Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 11, 2013

Topochemical modifications of mixed metal oxide compounds by low-temperature fluorination routes

  • Oliver Clemens EMAIL logo and Peter R. Slater EMAIL logo

Abstract

In this review, we discuss recent developments in the use of low-temperature fluorination routes for the topochemical modification of mixed metal oxide compounds. By applying such methods, material properties (such as magnetism, superconductivity, electrical conductivity, and ionic conductivity) can be tuned in a wide range. Furthermore, oxide fluoride compounds are interesting from a structural point of view, and while differentiating between oxide and fluoride ions has proved to be difficult using diffraction methods, strategies (e.g., bond valence sum calculations) to overcome this problem have been shown to be possible. In addition, this review concludes with an outlook on future prospects in the field of oxide fluoride compounds.


Corresponding authors: Oliver Clemens, School of Chemistry, The University of Birmingham, Birmingham B15 2TT, UK; and Peter R. Slater, School of Chemistry, The University of Birmingham, Birmingham B15 2TT, UK

Oliver Clemens thanks the German Academic Exchange Service (DAAD) for being given a Postdoctoral Research Fellowship. Prof. H.P. Beck, University of Saarland, is gratefully acknowledged for providing a graphic on the cavities in the K2NiF4 structure.

References

Abakumov, A. M.; Hadermann, J.; Van Tendeloo, G.; Shpanchenko, R. V.; Oleinikov, P. N.; Antipov, E. V. Anion ordering in fluorinated La2CuO4. J. Solid State Chem. 1999, 142, 440–450.Search in Google Scholar

Abakumov, A. M.; Hadermann, J.; Rozova, M. G.; Pavljuk, B. P.; Antipov, E. V.; Lebedev, O. I.; van Tendeloo, G. Synthesis and crystal structure of a new complex oxyfluoride La0.813Sr0.187Cu(O, F)3-δ. J. Solid State Chem. 2000, 149, 189–196.Search in Google Scholar

Adkin, J. J.; Hayward, M. A. Structure and magnetism of 4H-BaMnO3-x (0<=x<=0.35) and 4H-Ba0.5Sr0.5MnO3-x (0<=x<=0.21). J. Solid State Chem. 2006, 179, 70–76.Search in Google Scholar

Adkin, J. J.; Hayward, M. A. BaMnO3-x revisited: a structural and magnetic study. Chem. Mater. 2007, 19, 755–762.Search in Google Scholar

Aikens, L. D.; Li, R. K.; Greaves, C. The synthesis and structure of a new oxide fluoride, LaSrMnO4F, with staged fluorine insertion. Chem. Commun. (Cambridge, U.K.) 2000, 2129–2130.10.1039/b007045iSearch in Google Scholar

Alekseeva, A. M.; Abakumov, A. M.; Rozova, M. G.; Antipov, E. V.; Hadermann, J. Synthesis and crystal structure of the Sr2MnGa(O,F)6 oxyfluorides. J. Solid State Chem. 2004, 177, 731–738.Search in Google Scholar

Al-Mamouri, M.; Edwards, P. P.; Greaves, C.; Slaski, M. Synthesis and superconducting properties of the strontium copper oxy-fluoride Sr2CuO2F2+δ. Nature (London, U.K.) 1994, 369, 382–384.Search in Google Scholar

Anji Reddy, M.; Fichtner, M. Batteries based on fluoride shuttle. J. Mater. Chem. 2011, 21, 17059–17062.Search in Google Scholar

Antipov, E. V.; Abakumov, A. M.; Alekseeva, A. M.; Rozova, M. G.; Hadermann, J.; Lebedev, O. I.; Van Tendeloo, G. Oxygen and fluorine doping in Sr2MnGaO5 brownmillerite. Phys. Status Solidi A 2004, 1, 1403–1409.Search in Google Scholar

Baikie, T.; Dixon, E. L.; Rooms, J. F.; Young, N. A.; Francesconi, M. G. Ba2-xSrxPdO2F2 (0<=x<=1.5): the first palladium-oxide-fluorides. Chem. Commun. (Cambridge, U.K.) 2003, 1580–1581.10.1039/B303402JSearch in Google Scholar

