Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 19, 2016

Emerging trends in eco-compliant, synergistic, and hybrid assembling of multifunctional polymeric bionanocomposites

  • Christopher Igwe Idumah

    Christopher Igwe Idumah is currently a doctoral researcher in the Enhanced Polymer Research Group (EnPro), Faculty of Chemical Engineering, Universiti Teknologi Malaysia, with interests in development and flame retardancy of polymer nanocomposites and hybrid bionanocomposites. He received his MSc from Manchester University, UK, in 2012. While in Shell Petroleum Development Company, Nigeria, in 2001, he was trained by Robert Gordon University, Aberdeen.

    and Azman Hassan

    Azman Hassan is a Professor in the Faculty of Chemical Engineering, Universiti Teknologi Malaysia (UTM), and Head of the Enhanced Polymer Research Group (EnPro). He received his PhD from Loughborough University, UK, in 1997. His area of research interests includes flame retardant polymers, cellulose nanowhiskers, PVC technology, graphene, polymer blends, natural fiber composites, nanocomposites, and toughened polymers.

    EMAIL logo

Abstract

The quest to develop eco-benign polymeric hybrid materials arose out of the need to protect the environment from the harmful effects of synthetic petroleum polymeric waste and meet the specific needs of industries such as oil and gas, aerospace, automotives, packaging, electronics biomedicals, pharmaceuticals, agricultural, and construction. This has resulted in synergistic hybrid assembling of natural fibers, polymers, biopolymers, and nanoparticles. Bionanocomposites based on inorganic nanoparticle reinforced biofiber, polymers and biopolymers, and polysaccharides such as chitosan, alginate, and cellulose derivatives, and so on, exhibiting at least a dimension at the nanometer scale, are an emerging group of nanostructured hybrid materials. These hybrid bionanocomposites exhibit structural and multifunctional properties suitable for versatile applications similar to polymer nanocomposites. Their biocompatibility and biodegradability provide opportunities for applications as eco-benign green nanocomposites. This review presents state-of-the-art progress in synergistic nanotechnological assembling of bionanocomposites relative to processing technologies, product development, and applications.


Corresponding author: Azman Hassan, Enhanced Polymer Research Group (EnPro), Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia, e-mail:

About the authors

Christopher Igwe Idumah

Christopher Igwe Idumah is currently a doctoral researcher in the Enhanced Polymer Research Group (EnPro), Faculty of Chemical Engineering, Universiti Teknologi Malaysia, with interests in development and flame retardancy of polymer nanocomposites and hybrid bionanocomposites. He received his MSc from Manchester University, UK, in 2012. While in Shell Petroleum Development Company, Nigeria, in 2001, he was trained by Robert Gordon University, Aberdeen.

Azman Hassan

Azman Hassan is a Professor in the Faculty of Chemical Engineering, Universiti Teknologi Malaysia (UTM), and Head of the Enhanced Polymer Research Group (EnPro). He received his PhD from Loughborough University, UK, in 1997. His area of research interests includes flame retardant polymers, cellulose nanowhiskers, PVC technology, graphene, polymer blends, natural fiber composites, nanocomposites, and toughened polymers.

Acknowledgments

The authors wish to acknowledge the management of Universiti Teknologi Malaysia for providing facilities for this work.

References

Abe H, Takahashi N, Kim KJ, Mochizuki M, Doi Y. Thermal degradation processes of end-capped poly(l-lactide)s in the presence and absence of residual zinc catalyst. Biomacromolecules 2004; 5: 1606–1614.10.1021/bm0497872Search in Google Scholar PubMed

Agrawal M, Gupta S, Zafeiropoulos NE, Oertel U, Häßler R, Stamm M. Nano-level mixing of ZnO into poly(methyl methacrylate). Macromol Chem Phys 2010; 211: 1925–1132.10.1002/macp.201000191Search in Google Scholar

Aguzzi C, Cerezo P, Viseras C, Caramella C. Use of clays as drug delivery systems: possibilities and limitations. Appl Clay Sci 2007; 36: 22–36.10.1016/j.clay.2006.06.015Search in Google Scholar

Ahmed RA, Fekry AM. Preparation and characterization of a nanoparticles modified chitosan sensor and its application for the determination of heavy metals from different aqueous media. Int J Electrochem Sci 2013; 8: 6692–6708.Search in Google Scholar

Ahuja T, Kumar D. Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications. Sens Actuators B 2009; 136: 275–286.10.1016/j.snb.2008.09.014Search in Google Scholar

Alcântara ACS, Darder M, Aranda P, Ruiz-Hitzky E. Polysaccharide-fibrous clay bionanocomposites. Appl Clay Sci 2014a; 96: 2–8.10.1016/j.clay.2014.02.018Search in Google Scholar

Alcântara ACS, Darder M, Aranda P, Tateyama S, Okajima MK, Kaneko T, Ogawac M, Ruiz-Hitzky E. Clay-bionanocomposites with sacran megamolecules for the selective uptake of neodymium. J Mater Chem A 2014b; 2: 1391–1399.10.1039/C3TA14145DSearch in Google Scholar

Almasia H, Ghanbarzadeh B, Entezami A. Physicochemical properties of starch-CMC-nanoclay biodegradable films. Int J Biol Macromol 2010; 46: 1–5.10.1016/j.ijbiomac.2009.10.001Search in Google Scholar PubMed

Ando H, Kawasaki N, Yamano N, Uegaki K, Nakayama A. Biodegradation of a poly (e-caprolactone-co-L-lactide) evisible-lightsensitive TiO2 composite with an on/off biodegradation function. Polym Degrad Stab 2015; 114: 65–71.10.1016/j.polymdegradstab.2015.02.003Search in Google Scholar

Aouadaa FA, Mattosob LHC, Longo E. New strategies in the preparation of exfoliated thermoplastic starch-montmorillonite nanocomposites. Ind Crops Prod 2011; 34: 1502–1508.10.1016/j.indcrop.2011.05.003Search in Google Scholar

Aranda P, Darder M, Fernandez-Saavedra R, Lopez-Blanco M, Ruiz-Hitzky E. Relevance of polymer- and biopolymer-clay nanocomposites in electrochemical and electro-analytical applications. Thin Solid Films 2006; 495: 104–112.10.1016/j.tsf.2005.08.284Search in Google Scholar

Arrieta MP, Fortunati E, Dominici F, López J, Kenny JM. Bionanocomposite films based on plasticized PLA-PHB/cellulose nanocrystal blends. Carbohydr Polym 2015; 121: 265–275.10.1016/j.carbpol.2014.12.056Search in Google Scholar

Ashori A. Effects of nanoparticles on the mechanical properties of rice straw/polypropylene composites. J Compos Mater 2012; 47: 149–154.10.1177/0021998312437234Search in Google Scholar

Ashori A, Sheshmani S, Farhani F. Preparation and characterization of bargasse/HDPE composites using multi-walled carbon nanotubes. Carbohydr Polym 2013; 92: 865–871.10.1016/j.carbpol.2012.10.010Search in Google Scholar

Auras RA, Singh SP, Singh JJ. Evaluation of oriented poly (lactide) polymers vs. existing PET and oriented PS for fresh food service containers. Packaging Technol Sci 2005; 18: 207–216.10.1002/pts.692Search in Google Scholar

Avella M, De Vlieger JJ, Errico ME, Fischer S, Vacca P. Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 2005; 93: 467–474.10.1016/j.foodchem.2004.10.024Search in Google Scholar

Azevedo VM, Dias MV, Borges SV, Costa AL, Silva KE, Medeiros EAA, Soares NF. Development of whey protein isolate bio-nanocomposites: effect of montmorillonite and citric acid on structural, thermal, morphological and mechanical properties. Food Hydrocoll 2015; 48: 179–188.10.1016/j.foodhyd.2015.02.014Search in Google Scholar

Bai H, Li C, Shi G. Functional composite materials based on chemically converted graphene. Adv Mater 2011; 23: 1089–1115.10.1002/adma.201003753Search in Google Scholar

Bajpai AK, Giri A. Water sorption behavior of highly swelling (carboxy methylcellulose-g-polyacrylamide) hydrogels and release of potassium nitrate as agrochemical. Carbohydr Polym 2003; 53: 271–279.10.1016/S0144-8617(03)00071-7Search in Google Scholar

Baojun Q, Longzhen Q. Polymer/layered double hydroxide flame retardant nanocomposites. In: Mittal V, editor. Thermally stable flame retardant polymer nanocomposites. Cambridge: Cambridge, University Press, 2011: 332–59.Search in Google Scholar

Barbosa SE, García MA. Thermoplastic starch/talc bionanocomposites. Influence of particle morphology on final properties. Food Hydrocoll 2015; 51: 432–440.10.1016/j.foodhyd.2015.05.030Search in Google Scholar

Baruah J, Dutta JSÆ. Nanotechnology applications in pollution sensing and degradation in agriculture: a review. Environ Chem Lett 2009; 7: 191–204.10.1007/s10311-009-0228-8Search in Google Scholar

Benhamoua K, Kaddamia H, Magnind A, Dufresneb A, Ahmad A. Bio-based polyurethane reinforced with cellulose nanofibers: a comprehensive investigation on the effect of interface. Carbohydr Polym 2015; 122: 202–211.10.1016/j.carbpol.2014.12.081Search in Google Scholar PubMed

Bethune DS, Klang CH, de Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R. Cobalt-catalysed growth of carbon nanotubes with single atomic-layer walls. Nature 1993; 363: 605–607.10.1038/363605a0Search in Google Scholar

Bettaieba F, Khiaria R, Dufresneb A, Farouk MM, Belgacem MN. Mechanical and thermal properties of Posidonia oceanica cellulose nanocrystal reinforced polymer. Carbohydr Polym 2015; 123: 99–104.10.1016/j.carbpol.2015.01.026Search in Google Scholar PubMed

Bharadwaj RK. Modeling the barrier properties of polymer-layered silicate nanocomposites. Macromolecules 2001; 34: 9189–9192.10.1021/ma010780bSearch in Google Scholar

Bhatia SK, Kurian JV. Biological characterization of Sorona polymer from corn-derived 1, 3-propanediol. Biotechnol Lett 2008; 30: 619–623.10.1007/s10529-007-9607-zSearch in Google Scholar PubMed

Biswal M, Mohanty S, Nayak SK. Thermal stability and flammability of banana fiber reinforced polypropylene nanocomposites. J Appl Polym Sci 2012; 125: 432–443.10.1002/app.35246Search in Google Scholar

Bocchini S, Battegazzore FA. Poly (butylensuccinate co-adipate)-thermoplastic starch nanocomposite blends. Carbohydr Polym 2010; 82: 802–808.10.1016/j.carbpol.2010.05.056Search in Google Scholar

