Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 12, 2013

Coordination chemistry of polyoxo-carbocyclic compounds containing one or more neighboring oxo-groups

  • Olga Kovalchukova

    Olga Kovalchukova obtained a PhD in Chemistry in 1985 and a DSc in Chemistry in 2006. From 1992 to 1994 worked as an Associate Professor of the Chemistry Department of Addis Ababa University (Ethiopia). From 1994 to 2007 was an Associate Professor, and since 2007 – Professor of the General Chemistry Department, Peoples’ Friendship University of Russia (Moscow, Russian Federation). She is the author of more than 100 publications in coordination chemistry, with particular emphasis on the synthesis, structure and properties of complex compounds of transition metals with multifunctional organic N-heterocyclic ligands. Supervised numerous MSc and PhD researches.

    EMAIL logo
    and Svetlana Strashnova

    Svetlana Strashnova has got her PhD in Chemistry and since 1995 works as an Associate Professor at the General Chemistry Department of the Peoples’ Friendship University of Russia (Moscow, Russian Federation). She is the author of numerous contributions in coordination chemistry of metals with multifunctional carbocyclic and heterocyclic ligands.

Abstract

This is a review of publications concerning the results of X-ray analysis of single crystals and spectrochemical characteristics of metal complexes containing polyoxo-carbocyclic compounds with one or more neighboring oxo-groups. The features of lattice characteristics and coordination modes, depending on the nature of the organic dianion, are shown here. The squarate anions, C4O42- are predominantly involved in monodentate bridging coordination, and the derivatives containing five or six C-atoms in the cycle (croconate and rhodizonate anions) usually form bidentate chelating bridged modes. The stabilization of the crystal lattices of the metal complexes is due to the formation of hydrogen bonds and π-π stackings, which produce self-assembled three-dimensional (3D) structures with cavities and intercalation of some small molecules. The strong interlayer interactions lead to appearance of specific conductometric and magnetic properties, which together with their high thermal stabilities, make the oxocarbon complexes new and perspective materials for electronics and related areas.


Corresponding author: Olga Kovalchukova, Peoples’ Friendship University of Russia, Moscow, 117198, Russia, e-mail:

About the authors

Olga Kovalchukova

Olga Kovalchukova obtained a PhD in Chemistry in 1985 and a DSc in Chemistry in 2006. From 1992 to 1994 worked as an Associate Professor of the Chemistry Department of Addis Ababa University (Ethiopia). From 1994 to 2007 was an Associate Professor, and since 2007 – Professor of the General Chemistry Department, Peoples’ Friendship University of Russia (Moscow, Russian Federation). She is the author of more than 100 publications in coordination chemistry, with particular emphasis on the synthesis, structure and properties of complex compounds of transition metals with multifunctional organic N-heterocyclic ligands. Supervised numerous MSc and PhD researches.

Svetlana Strashnova

Svetlana Strashnova has got her PhD in Chemistry and since 1995 works as an Associate Professor at the General Chemistry Department of the Peoples’ Friendship University of Russia (Moscow, Russian Federation). She is the author of numerous contributions in coordination chemistry of metals with multifunctional carbocyclic and heterocyclic ligands.

Acknowledgments

This work was supported by the Russian Foundation for Basic Research, project no. 13-03-00079-a.

References

Aldoshin, S. M. Heading to photoswitchable magnets. Russ. Chem. Bull. 2008, 4, 718–735.Search in Google Scholar

Altman, J.; Beck, W. Squarate complexes of diamine palladium(II) and platinum(II). Inorg. Chim. Acta 1986, 119, 203–205.10.1016/S0020-1693(00)84341-8Search in Google Scholar

Arrizabalaga, P.; Bernardinelli, G.; Geoffrog, M.; Castan, P. The dithiosquarato cuprate and the dithiosquarato palladate ions: single crystal ESR study and crystallographic investigations. Inorg. Chim. Acta 1988, 154, 35–39.Search in Google Scholar

Artizzu, F.; Deplano, P.; Pilia, L.; Serpe, A.; Marchi, L.; Bernot, K.; Mercuri, M. L. Croconato-containing M(III) (M=Ga, Er) complexes as potential building blocks for mono/multifunctional molecular materials. Inorg. Chim. Acta 2011, 370, 474–481.Search in Google Scholar

Bellamy, A.; Golding, P. The study of some potential new synthetic routes to LLM-105 (2,6-diamino-3,5-dinitropyrazine-1-oxide). Cent. Eur. J. Energ. Mater. 2007, 4, 33–57.Search in Google Scholar

Benard, S.; Yu, P.; Nakatani, K.; Delouis, J. F. A photochromic molecule-based magnet. Chem. Mater. 2001, 13, 159–162.Search in Google Scholar

Beneto, M.; Soto, L.; Garcia-Lozano, J.; Escrivá, E.; Legros, J.-P.; Dahan, F. Crystal and molecular structure and properties of the first characterized copper(II) one-dimensional polymer containing mepirizole [4-methoxy-2-(5-methoxy-3-methyl-1H-pyrazol-1-yl)-6-methylpyrimidine]. J. Chem. Soc. Dalton Trans. 1991, 1057–1061.10.1039/DT9910001057Search in Google Scholar

Bernandinelli, G.; Castan, P.; Soules, R. On limited platinum chains. Synthesis and crystal structure of a green tetranuclear platinum compound, cis-diammine tetraplatinum squarate, Pt4(NH3)8(C4O4)4·4H20. A structural analogue of platinum blues. Inorg. Chim. Acta 1986, 120, 205–207.Search in Google Scholar

