://doi.org/10.1039/c0cs00127a.Search in Google Scholar PubMed

Wen, Z.; Wang, X.; Mao, S.; Bo, Z.; Kim, H.; Cui, S.; Lu, G.; Feng, X.; Chen, J. Crumpled nitrogen‐doped graphene nanosheets with ultrahigh pore volume for high‐performance supercapacitor. Adv. Mater. 2012, 24(41), 5610–5616; https://doi.org/10.1002/adma.201201920.Search in Google Scholar PubMed

Winter, M.; Brodd, R. J. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 2004, 104(10), 4245–4270, https://doi.org/10.1021/cr020730k.Search in Google Scholar PubMed

Wu, Q.; Xu, Y.; Yao, Z.; Liu, A.; Shi, G. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 2010a, 4(4), 1963–1970; https://doi.org/10.1021/nn1000035.Search in Google Scholar PubMed

Wu, Z.-S.; Ren, W.; Wang, D.-W.; Li, F.; Liu, B.; Cheng, H.-M. High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 2010b, 4(10), 5835–5842; https://doi.org/10.1021/nn101754k.Search in Google Scholar PubMed

Wu, Z.; Pu, X.; Zhu, Y.; Jing, M.; Chen, Q.; Jia, X.; Ji, X. Uniform porous spinel NiCo 2 O 4 with enhanced electrochemical performances. J. Alloys Compd. 2015, 632, 208–217; https://doi.org/10.1016/j.jallcom.2015.01.147.Search in Google Scholar

Wu, X.; Li, S.; Wang, B.; Liu, J.; Yu, M. Mesoporous NiCo based nanowire arrays supported on three-dimensional N-doped carbon foams as non-noble catalysts for efficient oxygen reduction reaction. Microporous Mesoporous Mater. 2016, 231, 128–137; https://doi.org/10.1016/j.micromeso.2016.05.019.Search in Google Scholar

Xia, W.; Mahmood, A.; Zou, R.; Xu, Q. Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 2015, 8(7), 1837–1866; https://doi.org/10.1039/c5ee00762c.Search in Google Scholar

Xiang, C.; Li, M.; Zhi, M.; Manivannan, A.; Wu, N. A reduced graphene oxide/Co3O4 composite for supercapacitor electrode. J. Power Sources 2013, 226, 65–70; https://doi.org/10.1016/j.jpowsour.2012.10.064.Search in Google Scholar

Xiao, J.; Zeng, X.; Chen, W.; Xiao, F.; Wang, S. High electrocatalytic activity of self-standing hollow NiCo 2 S 4 single crystalline nanorod arrays towards sulfide redox shuttles in quantum dot-sensitized solar cells. Chem. Commun. 2013, 49(100), 11734–11736; https://doi.org/10.1039/c3cc44242j.Search in Google Scholar PubMed

Xiao, J.; Wan, L.; Yang, S.; Xiao, F.; Wang, S. Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 2014a, 14(2), 831–838; https://doi.org/10.1021/nl404199v.Search in Google Scholar PubMed

Xiao, X.; Li, T.; Peng, Z.; Jin, H.; Zhong, Q.; Hu, Q.; Yao, B.; Luo, Q.; Zhang, C.; Gong, L. Freestanding functionalized carbon nanotube-based electrode for solid-state asymmetric supercapacitors. Nano Energy 2014b, 6, 1–9; https://doi.org/10.1016/j.nanoen.2014.02.014.Search in Google Scholar

Xie, Y.; Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y.; Yu, X.; Nam, K.-W.; Yang, X.-Q.; Kolesnikov, A. I.; Kent, P. R. Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J. Am. Chem. Soc. 2014, 136(17), 6385–6394; https://doi.org/10.1021/ja501520b.Search in Google Scholar PubMed

Xie, Y.; Yang, C.; Chen, P.; Yuan, D.; Guo, K. MnO2-decorated hierarchical porous carbon composites for high-performance asymmetric supercapacitors. J. Power Sources 2019, 425, 1–9; https://doi.org/10.1016/j.jpowsour.2019.03.122.Search in Google Scholar