Boesel FL. Effect of plasticizers on the barrier and mechanical properties of biomimetic composites of chitosan and clay. Carbohydr Polym 2015; 115: 356–363.10.1016/j.carbpol.2014.08.064Search in Google Scholar PubMed

Boissard CIR, Bourban PE, Tingaut P, Zimmermann T, Månson JAE. Water of functionalized microfibrillated cellulose as foaming agent for the elaboration of poly (lactic acid) biocomposites. J Reinf Plast Compos 2011; 30: 709–719.10.1177/0731684411407233Search in Google Scholar

Bondeson D, Oksman K. Polylactic acid/cellulose whisker nanocomposites modified by polyvinyl alcohol. Compos Part A 2007a; 38: 2486–2492.10.1016/j.compositesa.2007.08.001Search in Google Scholar

Bondeson D, Oksman K. Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites. Compos Interf 2007b; 14: 617–630.10.1163/156855407782106519Search in Google Scholar

Borba P, Tedesco A, Lenz D. Effect of reinforcement nanoparticles addition on mechanical properties of SBS/curaua fiber composites. Mater Res 2014; 17: 412–419.10.1590/S1516-14392013005000203Search in Google Scholar

Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, De HC, Ten V, Wijnhoven S, Marvin H. Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharm 2009; 53: 52–62.10.1016/j.yrtph.2008.10.008Search in Google Scholar

Brabec CJ, Cravino A, Meissner D, Sariciftci NS, Fromherz T, Rispens MT, Sanchez L, Hummelen JC. Origin of the open circuit voltage of plastic solar cells. Adv Funct Mater 2001; 11: 374–380.10.1002/1616-3028(200110)11:5<374::AID-ADFM374>3.0.CO;2-WSearch in Google Scholar

Buzarovska A, Grozdanov A. Biodegradable poly(l-lactic acid)/TiO2 nanocomposites: thermal properties and degradation. J Appl Polym Sci 2012; 123: 2187–2193.10.1002/app.34729Search in Google Scholar

Cao X, Chen Y, Chang PR, Muir AD, Falk G. Starch-based nanocomposites reinforced with flax cellulose nanocrystals. Express Polym Lett 2008a; 2: 502–510.10.3144/expresspolymlett.2008.60Search in Google Scholar

Cao X, Chen Y, Chang PR, Stumborg M, Huneault MA. Green composites reinforced with hemp nanocrystals in plasticized starch. J Appl Polym Sci 2008b; 109: 3804–3810.10.1002/app.28418Search in Google Scholar

Cao YW, Feng JC, Wu PY. Preparation of organically dispersible graphene nanosheet powders through a lyophilization method and their poly (lactic acid) composites. Carbon 2010; 48: 3834–3839.10.1016/j.carbon.2010.06.048Search in Google Scholar

Casariego A, Souza B, Cerqueira J, Cruz L, Diaz VA. Chitosan/clay films properties as affected as affected by biopolymer and clay micro/nanoparticles concentrations. Food Hydrocoll 2009; 23: 11895–1902.10.1016/j.foodhyd.2009.02.007Search in Google Scholar

Castillo LA, Lopez OV, Ghilardi J, Villar MA, Barbosa SE, Alejandra García A. Thermoplastic starch/talc bionanocomposites. Influence of particle morphology on final properties. Food Hydrocoll 2015; 51: 432–440.10.1016/j.foodhyd.2015.05.030Search in Google Scholar

Chang JH, An YU, Sur GS. Poly (lactic acid) nanocomposites with various organoclays. I. Thermomechanical properties, morphology, and gas permeability. J Polym Sci Part B: Polym Phys 2003; 41: 94–103.10.1002/polb.10349Search in Google Scholar

Chang PR, Jian R, Zheng P, Yu J, Ma X. Preparation and properties of glycerol plasticized-starch (GPS)/cellulose nanoparticle (CN) composites. Carbohydr Polym 2010; 79: 301–305.10.1016/j.carbpol.2009.08.007Search in Google Scholar

Chakraborty A, Sain M, Kortschot M. Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 2005; 59: 102–107.10.1515/HF.2005.016Search in Google Scholar

Chawengkijwanich C, Hayata Y. Development of TiO2 powder coated food packaging films and its ability to inactivate Escherichia coliin vitro and in actual test. Int J Food Microbiol 2008; 123: 288–292.10.1016/j.ijfoodmicro.2007.12.017Search in Google Scholar PubMed

Chen B, Evans RGJ. Thermoplastic clay nanocomposites and their characteristics. Carbohydr Polym 2005; 61: 455–463.10.1016/j.carbpol.2005.06.020Search in Google Scholar

Chen J, Jin Y. Sensitive phenol determination based on co-modifying tyrosinase and palygorskite on glassy carbon electrode. Microchimica Acta 2010; 169: 249–254.10.1007/s00604-010-0320-6Search in Google Scholar

Chen J, Jin Y. Sensitive lactate determination based on acclimated mixed bacteria and palygorskite co-modified oxygen electrode. Bioelectrochemistry 2011; 80: 151–154.10.1016/j.bioelechem.2010.07.004Search in Google Scholar PubMed

Chen J, Yan N. Mechanical properties and dimensional stability of organo-nanoclay modified biofiber polymer composites. Compos Part B: Eng 2013; 47: 248–254.10.1016/j.compositesb.2012.11.015Search in Google Scholar

Chen Y, Liu C, Chang PR, Anderson DP, Huneault MA. Pea starch-based composite films with pea hull fibers and pea hull fiber-derived nanowhiskers. Polym Eng Sci 2009a; 49: 369–378.10.1002/pen.21290Search in Google Scholar

Chen Y, Liu C, Chang PR, Cao X, Anderson DP. Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: effect of hydrolysis time. Carbohydr Polym 2009b; 76: 607–615.10.1016/j.carbpol.2008.11.030Search in Google Scholar

Chen L, Ozisik R, Schadler L. The influence of carbon nanotube aspect ratio of MWCNT/PMMA nanocomposite foams. Polymer 2010; 51: 2368–2375.10.1016/j.polymer.2010.03.042Search in Google Scholar

Chiang MF, Wu TM. Synthesis and characterization of biodegradable poly (l-lactide)/layered double hydroxide nanocomposites. Compos Sci Technol 2010; 70: 110–115.10.1016/j.compscitech.2009.09.012Search in Google Scholar

Chivrac F, Pollet E, Dole P, Avérous L. Starch-based nano-biocomposites: plasticizer impact on the montmorillonite exfoliation process. Carbohydr Polym 2010a; 79: 941–947.10.1016/j.carbpol.2009.10.018Search in Google Scholar

Chivrac F, Pollet E, Schmutz M, Avérous L. Starch nano-biocomposites based on needle-like sepiolite clays. Carbohydr Polym 2010b; 80: 145–153.10.1016/j.carbpol.2009.11.004Search in Google Scholar

Chivrac F, Pollet E, Dole P, Averous L. Starch-based nano-composites: plasticizer impact on the montmorillonite exfoliation process. Carbohydr Polym 2010c; 79: 941–947.10.1016/j.carbpol.2009.10.018Search in Google Scholar

Choy JH, Kwak SY, Park JS, Jeong YJ, Portier J. Intercalative nanohybrids of nucleoside monophosphates and DNA in layered metal hydroxide. J Am Chem Soc 1999c; 121: 1399–1400.10.1021/ja981823fSearch in Google Scholar

Choy JH, Kwak SY, Jeong YJ, Park JS. Inorganic layered double hydroxides as nonviral vectors. Angew Chem Int Ed 2000b; 39: 4041–4045.10.1002/1521-3773(20001117)39:22<4041::AID-ANIE4041>3.0.CO;2-CSearch in Google Scholar

Choy JH, Choi SJ, Oh JM, Park T. Clay minerals and layered double hydroxides for novel biological applications. Appl Clay Sci 2007a; 36: 122–132.10.1016/j.clay.2006.07.007Search in Google Scholar

Chung LY, Lai HM. Preparation and properties of biodegradable starch layered double hydroxide nanocomposites. Carbohydr Polym 2010; 80: 525–532.10.1016/j.carbpol.2009.12.020Search in Google Scholar

Clapp T, Siebert P, Chen D, Jones BL. Vaccines with aluminum-containing adjuvants: optimizing vaccine efficacy and thermal stability. J Pharm Sci 2011; 100: 388–401.10.1002/jps.22284Search in Google Scholar

Coativy G, Chevigny C, Rolland-Sabatéb A, Leroya E, Lourdinb D. Interphase vs confinement in starch-clay bionanocomposites. Carbohydr Polym 2015a; 117: 746–752.10.1016/j.carbpol.2014.10.052Search in Google Scholar PubMed

Coativy G, Gautierd N, Pontoireb B, Buléonb A, Lourdinb D, Leroya E. Shape memory starch-clay bionanocomposites. Carbohydr Polym 2015b; 116: 307–313.10.1016/j.carbpol.2013.12.024Search in Google Scholar PubMed

Condes MC, Anon MC, Mauri AN, Dufresne A. Amaranth protein films reinforced with maize starch nanocrystals. Food Hydrocoll 2015; 47: 146–157.10.1016/j.foodhyd.2015.01.026Search in Google Scholar

Craig C, Anand RS. Instrumented impact testing of kenaf fiber reinforced polypropylene composites. Effects of temperature and composition. J Reinf Plast Compos 2007; 26: 1587–1600.10.1177/0731684407079663Search in Google Scholar

Cyras VP, Manfredi L, Ton-That M, Vazquez A. Physical and mechanical properties of thermoplastic starch/montmorillonite nanocomposite films. Carbohydr Polym 2008; 73: 55–63.10.1016/j.carbpol.2007.11.014Search in Google Scholar

Dagnon KL, Ambadapadi S, Shaito A, Ogbomo SM, DeLeon V, Golden TD, Rahimi M, Nguyen K, Braterman PS, D’Souza NA. Poly (l-lactic acid) nanocomposites with layered double hydroxides functionalized with ibuprofen. J Appl Polym Sci 2009; 113: 1905–1915.10.1002/app.30159Search in Google Scholar

Daitx TS, Carli LN, Crespo JS, Mauler TS. Effects of the organic modification of different clay minerals and their application in biodegradable polymer nanocomposites of PHBV. Appl Clay Sci 2015; 115: 157–164.10.1016/j.clay.2015.07.038Search in Google Scholar

Darder M, Lopez-Blanco M, Aranda P, Aznar AJ, Bravo J, Ruiz-Hitzky E. Microfibrous chitosan-sepiolite nanocomposites. Chem Mater 2006; 18: 1602–1610.10.1021/cm0523642Search in Google Scholar