Bernardinelli, G.; Deguenon, D.; Soules, R.; Castan, P. Versatility of squaric acid as ligand. Crystal, molecular structures and magnetic studies of four poly- or dimetallic Cu(II) complexes. Can. J. Chem. 1989, 67, 1158–1165.Search in Google Scholar

Braga, D.; Bazzi, C.; Grepioni, F.; Novoa, J. J. Electrostatic compression on non-covalent interactions: the case of π stacks involving ions. New J. Chem. 1999, 23, 577–579.Search in Google Scholar

Braga, D.; Cojazzi, G.; Maini, L.; Grepioni, F. Reversible solid-state interconversion of rhodizonic acid H2C6O6 into H6C6O8 and the solid-state structure of the rhodizonate dianion C6O62- (aromatic or non-aromatic?). New J. Chem. 2001, 25, 1221–1223.Search in Google Scholar

Braga, D.; Maini, L.; Grepioni, F. Croconic acid and alkali metal croconate salts: some new insights into an old story. Chem. Eur. J. 2002, 8, 1804–1812.Search in Google Scholar

Butenschön, H. A new oxocarbon C12O6 via highly strained benzyne intermediates. Angew Chem. Int. Ed. Engl. 2007, 46, 4012–4014.Search in Google Scholar

Calatayud, M. L.; Sletten, J.; Julve, M.; Castro, I. Synthesis, spectroscopic and structural characterization of [Cu(phen)(C5O5)(H2O)]·H2O, [Ni(terpy)(C5O5)(H2O)]·H2O and [Ni(terpy)2](NO3)2·0.5H2O. J. Mol. Struct. 2005, 741, 121–128.Search in Google Scholar

Cangussu, D.; Stumpf, H. O.; Adams, H.; Thomas, J. A.; Lloret, F.; Julve, M. Oxalate, squarate and croconate complexes with bis(2-pyrimidylcarbonyl)amidatecopper(II): synthesis, crystal structures and magnetic properties. Inorg. Chim. Acta 2005, 358, 2292–2302.Search in Google Scholar

Carranza, J.; Sletten, J.; Brennan, C.; Lloret, F.; Cano, J.; Julve, M. Mono-, di- and trinuclear 2,3,5,6-tetrakis(2-pyridyl)pyrazine (tppz)-containing copper(II) complexes: syntheses, crystal structures and magnetic properties. Dalton Trans. 2004, 3997–4005.10.1039/b412034pSearch in Google Scholar

Carranza, J.; Sletten, J.; Lloret, F.; Julve, M. Manganese(II) complexes with croconate and 2-(2-pyridyl)imidazole ligands: Syntheses, X-ray structures and magnetic properties. Inorg. Chim. Acta 2009, 362, 2636–2642.Search in Google Scholar

Castro, I.; Faus, J.; Julve, M.; Verdaguer, M.; Monge, A.; Gutierrez-Puebla, E. Synthesis and magnetic properties of bis(μ-hydroxo)bis[(2,2′-bipyridyl)copper(II)] squarate. Crystal structure of bis(μ-hydroxo)bis[(2,2′-bipyridyl)copper(II)] squarate tetrahydrate. Inorg. Chim. Acta 1990, 170, 251–257.Search in Google Scholar

Castro, I.; Faus, J.; Julve, M.; Journaux, Y.; Sletten, J. Complex formation between squarate (C4O42–) and CuIIL [L=2,2′-bipyridyl, 2,2′:6′,2″-terpyridyl or bis(2-pyridylcarbonyl)amide anion (bpca)] in dimethyl sulphoxide solution. Crystal structure of [Cu2(bpca)2(H2O)2(C4O4)]. J. Chem. Soc. Dalton Trans. 1991, 2533–2538.10.1039/DT9910002533Search in Google Scholar

Castro, I.; Sletten, J.; Faus, J.; Julve, M.; Journaux, Y.; Lloret, F.; Alvarez, S. Exchange interaction through a croconato bridge: synthesis, crystal structure, and magnetic properties of (μ-croconato)bis[{bis(2-pyridylcarbonyl)amido}copper(II)] trihydrate. Inorg. Chem. 1992, 31, 1889–1894.Search in Google Scholar

Castro, I.; Sletten, J.; Glaerum, L. K.; Lloret, F.; Faus, J.; Julve, M. Syntheses, crystal structures and electronic properties of [Cu(bipym)(C5O5)(H2O2]·H2O and [Cu2(bipym)(C5O5)2(H2O)2·4H2O (bipym=2,2′-bipyrimidine). J. Chem. Soc. Dalton Trans. 1994, 2777–2782.10.1039/DT9940002777Search in Google Scholar

Castro, I.; Sletten, J.; Calatayud, M. L.; Julve, M.; Cano, J.; Lloret, F.; Caneshi, A. Synthesis and magnetic properties of a tetranuclear copper(II) complex with a μ-1,2,3,4-squarato coordination mode. Crystal structure of (μ-1,2,3,4-squarato)tetrakis[(tris(2-aminoethyl)amine)copper(II)] perchlorate. Inorg. Chem. 1995, 34, 4903–4909.Search in Google Scholar

Castro, I.; Calatayud, M. L.; Sletten, J.; Lloret, F.; Julve, M. Crystal structures and magnetic properties of the squarate-O1,On-bridged dinuclear copper(II) complexes [Cu2(phen)4(C4O4)](CF3SO3)2·3H2O (n=2) and [Cu2(bipy)4(C4O4)](CF3SO3)2·6H2O (n=3). Inorg. Chim. Acta 1999, 287, 173–180.Search in Google Scholar