Baikie, T.; Islam, M. S.; Francesconi, M. G. Defects in the new oxide-fluoride Ba2PdO2F2: the search for fluoride needles in an oxide haystack. J. Mater. Chem. 2005, 15, 119–123.Search in Google Scholar

Baikie, T.; Young, N. A.; Francesconi, M. G. Synthesis and low temperature fluorination of the alkaline-earth palladates Ba2-xSrxPdO3 (x=0–2). Prog. Solid State Chem. 2007, 35, 265–279.Search in Google Scholar

Berry, F. J.; Ren, X.; Heap, R.; Slater, P.; Thomas, M. F. Fluorination of perovskite-related SrFeO3-d. Solid State Commun. 2005, 134, 621–624.Search in Google Scholar

Berry, F. J.; Heap, R.; Helgason, Ö.; Moore, E. A.; Shim, S.; Slater, P. R.; Thomas, M. F. Magnetic order in perovskite-related SrFeO2F. J. Phys. Condens. Matter 2008a, 20, 215207.10.1088/0953-8984/20/21/215207Search in Google Scholar

Berry, F. J.; Ren, X.; Heap, R.; Slater, P.; Thomas, M. F. Fluorination of perovskite-related phases of composition La1-xSrxFe1-yCoyO3-d. J. Phys. Chem. Solids 2008b, 69, 2032–2036.10.1016/j.jpcs.2008.02.018Search in Google Scholar

Berry, F. J.; Moore, E.; Mortimer, M.; Ren, X. L.; Heap, R.; Slater, P.; Thomas, M. F. Synthesis and structural investigation of a new oxide fluoride of composition Ba2SnO2.5F3*x H2O (x∼0.5). J. Solid State Chem. 2008c, 181, 2185–2190.Search in Google Scholar

Berry, F. J.; Bowfield, A. F.; Coomer, F. C.; Jackson, S. D.; Moore, E. A.; Slater, P. R.; Thomas, M. F.; Wright, A. J.; Ren, X. Fluorination of perovskite-related phases of composition SrFe1-xSnxO3-d. J. Phys. Condens. Matter 2009, 21, 256001.10.1088/0953-8984/21/25/256001Search in Google Scholar

Berry, F. J.; Coomer, F. C.; Hancock, C.; Helgason, Ö.; Moore, E. A.; Slater, P. R.; Wright, A. J.; Thomas, M. F. Structure and magnetic properties of the cubic oxide fluoride BaFeO2F. J. Solid State Chem. 2011, 184, 1361–1366.Search in Google Scholar

Boulahya, K.; Parras, M.; González-Calbet, J. M.; Amador, U.; Martínez, J. L.; Tissen, V.; Fernández-Díaz, M. T. Ferromagnetism in Ba5Co5O14: a structural, transport, thermal, and magnetic study. Phys. Rev. B: Condens. Matter 2005, 71, 144402.Search in Google Scholar

Brown, I. D. The Chemical Bond in Inorganic Chemistry: The Bond Valence Model; Oxford University Press Inc.: New York, 2002.Search in Google Scholar

Case, G. S.; Hector, A. L.; Levason, W.; Needs, R. L.; Thomas, M. F.; Weller, M. T. Syntheses, powder neutron diffraction structures and Mossbauer studies of some complex iron oxyfluorides: Sr3Fe2O6F0.87, Sr2FeO3F and Ba2InFeO5F0.68. J. Mater. Chem. 1999, 9, 2821–2827.Search in Google Scholar

Cherepanov, V. A.; Filonova, E. A.; Voronin, V. I.; Berger, I. F. Phase equilibria in the LaCoO3–LaMnO3–BaCoOz–BaMnO3 system. J. Solid State Chem. 2000, 153, 205–211.Search in Google Scholar

Chevalier, B.; Tressaud, A.; Lepine, B.; Amine, K.; Dance, J. M.; Lozano, L.; Hickey, E.; Etourneau, J. Stabilization of a new superconducting phase by low temperature fluorination of La2CuO4. Physica C 1990, 167, 97–101.Search in Google Scholar