Darder M, Colilla M, Ruiz-Hitzky E. Biopolymer-clay nanocomposites based on chitosan intercalated in montmorillonite. Chem Mater 2003; 15: 3774–3780.10.1021/cm0343047Search in Google Scholar

Davidson D, Gu FX. Materials for sustained and controlled release of nutrients and molecules to support plant growth. J Agric Food Chem 2012; 60: 870–876.10.1021/jf204092hSearch in Google Scholar PubMed

De Silva RT, Pasbakhsh P, Mae LS, Kit AY. ZnO deposited/encapsulated halloysite-poly (lactic acid) (PLA) nanocomposites for high performance packaging films with improved mechanical and antimicrobial properties. Appl Clay Sci 2015; 111: 10–20.10.1016/j.clay.2015.03.024Search in Google Scholar

Deka B, Maji T. Effect of coupling agent and nanoclay on properties of HDPE, LDPE, PP, PVC blend and phargamites karka nanocomposite. Compos Sci Technol 2010; 70: 1755–1761.10.1016/j.compscitech.2010.07.010Search in Google Scholar

Deng S, Zhang J, Ye L. Halloysite-epoxy nanocomposites with improved particle dispersion through ball mill homogenization and chemical treatments. Compos Sci Technol 2009; 69: 2497–2505.10.1016/j.compscitech.2009.07.001Search in Google Scholar

Desimone MF, Helary C, Rietveld IB, Bataille I, Mosser G, Giraud-Guille MM, Livage J, Coradin T. Silica-collagen bionanocomposites as three-dimensional scaffolds for fibroblast immobilization. Acta Biomaterialia 2010; 6: 3998–4004.10.1016/j.actbio.2010.05.014Search in Google Scholar

Desimone MF, Helary C, Quignard S, Rietveld IB, Bataille I, Copello GJ, Mosser G, Giraud-Guille MM, Livage J, Meddahi-Pelle A, Coradin T. In vitro studies and preliminary in vivo evaluation of silicified concentrated collagen hydrogels. ACS Appl Mater Interf 2011; 3: 3831–3838.10.1021/am2009844Search in Google Scholar

Dimic-Misic K, Gane P, Paltakari J. Micro-and nanofibrillated cellulose as a rheology modifier additive in CMC-containing pigment-coating formulations. Ind Eng Chem Res 2013; 52: 16066–16083.10.1021/ie4028878Search in Google Scholar

Dimic-Misic K, Ridgway C, Maloney T, Paltakari J, Gane P. Influence on pore structure of micro/nanofibrillar cellulose in pigmented coating formulations. Transp Porous Media 2014; 103: 155–179.10.1007/s11242-014-0293-8Search in Google Scholar

Dinand E, Chanzy H, Vignon R. Suspensions of cellulose microfibrils from sugar beet pulp. Food Hydrocoll 1999; 13: 275–283.10.1016/S0268-005X(98)00084-8Search in Google Scholar

Ding C, Cheng W, Sun Y, Wang X. Novel fungus-Fe3O4 bio-nanocomposites as high performance adsorbents for the removal of radionuclides. J Hazard Mater 2015; 295: 127–137.10.1016/j.jhazmat.2015.04.032Search in Google Scholar PubMed

Dong S, Cho HJ, Lee YW, Roman M. Synthesis and cellular uptake of folic acid conjugated cellulose nanocrystals for cancer targeting. Biomacromolecules 2014; 15: 1560–1567.10.1021/bm401593nSearch in Google Scholar PubMed

Du C, Cui FZ, Zhang W, Feng QL, Zhu XD, de Groot K. Formation of calcium phosphate/collagen composites through mineralization of collagen matrix. J Biomed Mater Res 2000; 50: 518–527.10.1002/(SICI)1097-4636(20000615)50:4<518::AID-JBM7>3.0.CO;2-WSearch in Google Scholar

Du M, Guo B, Jia D. Thermal stability and flame retardant effects of halloysite nanotubes on poly (propylene). Eur Polym J 2006; 42: 1362–1369.10.1016/j.eurpolymj.2005.12.006Search in Google Scholar

Du M, Guo B, Jia D. Newly emerging applications of halloysite nanotubes: a review. Polym Int 2010; 59: 574–582.10.1002/pi.2754Search in Google Scholar

Duan J, Shao S, Wang L, Jiang P, Liu B. Polylactide/graphite nanosheets/MWCNTs nanocomposites with enhanced mechanical, thermal and electrical properties. Iran Polym J 2012; 21: 109–120.10.1007/s13726-011-0008-8Search in Google Scholar

Duguay AJ, Nader JW, Kizilitas A, Gardner DJ, Dagher HJ. Exfoliated graphite nanoplatelets-filled impact modified polypropylene composites: influence of particle diameter, filler loading, and coupling agent on mechanical properties. Appl Nanosci 2014; 4: 279–291.10.1007/s13204-013-0204-2Search in Google Scholar

Edwards JV, Prevost N, French A, Concha M, Delucca A, Wu Q. Nanocellulose-based biosensors: design, preparation, and activity of peptide-linked cotton cellulose nanocrystals having fluorimetric and colorimetric elastase detection sensitivity. Engineering 2013a; 5: 20–28.10.4236/eng.2013.59A003Search in Google Scholar

Edwards JV, Prevost N, Sethumadhavan K, Ullah A, Condon B. Peptide conjugated cellulose nanocrystals with sensitive human neutrophil elastase sensor activity. Cellulose 2013b; 20: 1223–1235.10.1007/s10570-013-9901-ySearch in Google Scholar

Eichhorn SJ. Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 2011; 7: 303–315.10.1039/C0SM00142BSearch in Google Scholar

El-Shishtawy RM, Salam MA, Gabal M, Asiri AM. Preparation, characterization and electromagnetic properties of polyaniline/carbonnanotubes/nickel ferrite nanocomposites. Polym Compos 2012; 33: 532–539.10.1002/pc.22186Search in Google Scholar

Fama L, Rojo P, Bernal C, Goyanes S. Biodegradable starch based nanocomposites with low water permeability and high storage modulus. Carbohydr Polym 2012; 87: 1989–1993.10.1016/j.carbpol.2011.10.007Search in Google Scholar

Farghali RA, Fekry AM, Rasha AA, Elhakim HKA. Corrosion resistance of Ti modified by chitosan-gold nanoparticles for orthopedic implantation. Int J Biol Macromol 2015; 79: 787–799.10.1016/j.ijbiomac.2015.04.078Search in Google Scholar

Feng HB, Peng LF. Synthesis and characterization of carboxymethyl chitosan carrying ricinoleic functions as an emulsifier for azadirachtin. Carbohydr Polym 2012; 88: 576–582.10.1016/j.carbpol.2012.01.002Search in Google Scholar

Fernandes FM, Ruiz AI, Darder M, Aranda P, Ruiz-Hitzky E. Gelatin-clay-bio-nanocomposites: structural and functional properties as advanced materials. J Nanosci Nanotechnol 2009; 9: 221–229.10.1166/jnn.2009.J002Search in Google Scholar

Fernandes FM, Baradari H, Sanchez C. Integrative strategies to hybrid lamellar compounds: an integration challenge. Appl Clay Sci 2014; 100: 2–21.10.1016/j.clay.2014.05.013Search in Google Scholar

Fortunati E, Armentano I, Zhou Q, Iannoni A, Saino E, Visai L, Berglund LA, Kenny JM. Multifunctional bionanocomposite films of poly (lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydr Polym 2012; 87: 1596–1605.10.1016/j.carbpol.2011.09.066Search in Google Scholar

Francis SJK, Matthew HWT. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: review. Biomaterials 2000; 21: 2589–2598.10.1016/S0142-9612(00)00126-5Search in Google Scholar

Frone AN, Berlioz S, Chailan JF, Panaitescu DM, Donescu D. Cellulose fiber-reinforced polylactic acid. Polym Compos 2011; 32: 976–985.10.1002/pc.21116Search in Google Scholar

Fukuda N, Tsuji H. Physical properties and enzymatic hydrolysis of poly (l-lactide)-TiO2 composites. J Appl Polym Sci 2005; 96: 190–199.10.1002/app.21411Search in Google Scholar

Fukushima K, Tabuani D, Camino G. Nanocomposites of PLA and PCL based on montmorillonite and sepiolite. Mater Sci Eng: C 2009; 29: 1433–1441.10.1016/j.msec.2008.11.005Search in Google Scholar

Gangopadhyay R, De A. Conducting polymer nanocomposites: a brief overview. Chem Mater 2000; 12: 608–622.10.1021/cm990537fSearch in Google Scholar

Gao W, Alemany LB, Ci L, Ajayan PM. New insights into the structure and reduction of graphite oxide. Nat Chem 2009; 1: 403–408.10.1038/nchem.281Search in Google Scholar PubMed

Gao K, Shao Z, Li J, Wang X, Peng X, Wang W, Wang F. Cellulose nanofiber-graphene all solid-state flexible supercapacitors. J Mater Chem A. 2013; 1: 63–67.10.1039/C2TA00386DSearch in Google Scholar

Gaur MS, Singh PK, Chauhan RS. Optical and thermo electrical properties of ZnO nano particle filled polystyrene. J Appl Polym Sci 2010; 118: 2833–2840.10.1002/app.32422Search in Google Scholar

Ghasemi I, Kord B. Long term water absorption behaviour of polypropylene/wood flour/organoclay hybrid nanocomposite. Iran Polym J 2009; 18: 683–691.Search in Google Scholar

Gogoi P, Boruah M, Bora C, Dolui S. Jatropha curcas oil based alkyd/epoxy resin/expanded graphite (EG) reinforced biocomposite: evaluation of the thermal, mechanical and flame retardancy properties. Prog Org Coat 2014; 77: 87–93.10.1016/j.porgcoat.2013.08.006Search in Google Scholar

Gogoi P, Boruah R, Dolui SK. Jatropha curcas oil based alkyd/epoxy/graphene oxide (GO) bionanocomposites: effect of GO on curing, mechanical and thermal properties. Prog Org Coat 2015; 84: 128–135.10.1016/j.porgcoat.2014.09.022Search in Google Scholar

Goffin AL, Duquesne E, Moins S, Alexandre M, Dubois P. New organic-inorganic nanohybrids via ring opening polymerization of (di) lactones initiated by functionalized polyhedral oligomeric silsesquioxane. Eur Polym J 2007; 43: 4103–4113.10.1016/j.eurpolymj.2007.07.041Search in Google Scholar

González K, Retegia A, González A, Eceizaa A, Gabilondoa N. Starch and cellulose nanocrystals together into thermoplastic starch bionanocomposites. Carbohydr Polym 2015; 117: 83–90.10.1016/j.carbpol.2014.09.055Search in Google Scholar PubMed