Xiong, S.; Yuan, C.; Zhang, X.; Xi, B.; Qian, Y. Controllable synthesis of mesoporous Co3O4 nanostructures with tunable morphology for application in supercapacitors. Chem. Eur J. 2009, 15(21), 5320–5326; https://doi.org/10.1002/chem.200802671.Search in Google Scholar PubMed

Xu, B.; Wu, F.; Chen, R.; Cao, G.; Chen, S.; Zhou, Z.; Yang, Y. Highly mesoporous and high surface area carbon: a high capacitance electrode material for EDLCs with various electrolytes. Electrochem. Commun. 2008, 10(5), 795–797; https://doi.org/10.1016/j.elecom.2008.02.033.Search in Google Scholar

Xu, Y.; Lin, Z.; Huang, X.; Liu, Y.; Huang, Y.; Duan, X. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 2013, 7(5), 4042–4049; https://doi.org/10.1021/nn4000836.Search in Google Scholar PubMed

Xu, K.; Yang, J.; Li, S.; Liu, Q.; Hu, J. Facile synthesis of hierarchical mesoporous NiCo2O4 nanoflowers with large specific surface area for high-performance supercapacitors. Mater. Lett. 2017, 187, 129–132; https://doi.org/10.1016/j.matlet.2016.10.083.Search in Google Scholar

Yan, J.; Fan, Z.; Sun, W.; Ning, G.; Wei, T.; Zhang, Q.; Zhang, R.; Zhi, L.; Wei, F. Advanced asymmetric supercapacitors based on Ni (OH) 2/graphene and porous graphene electrodes with high energy density. Adv. Funct. Mater. 2012, 22(12), 2632–2641; https://doi.org/10.1002/adfm.201102839.Search in Google Scholar

Yan, J.; Wang, Q.; Wei, T.; Fan, Z. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 2014, 4(4), 1300816; https://doi.org/10.1002/aenm.201300816.Search in Google Scholar

Yan, S.-x.; Luo, S.-h.; Feng, J.; Li, P.-w.; Guo, R.; Wang, Q.; Zhang, Y.-h.; Liu, Y.-g.; Bao, S. Rational design of flower-like FeCo2S4/reduced graphene oxide films: novel binder-free electrodes with ultra-high conductivity flexible substrate for high-performance all-solid-state pseudocapacitor. Chem. Eng. J. 2020, 381, 122695; https://doi.org/10.1016/j.cej.2019.122695.Search in Google Scholar

Yang, H.; Yoshio, M.; Isono, K.; Kuramoto, R. Improvement of commercial activated carbon and its application in electric double layer capacitors. Electrochem. Solid State Lett. 2002, 5(6), A141; https://doi.org/10.1149/1.1477297.Search in Google Scholar

Yang, L.; Cheng, S.; Ding, Y.; Zhu, X.; Wang, Z. L.; Liu, M. Hierarchical network architectures of carbon fiber paper supported cobalt oxide nanonet for high-capacity pseudocapacitors. Nano Lett. 2011, 12(1), 321–325; https://doi.org/10.1021/nl203600x.Search in Google Scholar PubMed

Yang, P.; Xiao, X.; Li, Y.; Ding, Y.; Qiang, P.; Tan, X.; Mai, W.; Lin, Z.; Wu, W.; Li, T. Hydrogenated ZnO core–shell nanocables for flexible supercapacitors and self-powered systems. ACS Nano 2013, 7(3), 2617–2626; https://doi.org/10.1021/nn306044d.Search in Google Scholar PubMed

Yang, J.; Duan, X.; Guo, W.; Li, D.; Zhang, H.; Zheng, W. Electrochemical performances investigation of NiS/rGO composite as electrode material for supercapacitors. Nano Energy 2014, 5, 74–81; https://doi.org/10.1016/j.nanoen.2014.02.006.Search in Google Scholar