Clemens, O.; Haberkorn, R.; Slater, P. R.; Beck, H. P. Synthesis and characterisation of the SrxBa1-xFeO3-y-system and the fluorinated phases SrxBa1-xFeO2F. Solid State Sci. 2010, 12, 1455–1463.Search in Google Scholar

Clemens, O.; Kuhn, M.; Haberkorn, R. Synthesis and characterization of the La1-xSrxFeO3-δsystem and the fluorinated phases La1-xSrxFeO3-xFx. J. Solid State Chem. 2011, 184, 2870–2876.Search in Google Scholar

Clemens, O.; Perez-Mato, J. M.; Berry, F. J.; Wright, A. J.; Knight, K. S.; Slater, P. R. A neutron diffraction study on compounds of the system La1 xSrxFeO3-xFx (x=1, 0.8, 0.5, 0.2) and their magnetic properties. J. Solid State Chem. In preparation.Search in Google Scholar

Clemens, O.; Wright, A. J.; Berry, F. J.; Smith, R. I.; Slater, P. R. Synthesis, structural and magnetic characterisation of the fully fluorinated compound 6H-BaFeO2F. J. Solid State Chem. 2013, 198, 262–269.Search in Google Scholar

Corbel, G.; Attfield, J. P.; Hadermann, J.; Abakumov, A. M.; Alekseeva, A. M.; Rozova, M. G.; Antipov, E. V. Anion rearrangements in fluorinated Nd2CuO3.5. Chem. Mater. 2003, 15, 189–195.Search in Google Scholar

Davies, P. K.; Stuart, J. A.; White, D.; Lee, C.; Chaikin, P. M.; Naughton, M. J.; Yu, R. C.; Ehrenkaufer, R. L. Fluorination of superconducting Ba2YCu3O9-δ. Solid State Commun. 1987, 64, 1441–1444.Search in Google Scholar

Delattre, J. L.; Stacy, A. M.; Siegrist, T. Structure of ten-layer orthorhombic Ba5Fe5O14 (BaFeO2.8) determined from single crystal X-ray diffraction. J. Solid State Chem. 2004, 177, 928–935.Search in Google Scholar

Ehora, G.; Renard, C.; Daviero-Minaud, S.; Mentré, O. New BaCoO3-δ polytypes by rational substitution of O2- for F-. Chem. Mater. 2007, 19, 2924–2926.Search in Google Scholar

El Shinawi, H.; Marco, J. F.; Berry, F. J.; Greaves, C. LaSrCoFeO5, LaSrCoFeO5F and LaSrCoFeO5.5: new La-Sr-Co-Fe perovskites. J. Mater. Chem. 2010, 20, 3253–3259.Search in Google Scholar

Francesconi, M. G.; Slater, P. R.; Hodges, J. P.; Greaves, C.; Edwards, P. P.; Al-Mamouri, M.; Slaski, M. Superconducting Sr2-xAxCuO2F2+δ (A=Ca, Ba): synthetic pathways and associated structural rearrangements. J. Solid State Chem. 1998, 135, 17–27.Search in Google Scholar

Goldschmidt, V. M. Die Gesetze der Kristallchemie. Naturwissenschaften 1926, 14, 477.10.1007/BF01507527Search in Google Scholar

Greaves, C.; Francesconi, M. G. Fluorine insertion in inorganic materials. Current Opinion in Solid State and Materials Science 1998, 3, 132–136.10.1016/S1359-0286(98)80077-6Search in Google Scholar

Grenier, J. C.; Wattiaux, A.; Pouchard, M.; Hagenmuller, P.; Parras, M.; Vallet, M.; Calbet, J.; Alario-Franco, M.A. Sur le système BaFeO3-y (0<y<=0.50). J. Solid State Chem. 1989, 80, 6–11.Search in Google Scholar

Hadermann, J.; Van Tendeloo, G.; Abakumov, A. M.; Pavlyuk, B. P.; Rozova, M.; Antipov, E. V. Structural transformation in fluorinated LaACuGaO5 (A=Ca, Sr) brownmillerites. Int. J. Inorg. Mater. 2000, 2, 493–502.Search in Google Scholar