Castro, I.; Calatayaud, M. L.; Sletten, J.; Sletten, J.; Julve, M.; Lloret, F. Squarate and croconate in designing one- and two-dimensional oxamidato-bridged copper(II) complexes: synthesis, crystal structures and magnetic properties of [Cu2(apox)(C4O4)(H2O)2]n·n H2O and [Cu4(apox)2(C5O5)2]·6 H2O. Comptes rendus de l’Academie des sciences –IIC – Chemistry 2001, 4, 235–243.Search in Google Scholar

Castro, I.; Calatayud, M. L.; Lloret, F.; Sletten, J.; Julve, M. Syntheses, crystal structures and magnetic properties of di- and trinuclear croconato-bridged copper(II) complexes. J. Chem. Soc. Dalton Trans. 2002, 2397–2403.10.1039/b201090aSearch in Google Scholar

Chen, Q.; Liu, S. Synthesis and crystal and molecular structure of a binuclear tin(IV)-squarate species. Inorg. Chim. Acta 1990, 175, 269–272.10.1016/S0020-1693(00)84836-7Search in Google Scholar

Chen, Q.; Ma, L.; Liu, S.; Zubieta, J. Structural characterization of the pentamolybdate anion, [(MoO4)2{Mo3O8(OMe)}]-3, and isolation of the [Mo3O8(OMe)]+ trinuclear core in the squarate complex [{Mo3O8(OMe)}(C4O4)2]3-. J. Amer. Chem. Soc. 1989, 111, 5944–5946.Search in Google Scholar

Chen, Z.; Sutton, L. R.; Moran, D.; Hirsch, A.; Thiel, W.; von Ragué Schleyer, P. A theoretical and structural investigation of thiocarbon anions. J. Org. Chem. 2003, 68, 8808–8814.Search in Google Scholar

Chesick, J. P.; Doany, F. Chromium squarates: Cr(C4O4)(OH)·3H2O and Cr(C4O4)3/2·7H2O. Acta cryst. 1981, B37, 1076–1079.Search in Google Scholar

Clemente-León, M.; Coronado, E.; Lopez-Jordà, M.; Desplanches, C.; Asthan, S.; Wang, H.; Letard, J.-F. A hybrid magnet with coexistence of ferromagnetism and photoinduced Fe(III) spin-crossover. Chem. Sci. 2011a, 2, 1121–1127.Search in Google Scholar

Clemente-León, M.; Coronado, E.; Gastaldoz, C. M.; Romero, F. M. Multifunctionality in hybrid magnetic materials based on bimetallic oxalate complexes. Chem. Soc. Rev. 2011b, 40, 473–497.Search in Google Scholar

Clemente-León, M.; Coronado, E.; Lopez-Jordà, M.; Waerenborgh, J. C.; Desplanches, C.; Wang, H.; Létard, J.-F.; Hauser, A.; Tissot, A. Stimuli responsive hybrid magnets: tuning the photoinduced spin-crossover in Fe(III) complexes inserted into layered magnets. J. Amer. Chem. Soc. 2013, 135, 8655–8667.Search in Google Scholar

Condren, S. M.; McDonald, H. O. Synthesis and spectroscopic properties of vanadium(III) squarate trihydrate. Inorg. Chem. 1973, 12, 57–59.Search in Google Scholar

Cornia, A.; Fabretti, A. C.; Giusti, A. Molecular structure and magnetic properties of copper(II), manganese(II) and iron(II) croconate tri-hydrate. Inorg. Chim. Acta 1993, 212, 87–94.Search in Google Scholar

Coronado, E.; Curreli, S.; Giménez-Saiz, C.; Gómez-García, C. J.; Deplano, P.; Mecuri, M. L.; Serpe, A.; Pilia, L.; Faulmann, C.; Canadell, E. New BEDT-TTF/[Fe(C5O5)3]3- hybrid system: synthesis, crystal structure, and physical properties of a chirality-induced α phase and a novel magnetic molecular metal. Inorg. Chem. 2007, 46, 4446–4457.Search in Google Scholar

Cortadellas, O.; Galibert, A. M.; Soula, B.; Donnadieu, B.; Fabre, P.-L. Palladium(II) complexes obtained from 3,4-bis(cyanamido)cyclobutane-1,2-dione dianion. Inorg. Chim. Acta 2004, 357, 746–754.Search in Google Scholar

Cortadellas, O.; Galibert, A. M.; Soula B.; Donnadieu, B.; Fabre, P.-L. Nickel coordination compounds of the cyanamido squarate ligand. The crystal structures of the 2,4-bis(cyanamido)cyclobutane-1,3-dione dianion (2,4-NCNsq2-) and of three polymers with general formula [Ni(Him)x(H2O)4-x(2,4-NCNsq) yH2O]n (x=2–4; y=1–3; Him=imidazole). Inorg. Chim. Acta 2006, 359, 484–496.10.1016/j.ica.2005.07.048Search in Google Scholar

Coucouvanis, D.; Murphy, C. N.; Kanodia, S. K. Metal-mercaptide chemistry. The synthesis and structural characterization of the [Cu(SC6H5)3]2- anion. A rational synthesis and the structure of the [Cu4(SC6H5)6]2- cluster. Inorg. Chem. 1980, 19, 2993–2998.Search in Google Scholar

Curreli, S.; Deplano, P.; Faulmann, C.; Mercuri, M. L.; Pilia, L.; Serpe, A.; Coronado, E.; Gómez-García, C. J. Synthesis, crystal structures and magnetic properties of mononuclear tris(croconate)ferrate(III) complexes. Inorg. Chimica Acta 2006, 359, 1177–1183.Search in Google Scholar

Das, N. A.; Atta, M.; Arif, A. M.; Stang, P. J. Self-assembly of neutral platinum-based supramolecular ensembles incorporating oxocarbon dianions and oxalate. Inorg. Chem. 2005, 44, 7130–7137.Search in Google Scholar