Grande CJ, Torres FG, Gomez CM, Troncoso OP, Canet-Ferrer J, Martínez-Pastor J. Development of self-assembled bacterial cellulose-starch nanocomposites. Mater Sci Eng C 2009; 29: 1098–1104.10.1016/j.msec.2008.09.024Search in Google Scholar

Gu R, Kokta B, Michalkova D, Dimzoski B, Fortelny I, Slouf M, Krulis Z. Characteristics of wood-plastic composites reinforced with organo-nanoclays. J Reinf Plast Compos 2010; 29: 3566–3586.10.1177/0731684410378543Search in Google Scholar

Guimarães M, Botaro VR, Novack KM, Teixeira FB, Tonoli GHD. Starch/PVA-based nanocomposites reinforced with bamboo nanofibrils. Ind Crop Prod 2015; 70: 72–83.10.1016/j.indcrop.2015.03.014Search in Google Scholar

Guo G, Park C, Lee Y, Kim Y, Sain M. Flame retarding effects of nanoclay on wood-fiber composites. Polym Eng Sci 2007; 47: 330–336.10.1002/pen.20712Search in Google Scholar

Ha JU, Xanthos M. Novel modifiers for layered double hydroxides and their effects on the properties of polylactic acid composites. Appl Clay Sci 2010; 47: 303–310.10.1016/j.clay.2009.11.033Search in Google Scholar

Halma M, Mousty C, Forano C, Sancelme, Hoggan PB, Prevot V. Bacteria encapsulated in layered double hydroxides: towards an efficient bionanohybrid for pollutant degradation. Colloids Surf B 2015; 126: 344–350.10.1016/j.colsurfb.2014.11.029Search in Google Scholar PubMed

Hamid Y, Baka A, Deirram N. Mechanical and morphological properties of waste eurycoma lonifolia fiber/montmorillonite reinforced poly (vinyl chloride) hybrid composites. J Appl Polym Sci 2013; 128: 1170–1175.10.1002/app.38401Search in Google Scholar

Han G, Lei Y, Wu Q, Kojima Y, Suzuki S. Bamboo fiber filled high density polyethylene composites: effect of coupling treatment and nanoclay. J Polym Environ 2008; 16: 123–130.10.1007/s10924-008-0094-7Search in Google Scholar

Han SO, Karevan M, Bhuiyan M, Park H, Kalaitzidou K. Effect of exfoliated graphite nanoplatelets on the mechanical and viscoelastic properties of poly (lactic acid) biocomposites reinforced with kenaf fibers. J Mater Sci 2012; 47: 3535–3543.10.1007/s10853-011-6199-8Search in Google Scholar

Haroldo CB, Sombra FM, Cavalcante R, Abreu FO, Paula RCM. Preparation and characterization of chitosan/cashew gum beads loaded with Lippia sidoides essential oil. Mater Sci Eng 2011; 31: 173–178.10.1016/j.msec.2010.08.013Search in Google Scholar

Haroun AA, Abo-Zeid MA, Youssef AM, Gamal-Eldeen A. In vitro biological study of gelatin/PLG nanocomposite using MCF-7 breast cancer cells. J Biomed Mater Res: Part A 2013; 101A: 1388–1396.10.1002/jbm.a.34441Search in Google Scholar PubMed

Hebeish AA, Abdelhady MM, Youssef AM. TiO2 nanowires and TiO2 nanowires doped Ag-PVP nanocomposites for antimicrobial and self-cleaning cotton textile. Carbohydr Polym 2013; 91: 549–559.10.1016/j.carbpol.2012.08.068Search in Google Scholar PubMed

Heegaard P, Dedieu L, Johnson N, Le Potier M-F, Mockey M, Mutinelli F, Vahlenkamp T, Vascellari M, Sørensen N. Adjuvants and delivery systems in veterinary vaccinology: current state and future developments. Arch Virol 2011; 156: 183–202.10.1007/s00705-010-0863-1Search in Google Scholar PubMed

Hemmasi H, Eslam K, Talaiepoor M, Kord B. Effect of nanoclay on the mechanical and morphological properties of wood polymer nanocomposites. J Reinf Plast Compos 2010; 29: 964–971.10.1177/0731684408101790Search in Google Scholar

Herrero M, Martínez-Gallegos S, Labajos FM, Rives V. Layered double hydroxide/polyethylene terephthalate nanocomposites, influence of the intercalated LDH anion and the type of polymerization heating method. J Solid State Chem 2011; 184: 2862–2869.10.1016/j.jssc.2011.08.017Search in Google Scholar

Hossain K, Ahmed I, Parsons A, Scotchford C, Walker G, Thielemans W, Rudd CD. Physico-chemical and mechanical properties of nanocomposites prepared using cellulose nanowhiskers and poly (lactic acid). J Mater Sci 2012; 47: 2675–2686.10.1007/s10853-011-6093-4Search in Google Scholar

Huang JC. EMI shielding plastics: a review. Adv Polym Technol 1995; 14: 137–150.10.1002/adv.1995.060140205Search in Google Scholar

Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q, Yan Q, Boey F, Zhang H. Graphene-based materials: synthesis, characterization, properties, and applications. Small 2011; 7: 1876–1902.10.1002/smll.201002009Search in Google Scholar PubMed

Hule RA, Pochan DJ. Polymer nanocomposites for biomedical applications. MRS Bulletin 2007; 32: 354–358.10.1557/mrs2007.235Search in Google Scholar

Husárova L, Pekařová S, Stloukal P, Kucharzcyk P, Verney V, Commereuc S, Ramone A, Koutny M. Identification of important abiotic and biotic factors in the biodegradation of poly(l-lactic acid). Int J Bio Macromol 2014; 71: 155–162.10.1016/j.ijbiomac.2014.04.050Search in Google Scholar PubMed

Idumah CI, Hassan A. Emerging trends in flame retardancy of biofibers, biopolymers, biocomposites, and bionanocomposites. Rev Chem Eng 2016a; 32: 115–148.10.1515/revce-2015-0017Search in Google Scholar

Idumah CI, Hassan A. Characterization and preparation of conductive exfoliated graphene nanoplatelets kenaf fibre hybrid polypropylene composites. Synth Metals 2016b; 212: 91–104.10.1016/j.synthmet.2015.12.011Search in Google Scholar

Idumah CI, Hassan A. Effect of exfoliated graphite nanoplatelets on thermal and heat deflection properties of kenaf polypropylene hybrid nanocomposites. J Poly Eng 2016c. DOI 10.1515/polyeng-2015-0445 (Online).Search in Google Scholar

Idumah CI, Hassan A. Emerging trends in graphene carbon based polymer nanocomposites and applications. Rev Chem Eng 2016d; 32: 223–264.10.1515/revce-2015-0038Search in Google Scholar

Idumah CI, Hassan A, Affam AC. A review of recent developments in flammability of polymer nanocomposites. Rev Chem Eng 2015; 31: 149–177.10.1515/revce-2014-0038Search in Google Scholar

Ikkala O, Ras R, Houbenov N, Ruokolainen J, Pääkkö M, Laine J, Leskelä M, Berglund L, Lindström T, Brinke G, Iatrou H, Hadjichristidis N, Faul C. Solid state nanofibers based on self-assemblies: from cleaving from self-assemblies to multilevel hierarchical constructs. Faraday Discuss., 2009; 143: 95–107.10.1039/b905204fSearch in Google Scholar PubMed

Iman M, Manhar AK, Mandal M, Maji TK. Preparation and characterization of zinc oxide and nanoclay reinforced crosslinked starch/jute green nanocomposites. RSC Adv 2014; 4: 33826.10.1039/C4RA04832FSearch in Google Scholar

Iwatake A, Nogi M, Yano H. Cellulose nanofiber-reinforced polylactic acid. Compos Sci Technol 2008; 68: 2103–2106.10.1016/j.compscitech.2008.03.006Search in Google Scholar

Jang JY, Jeong TK, Oh HJ, Youn JR, Song YS. Thermal stability and flammability of coconut fiber reinforced poly (lactic acid). Compos Part B 2012; 43: 2434–2438.10.1016/j.compositesb.2011.11.003Search in Google Scholar

Jang H, Han SK, Kim H, Sim I. Effect of graphene addition on characteristics of polypropylene biocomposites reinforced with sulphuric acid treated green algae. Polymer (Korea) 2013; 4: 518–525.10.7317/pk.2013.37.4.518Search in Google Scholar

Jeencham R, Suppakarn N, Jarukumjorn K. Effect of flame retardants on flame retardant, mechanical, and thermal properties of sisal fiber/polypropylene composites. Compos: Part B 2014; 56: 249–253.10.1016/j.compositesb.2013.08.012Search in Google Scholar

Jiang S, Liu C, Han Z, Xiong L, Sun Q. Evaluation of rheological behavior of starch nanocrystals by acid hydrolysis and starch nanoparticles by self-assembly: A comparative study. Food Hydrocoll 2016; 52: 914–922.10.1016/j.foodhyd.2015.09.010Search in Google Scholar

Johannson C. Bio-nanocomposites for food packaging applications. In: Mittal V, editor. Nanocomposites with biodegradable polym. Oxford: Oxford Scholarship, 2011: 348–367.10.1093/acprof:oso/9780199581924.003.0014Search in Google Scholar

Jonoobi M, Harun J, Mathew AP, Oksman K. Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 2010; 70: 1742–1747.10.1016/j.compscitech.2010.07.005Search in Google Scholar

Joshi GV, Kevadiya BD, Patel HA, Bajaj HC, Jasra RV. Montmorillonite as a drug delivery system: intercalation and in vitro release of timolol maleate. Int J Pharm 2009; 374: 53–57.10.1016/j.ijpharm.2009.03.004Search in Google Scholar PubMed

Kalaitzidou K, Fukushima H, Drzal L. Mechanical properties and morphological characterization of exfoliated-polypropylene nanocomposites. Compos Part A. 2007; 38: 1675–1682.10.1016/j.compositesa.2007.02.003Search in Google Scholar

Kamaruddin S, Abdan K, Ali A, Jamaliah S, Yunus W. Kenaf PERFORMANCE in PP/EVA/clay biocomposite. Mater Test 2011; 53: 364–368.10.3139/120.110238Search in Google Scholar

Katiyar V, Gerds N, Koch CB, Risbo J, Hansen HCB, Plackett D. Poly l-lactide-layered double hydroxide nanocomposites via in situ polymerization of l-lactide. Polym Degrad 2010; 42: 432–445.10.1016/j.polymdegradstab.2010.07.031Search in Google Scholar

Katiyar V, Gerds N, Koch CB, Risbo J, Hansen HCB, Plackett D. Melt processing of poly(l-lactic acid) in the presence of organomodified anionic or cationic clays. J Appl Polym Sci 2011; 122: 112–125.10.1002/app.33984Search in Google Scholar