Hadermann, J.; Van Tendeloo, G.; Abakumov, A. M.; Rozova, M. G.; Antipov, E. V. HREM study of fluorinated Nd2CuO4. J. Solid State Chem. 2001, 157, 56–61.Search in Google Scholar

Hancock, C. A.; Herranz, T.; Marco, J. F.; Berry, F. J.; Slater, P. R. Low temperature fluorination of Sr3Fe2O7-x with polyvinylidine fluoride: an X-ray powder diffraction and Mössbauer spectroscopy study. J. Solid State Chem. 2012, 186, 195–203.Search in Google Scholar

Hayashi, N.; Yamamoto, T.; Kageyama, H.; Nishi, M.; Watanabe, Y.; Kawakami, T.; Matsushita, Y.; Fujimori, A.; Takano, M. BaFeO3: a ferromagnetic iron oxide. Angew. Chem. Int. Ed. 2011, 50, 12547–12550.Search in Google Scholar

Headspith, D. A.; Sullivan, E.; Greaves, C.; Francesconi, M. G. Synthesis and characterisation of the quaternary nitride-fluoride Ce2MnN3F2-delta. Dalton Trans. 2009, 9273–9279.10.1039/b908591bSearch in Google Scholar PubMed

Heap, R.; Slater, P. R.; Berry, F. J.; Helgason, O.; Wright, A. J. Synthesis and structural determination of the new oxide fluoride BaFeO2F. Solid State Commun. 2007, 141, 467–470.Search in Google Scholar

Hector, A. L.; Hutchings, J. A.; Needs, R. L.; Thomas, M. F.; Weller, M. T. Structural and Mössbauer study of Sr2FeO3X (X=F, Cl, Br) and the magnetic structure of Sr2FeO3F. J. Mater. Chem. 2001, 11, 527–532.Search in Google Scholar

Hirai, D.; Climent-Pascual, E.; Cava, R. J. Superconductivity in WO2.6F0.4 synthesized by reaction of WO3 with Teflon. Phys. Rev. B: Condens. Matter 2011, 84, Article no.: 174519.10.1103/PhysRevB.84.174519Search in Google Scholar

Hodges, J. P.; Short, S.; Jorgensen, J. D.; Xiong, X.; Dabrowski, B.; Mini, S. M.; Kimball, C. W. Evolution of oxygen-vacancy ordered crystal structures in the perovskite series SrnFenO3n-1 (n=2, 4, 8, and [infinity]), and the relationship to electronic and magnetic properties. J. Solid State Chem. 2000, 151, 190–209.Search in Google Scholar

Iorgulescu, M.; Kabbour, H.; Tancret, N.; Mentre, O.; Roussel, P. Ba8Co2Mn6ClO22, a quasi-1D hexagonal perovskite polytype containing new 8H-blocks. Chem. Commun. (Cambridge, U.K.) 2010, 46, 5271–5273.Search in Google Scholar

Iorgulescu, M.; Roussel, P.; Tancret, N.; Renault, N.; Porcher, F.; André, G.; Kabbour, H.; Mentré, O. Mixed metallic Ba(Co,Fe)X0.2O3-δ (X=F, Cl) hexagonal perovskites: drastic effect of Fe-incorporation on structural and electronic features. Inorg. Chem. 2012, 51, 7598–7608.Search in Google Scholar

James, A. C. W. P.; Murphy, D. W.; Zahurak, S. M. Superconductivity at 27 K in fluorine-doped Nd2CuO4. Nature 1989, 338, 240–241.Search in Google Scholar

Jorgensen, J. D.; Pei, S.; Lightfoor, P.; Shi, H.; Paulikas, A. P.; Veal, B. W. Time-dependent structural phenomena at room temperature in quenched YBa2Cu3O6.41: local oxygen ordering and superconductivity. Physica C 1990, 167, 571–578.Search in Google Scholar

Kim, J. H.; Lee, C. E. 19F NMR study of superconductive and nonsuperconductive Nd2CuO4-xFy. Phys. Rev. B: Condens. Matter 1996, 53, 2265–2268.Search in Google Scholar

Kobayashi, Y.; Tian, M.; Eguchi, M.; Mallouk, T. E. Ion-exchangeable, electronically conducting layered perovskite oxyfluorides. J. Am. Chem. Soc. 2009, 131, 9849–9855.Search in Google Scholar