De Paula E. E. B.; Visentin, L. C.; Yoshida, M. I.; de Oliveira, L. F. C.; Machado, F. C. Unprecedented μ-1,2-bis(monodentate) coordination mode of croconate dianion (C5O52-): Synthesis and crystal structures of manganese- and copper-based coordination polymers. Polyhedron 2011, 30, 213–220.Search in Google Scholar

Dinh Do, N.; Kovalchukova, O.; Stash, A.; Strashnova, S. Catena-poly[ammonium[aquabis(μ-2,3,5,6-tetraoxo-4-nitropyridin-4-ido)argentate(I)]]. Acta Cryst. 2013, E69, m477–m478.Search in Google Scholar

Domene, C.; Fowler, P. W.; Jenneskens, L. W.; Steiner, E. On the lack of ring-current aromaticity of (heteroatom) [N] radialenes and their dianions. Chem. Europ. J. 2007, 13, 269–276.Search in Google Scholar

Dumestre, F.; Soula, B.; Galibert, A.-M.; Fabre, P. L.; Bernardinelli, G.; Donnadieu, B.; Castan, P. Synthesis and characterization of cobalt(II) complexes of croconate and dicyanomethylene-substituted derivatives. J. Chem. Soc. Dalton Trans. 1998, 4131–4138.10.1039/a807687aSearch in Google Scholar

Eggerding, D.; West, R. Synthesis and properties of deltic acid (dihydroxycyclopropenone) and the deltate ion. J. Amer. Chem. Soc. 1976, 98, 3641–3644.Search in Google Scholar

Fabre, P.-L.; Pena, C.; Galibert, A. M.; Soula, B.; Bernardinelli, G.; Donnadieu, B.; Castan, P. Pseudo-oxocarbons complexes-complexation of 2,4-bis(dicyanomethylene)-cyclobutane-1,3-dione dianion with copper. X-ray identification and electrochemical properties of the dianion and copper(I) and (II) complexes. Can. J. Chem. 2000, 78, 280–290.Search in Google Scholar

Fabre, P.-L.; Galibert, A. M.; Soula, B.; Dahan, F.; Castan, P. Complexation of 3,4-bis(cyanamido)cyclobutane-1,2-dione dianion with copper. Crystal structures and spectroscopic data of copper-(I) and -(II) complexes. J. Chem. Soc. Dalton Trans. 2001, 1529–1536.10.1039/b009239hSearch in Google Scholar

Faria, L. F. O.; Soares, A. L. Jr.; Diniz, R.; Yoshida, M. I.; Edwards, H. G. M.; de Oliveira, L. F. C. Mixed salts containing croconate violet, lanthanide and potassium ions: Crystal structures and spectroscopic characterization of supramolecular compounds. Inorg. Chim. Acta 2010, 363, 49–56.Search in Google Scholar

Ferreira, D. E. C.; Dos Santos, H. F.; De Almeida, W. B.; Junqueira, G. M. A. Molecular properties of coordination compounds of the croconate ion with first-row divalent transition metals: a quantum mechanical study. J. Braz. Chem. Soc. 2005, 18, 1379–1387.Search in Google Scholar

Galibert, A. M.; Soula, B.; Donnadieu, B.; Fabre, P.-L. Pseudo-oxocarbon complexes – crystal structure of a copper(II) complex with 2,4-bis(dicyanomethylene)cyclobutane-1,3-dione. Inorg. Chim. Acta, 2001, 313, 160–164.Search in Google Scholar

Galibert, A. M.; Cortadellas, O.; Soula, B.; Donnadieu, B.; Fabre, P.-L. Characterization of two conformers in the co-ordination chemistry of 3,4-bis(cyanamido)cyclobutane-1,2-dione dianion: syntheses, crystal structures, and electrochemical study of nickel(II) complexes. J. Chem. Soc. Dalton Trans. 2002, 3743–3750.10.1039/b202085hSearch in Google Scholar

Galibert, A. M.; Soula, B.; Donnadieu, B.; Fabre, P.-L. Diversity of the coordination modes of Croconate Violet. Crystal structures, spectroscopic characterization and redox studies of mono-, di- and poly-nuclear iron(II) complexes. Dalton Trans. 2003, 2449–2456.10.1039/b300960mSearch in Google Scholar

Gavilan, E.; Audebrand, N. Calcium croconate and calcium oxalato-croconate complexes with 2D and 3D crystal structures. Polyhedron 2007, 26, 5533–5543.10.1016/j.poly.2007.08.018Search in Google Scholar

Gelb, R. I.; Schwartz, L. M.; Laufer, D. A.; Yardley, J. O. The structure of aqueous croconic acid. J. Phys. Chem. 1977, 81, 1268–1274.Search in Google Scholar

Gelb, R. I.; Schwartz, L. M.; Laufer, D. A. The structure of aqueous rhodizonic acid. J. Phys. Chem. 1978, 82, 1985–1988.Search in Google Scholar

Goncalves, N. S.; Santos, P. S.; Vancato, I. Lithium croconate dihydrate. Acta Cryst. 1996, C52, 622–624.Search in Google Scholar

Ha, T.-K.; Puebla, C. A quantum chemical study of the cyclic oxocarbon dianions CnOn-2 (n=3, 4, 5 and 6): II. Electronically excited states. J. Mol. Struct. (Theochem). 1986, 137, 183–189.Search in Google Scholar

Habenschuss, M.; Gerstein, B. C. An X-ray, spectroscopic, and magnetic study of the structure of nickel squarate dihydrate, NiC4O4·2H2O. J. Chem. Phys. 1974, 61, 852–860.Search in Google Scholar