Kaushika A, Singh M, Verma G. Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydr Polym 2010; 82: 337–345.10.1016/j.carbpol.2010.04.063Search in Google Scholar

Khanjanzadeh H, Tabarsa T, Shakeri A, Omidvar A. Effects of organoclay platelets on the mechanical properties of wood-plastic composites formulated with virgin and recycled polypropylene. Wood Mater Sci Eng 2011; 6: 207–212.10.1080/17480272.2011.606915Search in Google Scholar

Kim IH, Jeong YG. Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity. J Polym Sci Part B: Polym Phys 2010; 48: 850–858.10.1002/polb.21956Search in Google Scholar

Kim D, Rhee Y. Biodegradation of microbial and synthetic polyesters by fungi. Appl Microbiol Biotechnol 2003; 61: 300–308.10.1007/s00253-002-1205-3Search in Google Scholar PubMed

Kiziltas A, Duguay A, Nazari B, Erbas K, Gardner J. Graphene based impact modified polypropylene nanocomposites for automotive applications. Proceedings of SPE Automotive Composites Conference and Exhibition (ACCE), September 11–13, 2013, Novi, MI.Search in Google Scholar

Knight PT, Lee KM, Qin H, Mather PT. Biodegradable thermoplastic polyurethanes incorporating polyhedral oligosilsesquioxane. Biomacromolecules 2008; 9: 2458–2467.10.1021/bm8004935Search in Google Scholar PubMed

Kobashi K, Villmow T, Andres T, Pötschke P. Liquid sensing of melt-processed poly (lactic acid)/multi-walled carbon nanotube composite films. Sensors Actuat B 2008; 134: 787–795.10.1016/j.snb.2008.06.035Search in Google Scholar

Kobashi K, Villmow T, Andres T, Häußler L, Pötschke P. Investigation of liquid sensing mechanism of poly (lactic acid)/multi-walled carbon nanotube composite films. Smart Mater Struct 2009; 18: 035008/1–15.10.1088/0964-1726/18/3/035008Search in Google Scholar

Kord B. Nanofiller reinforcement effects on the thermal, dynamic mechanical and morphological behaviour of HDPE/rice husks flour composites. Bioresources 2011; 6: 1351–1358.Search in Google Scholar

Kord B. Effect of nanoparticles loading on properties of polymeric composites based on hemp fiber/polypropylene. J Thermoplast Compos Mater 2012; 25: 793–806.10.1177/0892705711412815Search in Google Scholar

Kord B. Natural durability of organomodified layered silicate filled wood flour reinforced polypropylene nanocomposites. Sci Eng Compos Mater 2013; 3: 301–405.10.1515/secm-2012-0092Search in Google Scholar

Kord B, Hemmasi A, Ghasemi I. Properties of PP/wood flour/organo-modified montmorillonite nanocomposites. Wood Sci Technol 2011; 45: 111–119.10.1007/s00226-010-0309-7Search in Google Scholar

Kordkheili H, Farsi M, Rezazadeh Z. Physical, mechanical and morphological properties manufactured from carbon nanotubes and wood flour. Compos Part B: Eng 2013; 44: 750–755.10.1016/j.compositesb.2012.04.023Search in Google Scholar

Korol J, Len J, Formela K. Manufacture and research of TPS/PE biocomposites properties. Compos: Part B: 2015; 68: 310–316.10.1016/j.compositesb.2014.08.045Search in Google Scholar

Kubacka A, Diez MS, Rojo D, Bargiela R, Ciordia S, Zapico I, Albar JP, Barbas C, Martins dos Santos VAP, Fernándaz-García M, Ferrer M. Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium. Sci Rep 2014; 4: 4134.10.1038/srep04134Search in Google Scholar PubMed PubMed Central

Kuoa SW, Chang FC. POSS related polymer nanocomposites. Prog Polym Sci 2011; 36: 1649–1696.10.1016/j.progpolymsci.2011.05.002Search in Google Scholar

Kumar A, Singh R. Novel hybrid of clay, cellulose, and thermoplastic. I. Preparation and characterization of composites of ethylene-propylene copolymer. J Appl Polym Sci 2007; 104: 2672–2682.10.1002/app.25659Search in Google Scholar

Kumar AP, Depan D, Singh Tomer N, Singh RP. Nanoscale particles for polymer degradation and stabilization-trends and future perspectives. Prog Polym Sci 2009; 34: 479–515.10.1016/j.progpolymsci.2009.01.002Search in Google Scholar

Kumar A, Mohanta K, Kumar D, Parkash O. Properties and industrial applications of rice husk: a review. Int J Emerg Technol Adv Eng 2011; 2: 86–90.Search in Google Scholar

Kumar B, Castro M, Feller JF. Poly (lactic acid)-multi-wall carbon nanotube conductive biopolymer nanocomposite vapour sensors. Sensors and Actuat B 2012; 161: 621–628.10.1016/j.snb.2011.10.077Search in Google Scholar

Kwak SY, Jeong YJ, Park JS, Choy JH. Bio-LDH nano-hybrid for gene therapy. Solid State Ionics 2002; 151: 229–234.10.1016/S0167-2738(02)00714-2Search in Google Scholar

Kymakis E, Alexandrou I, Amaratunga G. High open-circuit voltage photovoltaic devices from carbon-nanotube-polymer composites. J Appl Phys 2003; 93: 1764–1768.10.1063/1.1535231Search in Google Scholar

Laaksonen P, Walther A, Malho JM, Kainlauri M, Ikkala O, Linder MB. Genetic engineering of biomimetic nanocomposites; diblock proteins, graphene, and nanofibrillated cellulose. Angew Chem Int Ed 2011; 49: 1993–2007.Search in Google Scholar

Lam E, Male KB, Chong JH, Leung ACW, Luong JHT. Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends Biotechnol 2012; 30: 283–290.10.1016/j.tibtech.2012.02.001Search in Google Scholar PubMed

Laredo E, Grimau M, Bello A, Wu DF, Zhang YS, Lin DP. AC conductivity of selectively located carbon nanotubes in poly (caprolactone)/polylactide blend nanocomposites. Biomacromolecules 2010; 11: 1339–1347.10.1021/bm100135nSearch in Google Scholar PubMed

Larsson K, Berglund LA, Ankerfors M, Lindström T. Polylactid latex/nanofibrillated cellulose bionanocomposites of high nanofibrillated cellulose content and nanopaper network structure prepared by a papermaking route. J Appl Polym Sci 2012; 125: 2460–2466.10.1002/app.36413Search in Google Scholar

Lavoine N, Desloges I, Bras J. Microfibrillated cellulose coatings as new release systems for active packaging. Carbohydr Polym 2014; 103: 528–537.10.1016/j.carbpol.2013.12.035Search in Google Scholar PubMed

Lazko J, Landercy N, Laoutid F, Dangreau L, Huguet MH, Talon O. Flame retardant treatments of insulating agro materials from flax short fibers. Polym Degrad Stab 2013; 98: 1043–1051.10.1016/j.polymdegradstab.2013.02.002Search in Google Scholar

Lee JH, Jeong YG. Preparation and characterization of nanocomposites based on polylactides tethered with polyhedral oligomeric silsesquioxane. J Appl Polym Sci 2010; 115: 1039–1046.10.1002/app.31076Search in Google Scholar

Lee S, Kang I, Doh G, Kim W, Kim J, Yoon H, Wu Q. Thermal, mechanical and morphological properties of polypropylene/clay/wood flour nanocomposites. Express Polym Lett 2008; 2: 78–87.10.3144/expresspolymlett.2008.11Search in Google Scholar

Lee KY, Blaker JJ, Bismarck A. Surface functionalisation of bacterial cellulose as the route to produce green polylactide nanocomposites with improved properties. Compos Sci Technol 2009; 69: 2724–2733.10.1016/j.compscitech.2009.08.016Search in Google Scholar

Legnani C, Vilani C, Calil VL, Barud HS, Quirino WG, Achete CA, Ribeiro SJL, Cremona M. Bacterial cellulose membrane as flexible substrate for organic light emitting devices. Thin Solid Films 2008; 517: 1016–1020.10.1016/j.tsf.2008.06.011Search in Google Scholar

Lenk DA, Penny GS, Westland JA. Drilling mud compositions. Patent WO1992022621 A1, 1992.Search in Google Scholar

Li LH, Huang L. Pharmacokinetics and biodistribution of nanoparticles. Mol Pharmacol 2008; 5: 496–504.10.1021/mp800049wSearch in Google Scholar

Li D, Muller B, Gilje S, Kaner RB, Wallace GG. Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 2007; 3: 101–105.10.1038/nnano.2007.451Search in Google Scholar

Li ZQ, Zhou XD, Pei CH. Preparation and characterization of bacterial cellulose/polylactide nanocomposites. Polym-Plast Technol Eng 2010; 49: 141–146.10.1080/03602550903284198Search in Google Scholar

Li F, Biagioni P, Bollani M, Maccagnan A, Piergiovanni L. Multi-functional coating of cellulose nanocrystals for flexible packaging applications. Cellulose 2013; 20: 2491–2504.10.1007/s10570-013-0015-3Search in Google Scholar

Lin J, Wu J, Yang Z, Pu M. Synthesis and properties of poly (acrylic acid)/mica superabsorbent nanocomposite. Macromol Rapid Commun 2001; 22: 422–424.10.1002/1521-3927(20010301)22:6<422::AID-MARC422>3.0.CO;2-RSearch in Google Scholar

Lin N, Huang J, Chang PR, Feng J, Yu J. Surface acetylation of cellulose nanocrystal and its reinforcing function in poly (lactic acid). Carbohydr Polym 2011; 83: 1834–1842.10.1016/j.carbpol.2010.10.047Search in Google Scholar

Liu TY, Chen SY, Li JH, Liu DM. Study on drug release behavior of CDHA/chitosan nanocomposites – effect of CDHA nanoparticles. J Control Release 2006; 112: 88–95.10.1016/j.jconrel.2006.01.017Search in Google Scholar PubMed

Liu DY, Yuan XW, Bhattacharyya D, Easteal AJ. Characterisation of solution cast cellulose nanofibre-reinforced poly (lactic acid). Express Polym Lett 2010; 4: 26–31.10.3144/expresspolymlett.2010.5Search in Google Scholar

Liu D, Yuan X, Bhattacharyya D. The effects of cellulose nanowhiskers on electrospun poly (lactic acid) nanofibres. J Mater Sci 2012; 47: 3159–3165.10.1007/s10853-011-6150-zSearch in Google Scholar