Kuklja, M. M.; Mastrikov, Y. A.; Jansang, B.; Kotomin, E. A. The intrinsic defects, disordering, and structural stability of BaxSr1-x CoyFe1-yO3-δ perovskite solid solutions. J. Phys. Chem. C 2012, 116, 18605–18611.Search in Google Scholar

LaGraff, J. R.; Behrman, E. C.; Taylor, J. A. T.; Rotella, F. J.; Jorgensen, J. D.; Wang, L. Q.; Mattocks, P. G. Magnetic and structural properties of YBa2Cu3O7-xFy as prepared by a NF3 gas anneal. Phys. Rev. B: Condens. Matter 1989, 39, 347–355.Search in Google Scholar

Li, R. K.; Greaves, C. Double-layered ruthenate Sr3Ru2O7F2 formed by fluorine insertion into Sr3Ru2O7. Phys. Rev. B: Condens. Matter 2000, 62, 3811–3815.Search in Google Scholar

Lobanov, M. V.; Abakumov, A. M.; Sidorova, A. V.; Rozova, M. G.; D’Yachenko, O. G.; Antipov, E. V.; Hadermann, J.; Van Tendeloo, G. Synthesis and investigation of novel Mn-based oxyfluoride Sr2Mn2O5-xF1+x. Solid State Sci. 2002, 4, 19–22.Search in Google Scholar

McCabe, E. E.; Greaves, C. Review: fluorine insertion reactions into pre-formed metal oxides. J. Fluorine Chem. 2007, 128, 448–458.Search in Google Scholar

Mentré, O.; Kauffmann, M.; Ehora, G.; Daviero-Minaud, S.; Abraham, F.; Roussel, P. Structure, dimensionality and magnetism of new cobalt oxyhalides. Solid State Sci. 2008, 10, 471–475.Search in Google Scholar

Mentré, O.; Kabbour, H.; Ehora, G.; Tricot, G. G.; Daviero-Minaud, S.; Whangbo, M.-H. Anion-vacancy-induced magneto-crystalline anisotropy in fluorine-doped hexagonal cobaltites. J. Am. Chem. Soc. 2010, 132, 4865–4875.Search in Google Scholar

Müller, U. Symmetriebeziehungen zwischen verwandten Kristallstrukturen: Anwendungen der kristallographischen Gruppentheorie in der Kristallchemie; Vieweg+Teubner Verlag: Wiesbaden, 2011.10.1007/978-3-8348-8342-1_5Search in Google Scholar

Needs, R. L.; Weller, M. T.; Scheler, U.; Harris, R. K. Synthesis and structure of Ba2InO3X (X=F, Cl, Br) and Ba2ScO3F; oxide/halide ordering in K2NiF4-type structures. J. Mater. Chem. 1996, 6, 1219–1224.Search in Google Scholar

Parras, M.; Vallet-Regi, M.; Gonzalez-Calbet, J. M.; Alario-Franco, M. A.; Grenier, J. C.; Hagenmuller, P. A reassessment of Ba2Fe2O5. Mater. Res. Bull. 1987, 22, 1413–1419.10.1016/0025-5408(87)90306-0Search in Google Scholar

Perrin, C.; Dinia, A.; Peña, O.; Sergent, M.; Burlet, P.; Rossat-Mignod, J. Fluorination of YBa2Cu3O6.7: powder neutron diffraction determination of fluorine sites and their influence on the superconducting properties. Solid State Commun. 1990, 76, 401–407.Search in Google Scholar

Sacuto, A.; Julien, C.; Shchukin, V. A.; Perrin, C.; Mokhtari, M. Charge transfer in YBa2Cu3O6 doped with fluorine: infrared reflectance and Raman scattering studies. Phys. Rev. B: Condens. Matter 1995, 52, 7619–7628.Search in Google Scholar

Sanjaya Ranmohotti, K. G.; Josepha, E.; Choi, J.; Zhang, J.; Wiley, J. B. Topochemical manipulation of perovskites: low-temperature reaction strategies for directing structure and properties. Adv. Mater. (Weinheim, Ger.) 2011, 23, 442–460.Search in Google Scholar