Hammond, P. R. 1,4-Benzoquinone tetracarboxylic acid dianhydride, C10O8: a strong acceptor. Science 1963, 142, 502.10.1126/science.142.3591.502Search in Google Scholar

Hamura, T.; Ibusuki, Y.; Uekusa, H.; Matsumoto, T.; Siegel, J. S.; Baldridge, K. K.; Suzuki, K. Dodecamethoxy- and hexaoxotricyclobutabenzene: synthesis and characterization. J. Am. Chem. Soc. 2006, 128, 10032–10033.Search in Google Scholar

Heuer, W. B.; Pearson, W. H. Synthesis and characterization of metal tris-dithiocroconate complexes and dicyanomethylene-substituted analogues. Crystal and molecular structure of [Ph4P]3[Co(dtcroc)3]·) 0.6 acetone. Polyhedron 1996a, 15, 2199–2210.10.1016/0277-5387(95)00499-8Search in Google Scholar

Heuer, W. B.; Pearson, W. H. Synthesis and characterization of nickel-group bis(dithiocroconate) complexes and dicyanomethylene-substituted analogues. J. Chem. Soc. Dalton Trans. 1996b, 3507–3513.Search in Google Scholar

Junqueira, G. M. A.; Rocha, W. R.; De Almeidac, W. B.; Dos Santos, H. F. Theoretical analysis of the oxocarbons: structure and spectroscopic properties of croconate ion and its coordination compound with lithium. Phys. Chem. Chem. Phys. 2001, 3, 3499–3505.Search in Google Scholar

Junqueira, G. M. A.; Rocha, W. R.; De Almeidac, W. B.; Dos Santos, H. F. Theoretical analysis of the oxocarbons: the role played by the solvent and the counter-ions in the electronic spectrum of the deltate ion. Phys. Chem. Chem. Phys. 2002, 4, 2517–2523.Search in Google Scholar

Junqueira, G. M. A.; Rocha, W. R.; De Almeidac, W. B.; Dos Santos, H. F. Theoretical analysis of the oxocarbons: the solvent and counter-ion effects on the structure and spectroscopic properties of the squarate ion. Phys. Chem. Chem. Phys. 2003, 5, 437–445.Search in Google Scholar

Junqueira, G. M. A.; Rocha, W. R.; De Almeidac, W. B.; Dos Santos, H. F. Theoretical study of oxocarbons: structure and vibrational spectrum of the D6h and C2 forms of the rhodizonate ion. J. Mol. Struct. Theochem 2004, 684, 141–147.Search in Google Scholar

Junqueira, G. M. A.; Rocha, W. R.; De Almeidac, W. B.; dos Santos, H. F. Theoretical analysis of the oxocarbons: the electronic spectrum of the rhodizonate ion. J. Mol. Struct. Theochem 2005, 719, 31–39.Search in Google Scholar

Kabir, M. K.; Miyazaki, N.; Kawata, K.; Adachi, K.; Kumagai, H.; Inoue, K.; Kitagawa, S.; Iijima, K.; Katada, M. Novel layered structures constructed from iron-chloranilate compounds. Coord. Chem. Rev. 2000, 198, 157–169.Search in Google Scholar

Kitagawa, S.; Kawata, S. Coordination compounds of 1,4-dihydroxybenzoquinone and its homologues. Structures and properties. Coord. Chem. Rev. 2002, 224, 11–34.Search in Google Scholar

Kovalchukova, O. V.; Kuzmina, N. E.; Palkina, K. K.; Strashnova, S. B.; Zaitsev, B. E. Synthesis and structure of d-metal complexes with 2,3,5,6-tetraoxo-4- nitropyridine: crystal structure of Ni(H2O)6(C5HO6N2)2·2H2O. Russ. J. Inorg. Chem. 2003, 48, 194–198.Search in Google Scholar

Kovalchukova, O.; Dinh Do, N.; Stash, A.; Bel’sky, V.; Strashnov, P.; Alafinov, A.; Volyansky, O.; Strashnova, S.; Kobrakov, K. Crystal and molecular structure, and spectral characteristics of sodium 3,5-bis(hydroxyimino)-1-methyl-2,4,6-trioxocyclohexanide. Cryst. Struct. Theory Appl. 2012, 1, 46–51.Search in Google Scholar

Kovalchukova, O. V.; Stash, A. I.; Nguyen, D. D.; Strashnova, S. B.; Belskii, V. K. Hexaaquacobalt(II) and hexaaquacadmium(II) 2,3,5,6-tetraoxo-4-nitropyridinates: synthesis, structure, and properties of [M(H2O)6](C5HN2O6)2·2H2O (M=Co, Cd). Russ. J. Coord. Chem. 2013, 39, 234–238.Search in Google Scholar

Kuzmina, N. E.; Palkina, K. K.; Kovalchukova, O. V.; Zaitsev, B. E.; Strashnova, S. B.; Isaeva, N. Yu. Physicochemical properties of solutions of bis(2,3,5,6-tetraoxo-4- nitropyridinate) dianions. Crystal structures of sodium 2,3,5,6-tetraoxo-4- nitropyridinate trihydrate and sodium ammonium bis(2,3,5,6-tetraoxo-4-nitropyridinate) monohydrate. Crystallogr. Rep. 2004, 49, 758–762.Search in Google Scholar

Lam, C. K.; Mak, T. C. W. Generation and stabilization of D6h and C2v valence tautomeric structures of the rhodizonate dianion in hydrogen-bonded host lattices. Angew. Chem. 2001a, 113, 3561–3563.Search in Google Scholar