Liu M, Dai L, Shi H, Xiong S, Zhou C. In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering. Mater Sci Eng C 2015; 49: 700–712.10.1016/j.msec.2015.01.037Search in Google Scholar PubMed

López OV, Castillo LA, García MA, Villar MA, Barbosa SE. Food packaging bags based on thermoplastic corn starch reinforced with talc nanoparticles. Food Hydrocoll 2015; 43: 18–24.10.1016/j.foodhyd.2014.04.021Search in Google Scholar

Lu Y, Weng L, Cao X. Morphological, thermal and mechanical properties of ramie crystallites –reinforced plasticized starch biocomposites. Carbohydr Polym 2006; 63: 198–204.10.1016/j.carbpol.2005.08.027Search in Google Scholar

Luecha J, Sozer N, Kokini JL. Synthesis and properties of corn zein/montmorillonite films. J. Mater Sci 2010; 45: 3529–3537.10.1007/s10853-010-4395-6Search in Google Scholar

Luiz de Paula E, Mano V, Pereira FV. Influence of cellulose nanowhiskers on the hydrolytic degradation behavior of poly (d, l-lactide). Polym Degrad Stab 2011; 96: 1631–1638.10.1016/j.polymdegradstab.2011.06.006Search in Google Scholar

Luo W, Schardt J, Bommier C, Wang B, Razink J, Simonsen J, Ji X. Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries. J Mater Chem A. 2013; 1: 106–162.10.1039/c3ta12389hSearch in Google Scholar

Lv S, Zhou W, Miao H, Shi W. Preparation and properties of polymer/LDH nanocomposite used for UV curing coatings. Prog Org Coat 2009; 65: 450–456.10.1016/j.porgcoat.2009.04.001Search in Google Scholar

Madhavan Nampoothiri K, Nair NR, John RP. An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 2010; 101: 8493–8501.10.1016/j.biortech.2010.05.092Search in Google Scholar PubMed

Maehara H, Sotome S, Yoshii T, Torigoe I, Kawasaki Y, Sugata Y, Yuasa M, Hirano M, Mochizuki N, Kikuchi M. Repair of large osteochondral defects in rabbits using porous hydroxyapatite/collagen (HAp/Col) and fibroblast growth factor-2 (FGF-2). J Orthop Res 2010; 28: 677–686.10.1002/jor.21032Search in Google Scholar PubMed

Maidzadeh-Ardakani K, Navarchian AH, Sadeghi F. Optimization of mechanical properties of thermoplastic starch/clay nanocomposites. Carbohydr Polym 2010; 79: 547–554.10.1016/j.carbpol.2009.09.001Search in Google Scholar

Majeed K, Hassan A, Abu Bakar A. Barrier, biodegradation, and mechanical properties of (rice husk)/(montmorillonite) hybrid filler-filled low-density polyethylene nanocomposite films. J Vinyl Addit Technol 2015. doi:10.1002/vnl.21499.10.1002/vnl.21499Search in Google Scholar

Malafaya PB, Reis RL. Bilayered chitosan-based scaffolds for osteochondral tissue engineering: influence of hydroxyapatite on in vitro cytotoxicity and dynamic bioactivity studies in a specific double chamber bioreactor. Acta Biomaterialia 2009; 5: 644–660.10.1016/j.actbio.2008.09.017Search in Google Scholar PubMed

Manzi-Nshuti C, Songtipya P, Manias E, Jimenez-Gasco MM, Hossenlopp JM, Wilkie CA. Polymer nanocomposites using zinc aluminum and magnesium aluminum oleate layered double hydroxides: effects of LDH divalent metals on dispersion, thermal, mechanical and fire performance in various polymers. Polymer 2009; 50: 3564–3574.10.1016/j.polymer.2009.06.014Search in Google Scholar

Martins NC, Freire CS, Neto CP, Silvestre AJ, Causio J, Baldi G, Sadocco P, Trindade T. Antibacterial paper based on composite coatings of nanofibrillated cellulose and ZnO. Colloids Surf Physicochem Eng Asp 2013; 417: 111–119.10.1016/j.colsurfa.2012.10.042Search in Google Scholar

Mathew AP, Thielemans W, Dufresne A. Mechanical properties of nanocomposites from sorbitol plasticized starch and tunicin whiskers. J Appl Polym Sci 2008; 109: 4065–4074.10.1002/app.28623Search in Google Scholar

Mbeya J, Thomasa F. Component interactions controlling starch-kaolinite composite films properties. Carbohydr Polym 2015; 117: 739–745.10.1016/j.carbpol.2014.10.053Search in Google Scholar PubMed

McCullen SD, Stano KL, Stevens DR, Roberts WA, Monteiro-Riviere NA, Clarke LI, Gorga RE. Development, optimization, and characterization of electrospun poly (lactic acid) nanofibers containing multi-walled carbon nanotubes. J Appl Polym Sci 2007; 105: 1668–1678.10.1002/app.26288Search in Google Scholar

McCullen SD, Ramaswamy S, Clarke LI, Gorga RE. Nanofibrous composites for tissue engineering applications. Wiley Interdiscip Rev: Nano-med Nanobiotechnol 2009; 1: 369–390.10.1002/wnan.39Search in Google Scholar PubMed

Mehdi K, Kyrialli K. Understanding the property enhancement mechanism in exfoliated graphite nanoplatelets reinforced polymer nanocomposites. Compos Interf 2013; 20: 255–268.10.1080/15685543.2013.795752Search in Google Scholar

Meysam Z, Taghi T, Alireza A, Mehrab M, Alireza S. A comparative study on some properties of wood plastic composites using canola stalk, paulownia, and nanoclay. Appl Polym Sci 2013; 4: 234–248.Search in Google Scholar

Meysam Z, Hossein K, Hamidreza P, Mohammad AS. Utilization of natural montmorillonite modified with dimethyl, dehydrogenated tallow quaternary ammonium salt as reinforcement in almond shell flour-polypropylene bio-nanocomposites. Compos: Part B 2015; 71: 143–151.10.1016/j.compositesb.2014.11.009Search in Google Scholar

Mfiso EM, Mayal JJ, Valencia J, Adrian SL. Review on flammability of biofibres and biocomposites. Carbohydr Polym 2014; 111: 149–182.10.1016/j.carbpol.2014.03.071Search in Google Scholar PubMed

Mirandaa CS, Ferreiraa MS, Magalhãesa MT, Santosa WJ, Oliveiraa JC, Silvab JBA, José MN. Mechanical, thermal and barrier properties of starch-based films plasticized with glycerol and lignin and reinforced with cellulose nanocrystals. Mater Today: Proc 2015; 2: 63–69.10.1016/j.matpr.2015.04.009Search in Google Scholar

Mittal V. Functional polymer nanocomposites with graphene: a review. Macromol Mater Eng 2014; 17: 206–217.10.1002/mame.201300394Search in Google Scholar

Miyauchi M, Li Y, Shimizu H. Enhanced degradation in nanocomposites of TiO2 and biodegradable polymer. Environ Sci Technol 2008; 42: 4551–4554.10.1021/es800097nSearch in Google Scholar PubMed

Mohan D, Lee S, Kang A, Doh G, Park B, Wu Q. Kinetics of thermal degradation of polypropylene/nanoclay/wood flour nanocomposites. J Korean Oil Chem Soc 2007; 24: 278–286.Search in Google Scholar

Mondragon M, Hernandez EM, Armenta JL, Gonzalez R. Injection molded thermoplastic starch/natural rubber/clay nanocomposites: morphology and mechanical properties. Carbohydr Polym 2009; 77: 80–86.10.1016/j.carbpol.2008.12.008Search in Google Scholar

Mondragon G, Peña-Rodriguez C, González A, Eceiza A, Arbelaiz A. Bionanocomposites based on gelatin matrix and nanocellulose. Macromolecular Nanotechnology. Eur Polym J 2015; 62: 1–9.10.1016/j.eurpolymj.2014.11.003Search in Google Scholar

Monticelli O, Cavallo D, Bocchini S, Frache A, Carniato F, Tonelotto A. A novel use of Ti-POSS as initiator of l-lactide ring-opening polymerization. J Polym Sci Part A: Polym Chem 2011; 49: 4794–4799.10.1002/pola.24926Search in Google Scholar

Moreiraa FKV, Pedroa DCA, Glennd GM, Marconcinia JM, Mattosoa JHC. Brucite nanoplates reinforced starch bionanocomposites. Carbohydr Polym 2013; 92: 1743–1751.10.1016/j.carbpol.2012.11.019Search in Google Scholar PubMed

Mtibea A, Linganisoa LZ, Aji PM, Oksman K, Maya JJ, Anandjiwalaa RD. A comparative study on properties of micro and nano-papers produced from cellulose and cellulose nanofibers. Carbohydr Polym 2015; 118: 1–8.10.1016/j.carbpol.2014.10.007Search in Google Scholar PubMed

Mujeeb Rahman P, Muraleedaran K, Abdul Mujeeb VM. Applications of chitosan powder with in situ synthesized nano ZnO particles as an antimicrobial agent. Int J Biol Macromol 2015; 77: 266–272.10.1016/j.ijbiomac.2015.03.058Search in Google Scholar PubMed

Murariu M, Dechief AL, Bonnaud L, Paint Y, Gallos A, Fontaine G, Bourbigot S, Dubois P. The production and properties of polylactide composites filled with expanded graphite. Polym Degrad Stab 2010; 95: 889–900.10.1016/j.polymdegradstab.2009.12.019Search in Google Scholar

Murariu M, Doumbia A, Bonnaud L, Dechief AL, Paint Y, Ferreira M, Campagne C, Devaux E, Dubois P. High-performance polylactide/ZnO nanocomposites designed for films and fibers with special end-use properties. Biomacromolecules 2011; 12: 1762–1771.10.1021/bm2001445Search in Google Scholar PubMed

Najafi A, Kord B, Abdi A, Ranaee S. The impact of the nature of nanoclay on the physical and mechanical properties of polypropylene/reed flour nanocomposites. J Reinf Plast Compos 2012; 25: 717–727.10.1177/0892705711412813Search in Google Scholar

Nakagaito AN, Fujimura A, Sakai T, Hama Y, Yano H. Production of microfibrillated cellulose (MFC)-reinforced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process. Compos Sci Technol 2009; 69: 1293–1297.10.1016/j.compscitech.2009.03.004Search in Google Scholar

Nejati K, Keypour H, Nezhad PDK, Rezvani Z, Zeynali KA. Preparation and characterization of cetirizine intercalated layered double hydroxide and chitosan nanocomposites. J Taiwan Inst Chem Eng 2015; 53: 168–175.10.1016/j.jtice.2015.02.035Search in Google Scholar