Saratovsky, I.; Lockett, M. A.; Rees, N. H.; Hayward, M. A. Preparation of Sr7Mn4O13F2 by the topotactic reduction and subsequent fluorination of Sr7Mn4O15. Inorg. Chem. 2008, 47, 5212–5217.Search in Google Scholar

Schmidt, M.; Campbell, S. J. Crystal and magnetic structures of Sr2Fe2O5 at elevated temperature. J. Solid State Chem. 2001, 156, 292–304.Search in Google Scholar

Shpanchenko, R. V.; Rozova, M. G.; Abakumov, A. M.; Ardashnikova, E. I.; Kovba, M. L.; Putilin, S. N.; Antipov, E. V.; Lebedev, O. I.; Van Tendeloo, G. Inducing superconductivity and structural transformations by fluorination of reduced YBCO. Physica C 1997, 280, 272–280.Search in Google Scholar

Sivakumar, T.; Wiley, J. B. Topotactic route for new layered perovskite oxides containing fluorine: Ln1.2Sr1.8Mn2O7F2 (Ln=Pr, Nd, Sm, Eu, and Gd). Mater. Res. Bull. 2009, 44, 74–77.Search in Google Scholar

Slater, P. R. PVDF as a reagent for the synthesis of K2NiF4-related inorganic oxide fluorides. J. Fluorine Chem. 2002, 117, 43–45.Search in Google Scholar

Slater, P. R.; Gover, R. K. B. Synthesis and structure of the new oxide fluoride Ba2ZrO3F2*x H2O (x∼0.5). J. Mater. Chem. 2001, 11, 2035–2038.Search in Google Scholar

Slater, P. R.; Gover, R. K. B. Synthesis and structure of the new oxide fluoride Sr2TiO3F2 from the low temperature fluorination of Sr2TiO4: an example of a staged fluorine substitution/insertion reaction. J. Mater. Chem. 2002, 12, 291–294.Search in Google Scholar

Slater, P. R.; Edwards, P. P.; Greaves, C.; Gameson, I.; Francesconi, M. G.; Hodges, J. P.; Al-Mamouri, M.; Slaski, M. Superconductivity up to 64 K in the copper oxyfluorides Sr2-xAxCuO2F2+δ (A=Ca, Ba) prepared using NH4F as a fluorinating reagent. Physica C 1995, 241, 151–157.Search in Google Scholar

Slater, P. R.; Hodges, J. P.; Francesconi, M. G.; Greaves, C.; Slaski, M. Fluorination of the Ruddlesden-Popper type cuprates, Ln2-xA1+xCu2O6-y (Ln=La, Nd; A=Ca, Sr). J. Mater. Chem. 1997, 7, 2077–2083.10.1039/a703735jSearch in Google Scholar

Slater, P. R.; Heap, R. Synthesis of Ca2-xSrxCuO2F2 (0≤x≤2) with the T’-Structure Through Fluorination of Ca2-xSrxCuO3 With Poly(vinylidene fluoride)/poly(tetrafluoroethylene); University of Birmingham Chemistry Papers ID code 1667, 2009. Available at:http://epapers.bham.ac.uk/1667/.Search in Google Scholar

Stroukoff, K. R.; Manthiram, A. Thermal stability of spinel Li1.1 Mn1.9-yMyO4-zFz (M=Ni, Al, and Li, 0<=y<=0.3, and 0<=z<=0.2) cathodes for lithium ion batteries. J. Mater. Chem. 2011, 21, 10165–10170.Search in Google Scholar

Sturza, M.; Daviero-Minaud, S.; Kabbour, H.; Gardoll, O.; Mentré, O. Fluorination of iron hexagonal perovskites promoting low temperature oxygen mobility. Chem. Mater. 2010, 22, 6726–6735.Search in Google Scholar

Sturza, M.; Daviero-Minaud, S.; Huvé, M.; Renaut, N.; Tiercelin, N.; Mentré, O. High dilution of anionic vacancies in Sr0.8Ba0.2Fe(O,F)∼2.5. Inorg. Chem. 2011a, 50, 12499–12507.Search in Google Scholar