Lam, C. K.; Mak, T. C. W. Generation and stabilization of D6h and C2v valence tautomeric structures of the rhodizonate dianion in hydrogen-bonded host lattices. Angew. Chem. Int. Ed. 2001b, 40, 3453–3455.Search in Google Scholar

Lam, C. K.; Mak, T. C. W. Rhodizonate and croconate dianions as divergent hydrogen-bond acceptors in the self-assembly of supramolecular structures. Chem. Commun. 2001c, 1568–1569.Search in Google Scholar

Leibovici, C. Theoretical analysis of the structure of monocyclic oxocarbon dianions [CnOn]-2 (n=3, 4, 5, 6). J. Mol. Struct. 1972, 13, 185–189.Search in Google Scholar

Lloret, F.; Julve, M.; Faus, J.; Solans, X.; Journaux, Y.; Morgenstern-Badarau I. Synthesis and magnetic properties of binuclear iron(III) complexes with oxalate, 2,5-dihydroxy-1,4-benzoquinone dianion, and squarate as bridging ligands. Crystal structure of (μ-1,3-squarato)bis[(N,N′-ethylenebis(salicylideneaminato))(methanol)iron(III)]. Inorg. Chem. 1990, 29, 2232–2237.Search in Google Scholar

Long, G. A. Moessbauer, magnetic, and electronic structural study of two iron squarate complexes. J. Inorg. Chem. 1978, 17, 2702–2707.Search in Google Scholar

Maharadj, D. J.; Hall, L. A. The synthesis and characterization of copper(II) squarate chloride. Inorg. Chim. Acta 1988, 145, 235–236.Search in Google Scholar

Manna, S. C.; Ghosh, A. K.; Zangrando, E.; Chaudhuri, N. R. 3D supramolecular networks of Co(II)/Fe(II) using the croconate dianion and a bipyridyl spacer: Synthesis, crystal structure and thermal study. Polyhedron 2007, 26, 1105–1112.Search in Google Scholar

Moyano, A.; Serratosa, F. A simple model for the electronic structure of oxocarbon dianions. J. Mol. Struct. 1982, 90, 131–136.Search in Google Scholar

Nallaiah, C. Synthesis of tetrahydroxy-1,4-benzoquinone biscarbonate and hexahydroxybenzene triscarbonate-new organic carbon oxides. Tetrahedron 1984, 40, 4897–4900.10.1016/S0040-4020(01)91324-9Search in Google Scholar

Nazari, F. Stable structures of oxocarbons and pseudooxocarbons of group VI. J. Mol. Struct. Theochem 2006, 760, 29–37.10.1016/j.theochem.2005.10.053Search in Google Scholar

Ohba, M.; Okawa, H. Synthesis and magnetism of multi-dimensional cyanide-bridged bimetallic assemblies. Coord. Chem. Rev. 2000, 198, 313–328.Search in Google Scholar

Oliveira, L. F. C.; Santos, P. S. Chromophore selective resonance Raman enhancement in copper(II) squarate complexes with nitrogenous counterligands. J. Mol. Struct. 1991a, 245, 215–220.Search in Google Scholar

Oliveira, L. F. C.; Santos, P. S. Chromophore-selective resonance Raman spectra of copper (II) croconate and rhodizonate complexes with nitrogenous counterligands. J. Mol. Struct. 1991b, 263, 59–67.Search in Google Scholar

Palkina, K. K.; Kuzmina, N. E.; Kovalchukova, O. V.; Strashnova, S. B.; Zaitsev, B. E. 2,3,5,6-tetraoxo-4-nitropyridate anion-the first representative of a new class of tetraoxopyridines: the structure of ammonium 2,3,5,6-tetraoxo-4-nitropyridate C5N3O6H5. Dokl. Ross. Akad. Nauk 2000, 370, 361–365.Search in Google Scholar

Pena, C.; Galibert, A.-M.; Soula, B.; Fabre, P.-L.; Bernardinelli, G.; Castan, P. Pseudo-oxocarbons: the first complex of the 3,4-bis(dicyanomethylene)cyclobutane-1,2-dione dianion (cdcb2–); crystal structure of [{Cu2(cdcb)(MeCN)2}n]. J. Chem. Soc. Dalton Trans. 1998, 239–242.10.1039/a705200fSearch in Google Scholar

Plater, M. J.; Foreman, M. R.; Howie, R. A. Hydrothermal synthesis of catena(triaqua-(μ-2-croconato-O,O′,O″,O′″)-calcium(II)) calcium croconate trihydrate. Chem. Crystallogr. 1998, 28, 653–656.Search in Google Scholar

Quinonero, D.; Garau, C.; Fontera, A.; Ballester, P.; Costa, A.; Deya, P. M. Quantification of aromaticity in oxocarbons: the problem of the fictitious “nonaromatic” reference system. Chem. Eur. J. 2002, 8, 433–438.Search in Google Scholar

Reinprecht, J.; Miller, J. G.; Vogel, G. C.; Haddad, M. S.; Hendrickson, D. N. Synthesis and characterization of copper(II) squarate complexes. Inorg. Chem. 1980, 19, 927–931.Search in Google Scholar

Robl, C.; Weiss, A. Synthesis and crystal structure of CuC4O4·2H2O. Z. Naturforsch 1986, 41B, 1341–1345.10.1515/znb-1986-1104Search in Google Scholar

Robl, C.; Weiss, A. Alkaline-earth squarates III. CaC4O4·2.5H2O, a novel polymer complex with zeolitic properties (1). Mater. Res. Bull. 1987a, 22, 373–380.Search in Google Scholar

Robl, C.; Weiss, A. Darstellung und struktur von Ag2C4O4. Z. Anorg. Allg. Chem. 1987b, 546, 161–168.Search in Google Scholar