Notta-Cuvier D, Murariu M, Odent J, Delille R, Bouzouita A, Raquez JM, Lauro F, Dubois P. tailoring polylactide properties for automotive applications: effects of co-addition of halloysite nanotubes and selected plasticizer. Macromol Mater Eng 2015; 300: 684–698.10.1002/mame.201500032Search in Google Scholar

Nyström G, Mihranyan A, Razaq A, Lindström T, Nyholm L, Strømme M. A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood. J Phys Chem B 2010; 114: 4178.10.1021/jp911272mSearch in Google Scholar PubMed PubMed Central

Oberdorster G, Stone V, Donaldson K. Toxicology of nanoparticles: a historical perspective. Nanotoxicology 2007; 1: 2–25.10.1080/17435390701314761Search in Google Scholar

Ochiai T, Fujishima A. Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification. J Photochem Photobiol C Photochem Rev 2012; 13: 247–262.10.1016/j.jphotochemrev.2012.07.001Search in Google Scholar

Oh JM, Kwak SY, Choy JH. Intracrystalline structure of DNA molecules stabilized in the layered double hydroxide. J Phys Chem Solids 2006; 67: 1028–1031.10.1016/j.jpcs.2006.01.080Search in Google Scholar

Okada A, Fukushima Y, Kawasumi M, Inagaki S, Usuka A, Sugiyama S, Toshio K, Osama K. Composite material and process for manufacturing same. US 4739007; 1988.Search in Google Scholar

Oksman K, Mathew AP, Bondeson D, Kvien I. Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 2006; 66: 2776–2784.10.1016/j.compscitech.2006.03.002Search in Google Scholar

Olivatoa JB, Marinib J, Polletc E, Yamashitaa F, Grossmanna MV, Avérous L. Elaboration, morphology and properties of starch/polyester nano-biocomposites based on sepiolite clay. Carbohydr Polym 2015; 118: 250–256.10.1016/j.carbpol.2014.11.014Search in Google Scholar PubMed

Orelma H, Filpponen I, Johansson L, Österberg M, Rojas OJ, Laine J. Surface functionalized nanofibrillar cellulose (NFC) film as a platform for immunoassays and diagnostics. Biointerphases 2012; 7: 1–12.10.1007/s13758-012-0061-7Search in Google Scholar PubMed

Oymaci P, Altinkaya S. Improvement of barrier and mechanical properties of whey protein isolate based food packaging films by incorporation of zein nanoparticles as a novel bionanocomposite. Food Hydrocoll 2016; 54: 1–9.10.1016/j.foodhyd.2015.08.030Search in Google Scholar

Ozkoc G, Kemaloglu S. Morphology, biodegradability, mechanical, and thermal properties of nanocomposite films based on PLA and plasticized PLA. J Appl Polym Sci 2009; 114: 2481–2487.10.1002/app.30772Search in Google Scholar

Pan H, Qiu Z. Biodegradable poly (l-lactide)/polyhedral oligomeric silsesquioxanes nanocomposites: enhanced crystallization, mechanical properties, and hydrolytic degradation. Macromolecules 2010; 43: 1499–1506.10.1021/ma9023685Search in Google Scholar

Pandele AM, Ionita M, Crica L, Dinescu S, Costache M. Synthesis, characterization and in vitro studies of graphene oxide/chitosan-PVA films. Carbohydr Polym 2014; 102: 813–820.10.1016/j.carbpol.2013.10.085Search in Google Scholar PubMed

Park H, Kalaitzidou K, Fukushima H, Drzal L. Exfoliated graphite nanoplatelets xGNPs/polypropylene nanocomposites. Composite Materials and Structures Center, Michigan State University, 2012.Search in Google Scholar

Peek LJ, Middaugh CR, Berkland C. Nanotechnology in vaccine delivery. Adv Drug Deliv Rev 2008; 60: 915–928.10.1016/j.addr.2007.05.017Search in Google Scholar PubMed PubMed Central

Pei A, Zhou Q, Berglund LA. Functionalized cellulose nanocrystals as biobased nucleation agents in poly(l-lactide) (PLLA)–crystallization and mechanical property effects. Compos Sci Technol 2010; 70: 815–821.10.1016/j.compscitech.2010.01.018Search in Google Scholar

Peng J, Ellingham T, Sabo R, Craig MC, Lih-Sheng T. Oriented polyvinyl alcohol films using short cellulose nanofibrils as a reinforcement. J Appl Polym Sci 2015; 132: 42283.10.1002/app.42283Search in Google Scholar

Petersson L, Kvien I, Oksman K. Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Compos Sci Technol 2007; 67: 2535–2544.10.1016/j.compscitech.2006.12.012Search in Google Scholar

Plackett DV, Holm VK, Johansen P, Ndoni S, Nielsen PV, Sipilainen-Malm T, Södergård A, Verstichel S. Characterization of l-polylactide and l-polylactide-polycaprolactone co-polymer films for use in cheese-packaging applications. Packag Technol Sci 2006; 19: 1–24.10.1002/pts.704Search in Google Scholar

Poetschke P, Andres T, Villmow T, Pegel S, Bruenig H, Kobashi K, Fischer D, Haüssler L. Liquid sensing properties of fiber prepared by melt spinning from poly(lactic acid) containing multiwalled carbon nanotubes. Compos Sci Technol 2010; 70: 343–349.10.1016/j.compscitech.2009.11.005Search in Google Scholar

Pommet M, Juntaro J, Heng JYY, Mantalaris A, Lee AF, Wilson K, Kalinka G, Shaffer MSP, Bismarck A. Surface modification of natural fibers using bacteria: depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites. Biomacromolecules 2008; 9: 1643–1651.10.1021/bm800169gSearch in Google Scholar PubMed

Pratik R, Sailaja RRN. Chitosan-nanohydroxyapatite composites: mechanical, thermal and bio-compatibility studies. Int J Biol Macromol 2015; 73: 170–181.10.1016/j.ijbiomac.2014.11.023Search in Google Scholar PubMed

Ramontja J, Ray SS, Pillai SK, Luyt AS. High-performance carbon nanotube-reinforced bioplastic. Macromol Mater Eng 2009; 294: 839–846.10.1002/mame.200900197Search in Google Scholar

Raquez JM, Murena Y, Goffin AL, Habibi Y, Ruelle B, DeBuyl F, Dubois P. Surface-modification of cellulose nanowhiskers and their use as nanoreinforcers into polylactide: a sustainably integrated approach. Compos Sci Technol 2012; 72: 544–549.10.1016/j.compscitech.2011.11.017Search in Google Scholar

Ratner BD, Hoffman AS, Schoeri FJ, Lemons JE, editors. Biomaterials science: an introduction to materials in medicine. London: Elsevier Academic Press, 2004: 864.Search in Google Scholar

Ray S. Polylactide-based bionanocomposites: a promising class of hybrid materials. Acc Chem Res 2012; 45: 1710–1720.10.1021/ar3000376Search in Google Scholar PubMed

Razzaq MY, Behl M, Lendlein A. Magnetic memory effect of nanocomposites. Adv Funct Mater 2012; 22: 184–189.10.1002/adfm.201101590Search in Google Scholar

Reddy M, Mohanty AK, Misra M. Thermoplastics from soy protein: a review on processing. Blends and composites. J Biobased Mater Bio 2010; 4: 298–316.10.1166/jbmb.2010.1112Search in Google Scholar

Reijnders L. Cleaner nanotechnology and hazard reduction of manufactured nanoparticles. J Clean Prod 2006; 14: 124–133.10.1016/j.jclepro.2005.03.018Search in Google Scholar

Reijnders L. The release of TiO2 and SiO2 nanoparticles from nanocomposites. Polym Degrad Stab 2009; 94: 873–876.10.1016/j.polymdegradstab.2009.02.005Search in Google Scholar

Rentenberger R, Cayla A, Villmow T, Jehnichen D, Campagne C, Rochery M, Devaux E, Pötschke P. Multifilament fibres of poly (epsilon-caprolactone)/poly(lactic acid) blends with multiwalled carbon nanotubes as sensor materials for ethyl acetate and acetone. Sensors Actuat B 2011; 160: 22–31.10.1016/j.snb.2011.07.004Search in Google Scholar

Restuccia D, Spizzirri UG, Parisi OI, Cirillo G, Curcio M, Iemma F, Puoci F, Vinci G, Picci N. New EU regulation aspects and global market of active and intelligent packaging for food applications. Food Control 2010; 21: 1425–1435.10.1016/j.foodcont.2010.04.028Search in Google Scholar

Ribeiro C, Arizaga G, Wypych F, Sierakowski MR. Nanocomposites coated with xyloglucan for drug delivery: in vitro studies. Int J Pharm 2009; 367: 204–210.10.1016/j.ijpharm.2008.09.037Search in Google Scholar PubMed

Ribeiro LNM, Alcântara ACS, Darder M, Aranda P, Herrmann PSP, Araújo-Moreira FM, García-Hernández M, Ruiz-Hitzky E. Bionanocomposites containing magnetic graphite as potential systems for drug delivery. Int J Pharm 2014; 477: 553–563.10.1016/j.ijpharm.2014.10.033Search in Google Scholar PubMed

Rihayat T, Saari M, Suraya H, Mahmood H, Yunus W, Sapuan S. Synthesis and thermal characterization of polyurethane/clay nanocomposites based on palm oil polyol. Polym-Plast Technol Eng 2006; 45: 1323–1326.10.1080/03602550600916159Search in Google Scholar

Rincon-Torres MT, Hall LJ. Cellulose nanowhiskers in well services. U.S. Patent US20130196883 A1, 2013.Search in Google Scholar

Ritzoulis C, Scoutaris N, Demetriou E, Papademetriou K, Kokkou S, Stavroulias S, Panayiotou C. Formation of hydroxyapatite/biopolymer biomaterials. I. Microporous composites from solidified emulsions. J Biomed Mater Res Part A 2004; 71: 675–684.10.1002/jbm.a.30206Search in Google Scholar PubMed

Rodionova G, Lenes M, Eriksen Ø, Gregersen Ø. Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications. Cellulose 2011; 18: 127–134.10.1007/s10570-010-9474-ySearch in Google Scholar

Rozanty A, Rozman D, Tay G. Ultra-violet radiation cured composites based on unsaturated polyester resin filled with MMT and Kenaf bast fiber. Adv Mater Res 2011; 264–265: 712–718.10.4028/www.scientific.net/AMR.264-265.712Search in Google Scholar

Rozman H, Musa L, Azinwati A, Rozanty A. Tensile properties of kenaf unsaturated polyester composites filled with montmorillonite filler. J Appl Polym Sci 2010; 119: 2549–2553.10.1002/app.32096Search in Google Scholar