Sturza, M.; Kabbour, H.; Daviero-Minaud, S.; Filimonov, D.; Pokholok, K.; Tiercelin, N.; Porcher, F.; Aldon, L.; Mentre, O. Unprecedented robust antiferromagnetism in fluorinated hexagonal perovskites. J. Am. Chem. Soc. 2011b, 133, 10901–10909.Search in Google Scholar

Sullivan, E.; Greaves, C. Fluorine insertion reactions of the brownmillerite materials Sr2Fe2O5, Sr2CoFeO5, and Sr2Co2O5. Mater. Res. Bull. 2012, 47, 2541–2546.Search in Google Scholar

Takeda, Y.; Shimada, M.; Kanamaru, F.; Koizumi, M.; Yamamoto, N. Magnetic properties and Mössbauer effect in 12-layer hexagonal BaFeO3. Mater. Res. Bull. 1974, 9, 537–543.Search in Google Scholar

Takeda, Y.; Kanno, K.; Takada, T.; Yamamoto, O.; Takano, M.; Nakayama, N.; Bando, Y. Phase relation in the oxygen nonstoichiometric system, SrFeOx (2.5<=x<=3.0). J. Solid State Chem. 1986, 63, 237–249.Search in Google Scholar

Troyanchuk, I. O.; Kasper, N. V.; Mantytskaya, O. S.; Shapovalova, E. F. High-pressure synthesis of some perovskite-like compounds with a mixed anion type. Mater. Res. Bull. 1995, 30, 421–425.Search in Google Scholar

Tsujimoto, Y.; Li, J. J.; Yamaura, K.; Matsushita, Y.; Katsuya, Y.; Tanaka, M.; Shirako, Y.; Akaogi, M.; Takayama-Muromachi, E. New layered cobalt oxyfluoride, Sr2CoO3F. Chem. Commun. (Cambridge, U.K.) 2011a, 47, 3263–3265.10.1039/C0CC05482HSearch in Google Scholar

Tsujimoto, Y.; Yamaura, K.; Hayashi, N.; Kodama, K.; Igawa, N.; Matsushita, Y.; Katsuya, Y.; Shirako, Y.; Akaogi, M.; Takayama-Muromachi, E. Topotactic synthesis and crystal structure of a highly fluorinated Ruddlesden-Popper-type iron oxide, Sr3Fe2O5+xF2-x (x∼0.44). Chem. Mater. 2011b, 23b, 3652–3658.Search in Google Scholar

Wei, H. J.; Cao, Y.; Ji, W. J.; Au, C. T. Lattice oxygen of La1-xSrxMO3 (M=Mn, Ni) and LaMnO3-αFβ perovskite oxides for the partial oxidation of methane to synthesis gas. Catal. Commun. 2008, 9, 2509–2514.Search in Google Scholar

Weng, H.; Kawazoe, Y.; Wan, X.; Dong, J. Electronic structure and optical properties of layered perovskites Sr2MO4 (M=Ti, V, Cr, and Mn): an ab initio study. Phys. Rev. B: Condens. Matter 2006, 74, 205112.Search in Google Scholar

Wu, M. K.; Ashburn, J. R.; Torng, C. J.; Hor, P. H.; Meng, R. L.; Gao, L.; Huang, Z. J.; Wang, Y. Q.; Chu, C. W. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett. 1987, 58, 908–910.Search in Google Scholar

Wu, H.; Zheng, Q.-Q.; Lin, H. Q. Energy band structures of the low-dimensional antiferromagnets Sr2CuO3 and Sr2CuO2Cl2. J. Appl. Phys. 2000, 87, 4897–4899.Search in Google Scholar

Yamaura, K.; Zandbergen, H. W.; Abe, K.; Cava, R. J. Synthesis and properties of the structurally one-dimensional cobalt oxide Ba1-xSrxCoO3 (0≤x≤0.5). J. Solid State Chem. 1999, 146, 96–102.Search in Google Scholar

Received: 2013-2-15
Accepted: 2013-3-5
Published Online: 2013-04-11
Published in Print: 2013-08-01

©2013 by Walter de Gruyter Berlin Boston

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/revic-2013-0002/html
Scroll to top button