Yang, J.; Zhang, Y.; Sun, C.; Guo, G.; Sun, W.; Huang, W.; Yan, Q.; Dong, X. Controlled synthesis of zinc cobalt sulfide nanostructures in oil phase and their potential applications in electrochemical energy storage. J. Mater. Chem. 2015, 3(21), 11462–11470; https://doi.org/10.1039/c5ta01739d.Search in Google Scholar

Yang, J.; Naguib, M.; Ghidiu, M.; Pan, L. M.; Gu, J.; Nanda, J.; Halim, J.; Gogotsi, Y.; Barsoum, M. W. Two‐dimensional Nb‐based M4C3 solid solutions (MXenes). J. Am. Ceram. Soc. 2016, 99(2), 660–666; https://doi.org/10.1111/jace.13922.Search in Google Scholar

Yu, P.; Zhang, X.; Wang, D.; Wang, L.; Ma, Y. Shape-controlled synthesis of 3D hierarchical MnO2 nanostructures for electrochemical supercapacitors. Cryst. Growth Des. 2008, 9(1), 528–533.10.1021/cg800834gSearch in Google Scholar

Yu, G.; Hu, L.; Liu, N.; Wang, H.; Vosgueritchian, M.; Yang, Y.; Cui, Y.; Bao, Z. Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett. 2011, 11(10), 4438–4442; https://doi.org/10.1021/nl2026635.Search in Google Scholar PubMed

Yu, M.; Wang, W.; Li, C.; Zhai, T.; Lu, X.; Tong, Y. Scalable self-growth of Ni@ NiO core-shell electrode with ultrahigh capacitance and super-long cyclic stability for supercapacitors. NPG Asia Mater. 2014, 6(9), e129; https://doi.org/10.1038/am.2014.78.Search in Google Scholar

Yu, A.; Chen, Z.; Maric, R.; Zhang, L.; Zhang, J.; Yan, J. Electrochemical supercapacitors for energy storage and delivery: advanced materials, technologies and applications. Appl. Energy 2015, 153, 1–2; https://doi.org/10.1016/j.apenergy.2015.05.054.Search in Google Scholar

Yuan, C.; Li, J.; Hou, L.; Zhang, X.; Shen, L.; Lou, X. W. Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv. Funct. Mater. 2012, 22(21), 4592–4597; https://doi.org/10.1002/adfm.201200994.Search in Google Scholar

Yuan, C.; Wu, H. B.; Xie, Y.; Lou, X. W. D. Mixed transition‐metal oxides: design, synthesis, and energy‐related applications. Angew. Chem. Int. Ed. 2014, 53(6), 1488–1504; https://doi.org/10.1002/anie.201303971.Search in Google Scholar PubMed

Yun, Y. S.; Park, M. H.; Hong, S. J.; Lee, M. E.; Park, Y. W.; Jin, H.-J. Hierarchically porous carbon nanosheets from waste coffee grounds for supercapacitors. ACS Appl. Mater. Interfaces 2015, 7(6), 3684–3690; https://doi.org/10.1021/am5081919.Search in Google Scholar PubMed

Zhai, Y.; Dou, Y.; Zhao, D.; Fulvio, P. F.; Mayes, R. T.; Dai, S. Carbon materials for chemical capacitive energy storage. Adv. Mater. 2011, 23(42), 4828–4850; https://doi.org/10.1002/adma.201100984.Search in Google Scholar PubMed

Zhang, L. L.; Zhao, X. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38(9), 2520–2531; https://doi.org/10.1039/b813846j.Search in Google Scholar PubMed

Zhang, Y.; Feng, H.; Wu, X.; Wang, L.; Zhang, A.; Xia, T.; Dong, H.; Li, X.; Zhang, L. Progress of electrochemical capacitor electrode materials: a review. Int. J. Hydrogen Energy 2009, 34(11), 4889–4899; https://doi.org/10.1016/j.ijhydene.2009.04.005.Search in Google Scholar

Zhang, Q.; Uchaker, E.; Candelaria, S. L.; Cao, G. Nanomaterials for energy conversion and storage. Chem. Soc. Rev. 2013, 42(7), 3127–3171; https://doi.org/10.1039/c3cs00009e.Search in Google Scholar PubMed