Robl, C.; Gnutzmann, V.; Weiss, A. Erdalkaliquadratate. IV. SrC4O4·3H2O Typ II. Z. Anorg. Allg. Chem. 1987, 549, 187–194.Search in Google Scholar

Santos, P. S.; Sala, O.; Noda, L. K.; Goncalves, N. S. Evidences for a localized chromophore in the Ti(IV)/squarate complex: a resonance Raman investigation. Spectrochim. Acta. Part A 2000, 56, 1553–1562.Search in Google Scholar

Sauer, J.; Schröder, B.; Richard Wiemer, R. Eine studie der Diels-Alder-reaktion, VI. Kinetischer nachweis des moleküls C6O6 (dianhydrid der äthylentetracarbonsäure). Chem. Ber. 1967, 100, 306–314.Search in Google Scholar

Schleyer, P.; von Rague, R.; Najafian, K.; Jiao, H. Are oxocarbon dianions aromatic? J. Org. Chem. 2000, 65, 426–431.10.1021/jo991267nSearch in Google Scholar PubMed

Schwartz, L. M.; Gelb, R. I.; Yardley, J. O. Aqueous dissociation of croconic acid. J. Phys. Chem. 1975, 79, 2246–2251.Search in Google Scholar

Seitz, G.; Imming, P. Oxocarbons and pseudooxocarbons. Chem. Rev. 1992, 92, 1227–1260.Search in Google Scholar

Semmingsen, D. The crystal structure of squaric acid. Acta Chem. Scand. 1973, 27, 3961–3972.Search in Google Scholar

Shi, J. M.; Liao, D. Z.; Cheng, P.; Yan, S. P. Synthesis and magnetism of squarate complexes. Synth. React. Inorg. Met. Org. Chem. 1996, 26, 105–114.10.1080/00945719608004249Search in Google Scholar

Simonsen, O.; Toftlund, H. Synthesis and crystal structure of barium tetrakis(μ-squarato-O1,O2)-diplatinate(II) hexahydrate. Inorg. Chem. 1981, 20, 4044–4047.Search in Google Scholar

Sletten, J.; Bjørsvik, O. Synthesis and crystal structures of two dinuclear copper(II) complexes with 2,3-bis(2-pyridyl)pyrazine as bridging ligand. Acta Chem. Scand. 1998, 52, 770–777.Search in Google Scholar

Solans, X.; Aguilo, M.; Gleizes, A.; Faus, J.; Julve, M.; Verdaguer, M. Coordination modes of the squarate ligand: syntheses and crystal structures of six copper(II) squarate complexes. Inorg. Chem. 1990, 29, 775–784.Search in Google Scholar

Soula, B.; Galibert, A. M.; Donnadieu, B.; Fabre, P. L. Complexation of croconate violet with copper(II). Crystal structures, spectroscopic characterizations and redox studies. Inorg. Chim. Acta 2001, 324, 90–98.Search in Google Scholar

Soules, R.; Dahan, F.; Laurent, J. P.; Castan, P. A novel co-ordination mode for the squarate ligand [dihydroxycyclobutenedionate(2–)]: synthesis, crystal structure, and magnetic properties of catena-diaqua(2,2′-bipyridyl)-μ-(squarato-O1,O2)-nickel(II) dihydrate. J. Chem. Soc. Dalton Trans. 1988, 587–590.10.1039/DT9880000587Search in Google Scholar

Soules, R.; Mosset, A.; Laurent, J. P.; Castan, P.; Castan, P.; Bernardinelli, G.; Delamar, M. Polynuclear platinum complexes deriving from squaric acid. Inorg. Chim. Acta 1989, 155, 105–111.Search in Google Scholar

Speier, G.; Speier, E.; Noll, B.; Cortlandt, G. Pierpont reduction and aerobic oxidation of hexaketocyclohexane (C6O6) by reaction with metallic copper. Inorg. Chem. 1997, 36, 1520–1521.Search in Google Scholar

Strazzolini, P.; Gambi, A.; Giumanini A. G.; Vancik, H. The reaction between ethanedioyl (oxalyl) dihalides and Ag2C2O4: a route to Staudinger’s elusive ethanedioic (oxalic) acid anhydride. J. Chem. Soc., Perkin Trans. 1998, 1, 2553–2558.Search in Google Scholar

Teles, W. M.; Farani, R. D. A.; Maia, D. S.; Speziali, N. L.; Yoshida, M. I.; de Oliveira, L. F. C.; Machado, F. C. Crystal structure, thermal analysis and spectroscopic properties of tetrabutylammonium 3,5-bis(dicyanomethylene)-cyclopentane-1,2,4-trionate: An intriguing pseudo-oxocarbon and its zinc(II) complex. J. Mol. Struct. 2006a, 783, 52–60.Search in Google Scholar

Teles, W. M.; Faran, R. D. A.; Speziali, N. L.; Yoshida, M. I.; de Oliveira, L. F. C.; Machado, F. C. K2[Zn(CV)2(H2O)2] 2H2O: The first Zn(II) complex structurally characterized containing the pseudo-oxocarbon Croconate Violet (CV2-). Inorg. Chim. Acta 2006b, 359, 3384–3388.10.1016/j.ica.2006.04.005Search in Google Scholar

Teles, W. M.; Farani, R. D. A.; Yoshida, M. I.; Bortoluzzi, A. J.; Hörner, M.; de Oliveira, L. F. C.; Machado, F. C. Synthesis and crystal structure of a novel Zn(II) 2-D coordination polymer containing 1,3-bis(4-pyridyl)propane ligand and Croconate Violet dianion. Polyhedron 2007, 26, 1469–1475.Search in Google Scholar