Zhang, P.; Sun, F.; Shen, Z.; Cao, D. ZIF-derived porous carbon: a promising supercapacitor electrode material. J. Mater. Chem. 2014a, 2(32), 12873–12880; https://doi.org/10.1039/c4ta00475b.Search in Google Scholar

Zhang, Z.; Xiao, F.; Qian, L.; Xiao, J.; Wang, S.; Liu, Y. Facile synthesis of 3D MnO2–graphene and carbon nanotube–graphene composite networks for high‐performance, flexible, all‐solid‐state asymmetric supercapacitors. Adv. Energy Mater. 2014b, 4(10), 1400064; https://doi.org/10.1002/aenm.201400064.Search in Google Scholar

Zhang, Z.; Han, S.; Wang, C.; Li, J.; Xu, G. Single-walled carbon nanohorns for energy applications. Nanomaterials 2015a, 5(4), 1732–1755; https://doi.org/10.3390/nano5041732.Search in Google Scholar PubMed PubMed Central

Zhang, Y.; Li, L.; Su, H.; Huang, W.; Dong, X. Binary metal oxide: advanced energy storage materials in supercapacitors. J. Mater. Chem. 2015b, 3(1), 43–59; https://doi.org/10.1039/c4ta04996a.Search in Google Scholar

Zhang, P.; Guan, B. Y.; Yu, L.; Lou, X. W. formation of double-shelled zinc–cobalt sulfide dodecahedral cages from bimetallic zeolitic imidazolate frameworks for hybrid supercapacitors. Angew. Chem. Int. Ed. 2017, 56(25), 7141–7145; https://doi.org/10.1002/anie.201702649.Search in Google Scholar PubMed

Zhang, Y.; Cao, N.; Szunerits, S.; Addad, A.; Roussel, P.; Boukherroub, R. Fabrication of ZnCoS nanomaterial for high energy flexible asymmetric supercapacitors. Chem. Eng. J. 2019, 374, 347–358; https://doi.org/10.1016/j.cej.2019.05.181.Search in Google Scholar

Zhao, D.-D.; Bao, S.-J.; Zhou, W.-J.; Li, H.-L. Preparation of hexagonal nanoporous nickel hydroxide film and its application for electrochemical capacitor. Electrochem. Commun. 2007, 9(5), 869–874; https://doi.org/10.1016/j.elecom.2006.11.030.Search in Google Scholar

Zhao, X.; Sánchez, B. M.; Dobson, P. J.; Grant, P. S. The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale 2011, 3(3), 839–855; https://doi.org/10.1039/c0nr00594k.Search in Google Scholar PubMed

Zhao, C.; Shao, X.; Zhang, Y.; Qian, X. Fe2O3/reduced graphene oxide/Fe3O4 composite in situ grown on Fe foil for high-performance supercapacitors. ACS Appl. Mater. Interfaces 2016, 8(44), 30133–30142; https://doi.org/10.1021/acsami.6b09594.Search in Google Scholar PubMed

Zheng, J.; Cygan, P.; Jow, T. Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J. Electrochem. Soc. 1995, 142(8), 2699–2703; https://doi.org/10.1149/1.2050077.Search in Google Scholar

Zhong, C.; Deng, Y.; Hu, W.; Qiao, J.; Zhang, L.; Zhang, J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 2015, 44(21), 7484–7539; https://doi.org/10.1039/c5cs00303b.Search in Google Scholar PubMed

Zhou, W.-j.; Zhang, J.; Xue, T.; Zhao, D.-d.; Li, H.-l. Electrodeposition of ordered mesoporous cobalt hydroxide film from lyotropic liquid crystal media for electrochemical capacitors. J. Mater. Chem. 2008, 18(8), 905–910; https://doi.org/10.1039/b715070a.Search in Google Scholar

Zhou, R.; Meng, C.; Zhu, F.; Li, Q.; Liu, C.; Fan, S.; Jiang, K. High-performance supercapacitors using a nanoporous current collector made from super-aligned carbon nanotubes. Nanotechnology 2010, 21(34), 345701; https://doi.org/10.1088/0957-4484/21/34/345701.Search in Google Scholar PubMed

Zhou, G.; Zhu, J.; Chen, Y.; Mei, L.; Duan, X.; Zhang, G.; Chen, L.; Wang, T.; Lu, B. Simple method for the preparation of highly porous ZnCo 2 O 4 nanotubes with enhanced electrochemical property for supercapacitor. Electrochim. Acta 2014, 123, 450–455; https://doi.org/10.1016/j.electacta.2014.01.018.Search in Google Scholar

Zhou, J.; Zha, X.; Chen, F. Y.; Ye, Q.; Eklund, P.; Du, S.; Huang, Q. A two‐dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5. Angew. Chem. Int. Ed. 2016, 55(16), 5008–5013; https://doi.org/10.1002/anie.201510432.Search in Google Scholar PubMed

Zhu, T.; Wu, H. B.; Wang, Y.; Xu, R.; Lou, X. W. formation of 1D hierarchical structures composed of Ni3S2 nanosheets on CNTs backbone for supercapacitors and photocatalytic H2 production. Adv. Energy Mater. 2012, 2(12), 1497–1502; https://doi.org/10.1002/aenm.201200269.Search in Google Scholar

Zhu, J.; Jiang, J.; Sun, Z.; Luo, J.; Fan, Z.; Huang, X.; Zhang, H.; Yu, T. 3D carbon/cobalt‐nickel mixed‐oxide hybrid nanostructured arrays for asymmetric supercapacitors. Small 2014, 10(14), 2937–2945; https://doi.org/10.1002/smll.201302937.Search in Google Scholar PubMed

Zhu, L.; Wu, W.; Zhu, Y.; Tang, W.; Wu, Y. Composite of CoOOH nanoplates with multiwalled carbon nanotubes as superior cathode material for supercapacitors. J. Phys. Chem. C 2015a, 119(13), 7069–7075; https://doi.org/10.1021/acs.jpcc.5b01498.Search in Google Scholar

Zhu, C.; Yang, P.; Chao, D.; Wang, X.; Zhang, X.; Chen, S.; Tay, B. K.; Huang, H.; Zhang, H.; Mai, W. All metal nitrides solid-state asymmetric supercapacitors. Adv. Mater. 2015b, 27(31): 4566–4571, https://doi.org/10.1002/adma.201501838.Search in Google Scholar PubMed

Zhu, B.; Tang, S.; Vongehr, S.; Xie, H.; Zhu, J.; Meng, X. FeCo2O4 submicron-tube arrays grown on Ni foam as high rate-capability and cycling-stability electrodes allowing superior energy and power densities with symmetric supercapacitors. Chem. Commun. 2016a, 52(12), 2624–2627; https://doi.org/10.1039/c5cc08857g.Search in Google Scholar PubMed

Zhu, H.; Sun, Y.; Zhang, X.; Tang, L.; Guo, J. Evaporation-induced self-assembly synthesis of mesoporous FeCo2O4 octahedra with large and fast lithium storage properties. Mater. Lett. 2016b, 166, 1–4; https://doi.org/10.1016/j.matlet.2015.12.018.Search in Google Scholar

Zhu, Y.; Cheng, S.; Zhou, W.; Jia, J.; Yang, L.; Yao, M.; Wang, M.; Wu, P.; Luo, H.; Liu, M. Porous functionalized self-standing carbon fiber paper electrodes for high-performance capacitive energy storage. ACS Appl. Mater. Interfaces 2017, 9(15), 13173–13180; https://doi.org/10.1021/acsami.7b01210.Search in Google Scholar PubMed

Received: 2020-10-06
Accepted: 2021-02-24
Published Online: 2021-03-10
Published in Print: 2022-03-28

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 9.6.2024 from https://www.degruyter.com/document/doi/10.1515/revic-2020-0022/html
Scroll to top button