Torii, H.; Tasumi, M. Vibrational analysis of the squarate ion based on ab initio molecular orbital calculations. A practical method to calculate vibrational force fields of non-bond-alternating conjugated molecules. J. Mol. Struct. Theochem 1995, 334, 15–27.10.1016/0166-1280(94)04012-HSearch in Google Scholar

Van Ooijen, J. A. C.; Reedijk, J.; Spek, A. L. Crystal and molecular structure, spectroscopy, and magnetism of diaquobis(imidazole)catena-μ-(squarato-1,3)-nickel(II). A one-dimensional polymer. Inorg. Chem. 1979, 18, 1184–1189.Search in Google Scholar

Verter, H. S.; Dominic, R. A new carbon oxide: synthesis of hexahydroxybenzene tris oxalate. Tetrahedron 1967, 23, 3863–3864.Search in Google Scholar

Wang, Y., Stucky, G. D.; Williams, J. M. Is squaric acid square? A combined X-ray and neutron diffraction study of 3,4-dihydroxycyclobut-3-ene-1,2-dione. J. Chem. Soc., Perkin Trans. 2 1974, 35–38.10.1039/p29740000035Search in Google Scholar

Wang, C.-C.; Yang, C. H.; Lee, G. H. Synthesis and structural characterization of [Na2M(C5O5)2(H2O)2]·4H2O (M=NiII, CuII). Inorg. Chem. 2002, 41, 1015–1018.Search in Google Scholar

Wang, C.-C.; Yang, C.-H.; Tseng, S.-M.; Lee, G.-H.; Chiang, Y.-P.; Sheu, H.-S. Self-assembly of a mixed-ligand metal-coordination polymeric network of cadmium(II) croconate with 4,4′-bipyridine. Inorg. Chem. 2003, 42, 8294–8299.Search in Google Scholar

Wang, C.-C.; Kuo, C.-T.; Chou, P.-T. Rhodizonate metal complexes with a 2D chairlike M6 metal–organic framework: [M(C6O6)(bpym)(H2O)]·n H2O. Angew. Chem. Int. Ed. 2004, 43, 4507–4510.Search in Google Scholar

Wang, C.-C.; Ke, M.-J.; Tsai, C.-H.; Chen, I.-H.; Lin, S.-I.; Lin, T.-Y.; Wu, L.-M.; Lee, G.-H.; Sheu, H.-S.; Fedorov, V. E. [M(C5O5)2(H2O)n]2- as a building block for hetero- and homo-bimetallic coordination polymers: from 1D chains to 3D supramolecular architectures. Cryst. Growth Des. 2009, 9, 1013–1019.Search in Google Scholar

Wang, C.-C.; Kuo, C.-T.; Yang, J.-C.; Lee, G.-H.; Shih, W.-J.; Sheu, H.-S. Assemblies of two new metal-organic frameworks constructed from Cd(II) with 2,2′-bipyrimidine and cyclic oxocarbon dianions CnOn2- (n=4, 5). Cryst. Growth Des. 2007a, 7, 1476–1482.Search in Google Scholar

Wang, C.-C.; Dae, S.-C.; Lin, H. W.; Lee, G. H.; Sheu, H.-S.; Lin, Y.-H.; Tsai, H.-L. Assembly of metal coordination framework, [MII(C5O5)(dpe)], with a 2D bi-layer architecture: Thermal stability and magnetic properties (M=Mn, Fe, Cd and Co; dpe=1,2-bis(4-pyridyl)ethane). Inorg. Chim. Acta 2007b, 360, 4058–4067.10.1016/j.ica.2007.05.049Search in Google Scholar

Weiss, A.; Riegler, E.; Robl, C. Cubic (MC4O4·2H2O)3·CH3COOH·H2O. Z. Naturforsch 1986a, 41B, 1329–1333.10.1515/znb-1986-1101Search in Google Scholar

Weiss, A.; Riegler, E.; Robl, C. Ubergangsmetall quadrate. Z. Naturforsch 1986b, 41B, 1333–1336.Search in Google Scholar

West, R., Ed. Oxocarbons. Academic Press: New York, 1980.Search in Google Scholar

West, R.; Powell, D. L. New aromatic anions. III. Molecular orbital calculations on oxygenated anions. J. Am. Chem. Soc. 1963, 8, 2577–2579.Search in Google Scholar

Wrobleski, J. T.; Brown, D. Physical and chemical properties of squarate complexes. 1. Spectral, magnetic, and thermal behavior of dimeric iron(III) squarate. Inorg. Chem. 1978, 17, 2959–2961.Search in Google Scholar

Xanthopoulos, C. E.; Sigalas, M. P.; Katsoulos, G. A.; Tsipis, C. A.; Hadjikostas, C. C.; Terzis, A.; Mentzafos, M. Synthesis and magnetic properties of a binuclear copper(II) complex with a μ-1,2-squarato coordination mode. Crystal structure of (μ-1,2-squarato)bis[(N-(2-(diethylamino)ethyl]salicylidenaminato)aquacopper(II)] hydrate. Inorg. Chem. 1993, 32, 3743–3747.Search in Google Scholar

Yamashita, Y.; Suzuki, T.; Mukai, T.; Saito, G. Preparation and properties of a tetracyanoquinodimethane fused with 1,2,5-thiadiazole units. J. Chem. Soc. Chem. Commun.1985, 1044–1045.10.1039/c39850001044Search in Google Scholar

Received: 2013-3-3
Accepted: 2013-10-8
Published Online: 2013-11-12
Published in Print: 2014-03-01

©2014 by Walter de Gruyter Berlin Boston

Downloaded on 4.5.2024 from https://www.degruyter.com/document/doi/10.1515/revic-2013-0003/html
Scroll to top button