Rubentheren V, Ward TA, Ching YC, Chee KT. Processing and analysis of chitosan nanocomposites reinforced with chitin whiskers and tannic acid as a crosslinker. Carbohydr Polym 2015; 115: 379–387.10.1016/j.carbpol.2014.09.007Search in Google Scholar PubMed

Ruiz AI, Darder M, Aranda P, Jiménez R, Van Damme H, Ruiz-Hitzky E. Bio-nanocomposites by assembling of gelatin and layered perovskite mixed oxides. J Nanosci Nanotechnol 2006; 6: 1602–1610.10.1166/jnn.2006.216Search in Google Scholar PubMed

Ruiz-Hitzky E, Darder M, Aranda P, Del-Burgo MAM, Del Real G. Bionanocomposites as new carriers for influenza vaccines. Adv Mater 2009; 21: 4167–4171.10.1002/adma.200900181Search in Google Scholar

Ruiz-Hitzky E, Aranda P, Dardera M, Rytwo G. Hybrid materials based on clays for environmental and biomedical applications. J Mater Chem 2010a; 20; 9306–9321.10.1039/c0jm00432dSearch in Google Scholar

Ruiz-Hitzky E, Aranda P, Darder M, Rytwo G. Hybrid materials based on clays for environmental and biomedical applications. J Mater Chem 2010b; 20: 9306–9321.10.1039/c0jm00432dSearch in Google Scholar

Ruiz-Hitzky E, Aranda P, Darder M, Rytwo G. Hybrid materials based on clays for environmental and biomedical applications. J Mater Chem 2010c; 20: 9306–9321.10.1039/c0jm00432dSearch in Google Scholar

Ruiz-Hitzky E, Aranda P, Darder M, Ogawa M. Hybrid and biohybrid silicate based materials: molecular vs. block-assembling bottom-up processes. Chem Soc Rev 2011; 40: 801–828.10.1039/C0CS00052CSearch in Google Scholar

Saad MJ. Effect of maleated propylene (MAPP) on the tensile, impact and thickness swelling properties of kenaf core polypropylene composites. J Sci Technol 2006; 2: 33–44.Search in Google Scholar

Sahoo NG, Rana S, Cho JW, Li L, Chan SH. Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 2010; 35: 837–867.10.1016/j.progpolymsci.2010.03.002Search in Google Scholar

Sailaja RRN, Roy P. Chitosan-nanohydroxyapatite composites: mechanical, thermal and bio-compatibility studies. Int J Biol Macromol 2015; 73: 170–181.10.1016/j.ijbiomac.2014.11.023Search in Google Scholar PubMed

Salaberria AM, Diaz RH, Labidi J, Fernandes SCM. Role of chitin nanocrystals and nanofibers on physical, mechanical and functional properties in thermoplastic starch films. Food Hydrocoll 2015; 46: 93–102.10.1016/j.foodhyd.2014.12.016Search in Google Scholar

Salari A, Tabarsa T, Khazaeian A, Saraeian A. Improving some of applied properties of oriented strand board (OSB) made from underutilized low quality paulownia (Paulownia fortunie) wood employing nano-SiO2. Ind Crops Prod 2015; 42: 1–9.10.1016/j.indcrop.2012.05.010Search in Google Scholar

Salas C, Nypelö T, Rodriguez-Abreu C, Carrillo C, Rojas OJ. Nanocellulose properties and applications in colloids and interfaces. Curr Opin Colloid Interf Sci 2014; 19: 383–396.10.1016/j.cocis.2014.10.003Search in Google Scholar

Salcedo I, Aguzzi C, Sandri G, Bonferoni MC, Mori M, Cerezo P, Sanchez R, Viseras C, Caramella C. In vitro biocompatibility and mucoadhesion of montmorillonite chitosan nanocomposite: a new drug delivery. Appl Clay Sci 2012; 55: 131–137.10.1016/j.clay.2011.11.006Search in Google Scholar

Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering: state of the art and future trends. Macromol Biosci 2004; 4: 743–765.10.1002/mabi.200400026Search in Google Scholar PubMed

Sanuja S, Agalya A, Umapathy MJ. Synthesis and characterization of zinc oxide-neem oil-chitosan bionanocomposite for food packaging applications. Int J Biol Macromol 2015; 74: 76–84.10.1016/j.ijbiomac.2014.11.036Search in Google Scholar PubMed

Sarat K, Subrata KP, Sudhir KK. Study of thermal, oxygen barrier, fire retardant and biodegradable properties of starch bionanocomposites. Polym Compos 2013; 4: 23–45.Search in Google Scholar

Schlemmer D, Romulo A, Sales A. Morphological and thermomechanical characterization of thermoplastic starch/montmorillonite nanocomposites. Compos Struct 2010; 92: 2066–2070.10.1016/j.compstruct.2009.10.034Search in Google Scholar

Shabanzadeh P, Yusof R, Shameli K. Artificial neural network for modeling the size of silver nanoparticles prepared in montmorillonite/starch bionanocomposites. J Ind Eng Chem 2015; 24: 42–52.10.1016/j.jiec.2014.09.007Search in Google Scholar

Sheshmani S, Ashori A, Fashapoyeh MA. Wood plastic composite using graphene nanoplatelets. Int J Biol Macromol 2013; 58: 1–6.10.1016/j.ijbiomac.2013.03.047Search in Google Scholar

Siengchin S, Dangtungee R. Polyethylene and polypropylene hybrid composites based on nano silicon dioxide and different flax structures. J Thermoplast Compos Mater 2014; 27: 1428–1447.10.1177/0892705714526916Search in Google Scholar

Silvaa JBA, Nascimentob T, Costac LAS, Fabiano V. Pereirad, Bruna 5th International Conference on Advanced Nano Materials, 2015.Search in Google Scholar

Silvestre C, Duraccio, Cimmino S. Food packaging based on polymer nanomaterials. Prog Polym Sci 2011; 36: 1766–1782.10.1016/j.progpolymsci.2011.02.003Search in Google Scholar

Simon P, Chaudhry Q, Bakos D. Migration of engineered nanoparticles from polymer packaging to food – a physicochemical view. J Food Nutr Res 2008; 47: 105–113.Search in Google Scholar

Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S. Graphene based materials. Past, present and future. Prog Mater Sci 2011; 56: 1178–1271.10.1016/j.pmatsci.2011.03.003Search in Google Scholar

Sinha R, Yamada K, Okamoto M, Ueda K. New polylactide-layered silicate nanocomposites. 2. Concurrent improvements of material properties, biodegradability and melt rheology. Polymer 2003; 44: 857–866.10.1016/S0032-3861(02)00818-2Search in Google Scholar

Siqueira G, Bras J, Dufresne A. Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2010; 2: 728–765.10.3390/polym2040728Search in Google Scholar

Sootsman JR, Chung DY, Kanatzidis MG. New and old concepts in thermoelectric materials. Angew Chem Int Ed 2009; 48: 8616–8639.10.1002/anie.200900598Search in Google Scholar PubMed

Sorrentino A, Gorrasi G, Vittoria V. Potential perspectives of bionanocomposites for food packaging applications. Trends Food Sci Technol 2007; 18: 84–95.10.1016/j.tifs.2006.09.004Search in Google Scholar

Sotome S, Uemura T, Kikuchi M, Chen J, Itoh S, Tanaka J, Tateishi T, Shinomiya K. Synthesis and in vivo evaluation of a novel hydroxyapatite/collagen-alginate as a bone filler and a drug delivery carrier of bone morphogenetic protein. Mater Sci Eng C 2004; 24: 341–347.10.1016/j.msec.2003.12.003Search in Google Scholar

Speranza V, De Meo A, Pantai R. Thermal and hydrolytic degradation kinetics of PLA in the molten state. Polym Degrad Stabil 2014; 100: 37–41.10.1016/j.polymdegradstab.2013.12.031Search in Google Scholar

Sridewi N, Bhubalan K, Sudesh K. Degradation of commercially important polyhydroxyalkanoates in tropical mangrove ecosystem. Polym Degrad Stab 2006; 91: 2931–2940.10.1016/j.polymdegradstab.2006.08.027Search in Google Scholar

Stankovich S, Dikin D, Dommett G, Kohlhaas KM. Graphene based composite materials. Nature 2006; 442: 282–286.10.1038/nature04969Search in Google Scholar PubMed

Stloukal P, Kalendova A, Mattausch H, Laske S, Holzer C, Koutny M. The influence of a hydrolysis-inhibiting additive on the degradation and biodegradation of PLA and its nanocomposites. Polym Test 2015; 41: 124–132.10.1016/j.polymertesting.2014.10.015Search in Google Scholar

Suryanegara L, Nakagaito AN, Yano H. The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol 2009; 69: 1187–1192.10.1016/j.compscitech.2009.02.022Search in Google Scholar

Suryanegara L, Nakagaito A, Yano H. Thermo-mechanical properties of microfibrillated cellulose-reinforced partially crystallized PLA composites. Cellulose 2010; 17: 771–778.10.1007/s10570-010-9419-5Search in Google Scholar

Suryanegara L, Okumura H, Nakagaito A, Yano H. The synergetic effect of phenylphosphonic acid zinc and microfibrillated cellulose on the injection molding cycle time of PLA composites. Cellulose 2011; 18: 689–698.10.1007/s10570-011-9515-1Search in Google Scholar

Svagan AJ, Hedenqvist MS, Berglund L. Reduced water vapour sorption in cellulose nanocomposites with starch matrix. Compos Sci Technol 2009; 69: 500–506.10.1016/j.compscitech.2008.11.016Search in Google Scholar

Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan D, Brittberg M, Gatenholm P. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 2005; 26: 419–431.10.1016/j.biomaterials.2004.02.049Search in Google Scholar PubMed

Syverud K, Stenius P. Strength and barrier properties of MFC films. Cellulose 2009; 16: 75–85.10.1007/s10570-008-9244-2Search in Google Scholar

Taccola S, Desii A, Pensabene V, Fujie T, Saito A, Takeoka S, Dario P, Menciassi A, Mattoli V. Free-standing poly(l-lactic acid) nanofilms loaded with superparamagnetic nanoparticles. Langmuir 2011; 27: 5589–5595.10.1021/la2004134Search in Google Scholar PubMed

Tang X, Alavi S, Herald JT. Effects of plasticizers on the structure and properties of starch-clay nanocomposite films. Carbohydr Polym 2008; 74: 552–558.10.1016/j.carbpol.2008.04.022Search in Google Scholar

Tawakkal IS, Talib RA, Abdan K, Ling CN. Mechanical and physical properties of kenaf derived cellulose (KDC)-filled polylactic acid (PLA) composites. PLA-Kenaf composites. BioResources 2012; 7: 1643–1655.Search in Google Scholar

Tay G, Azniwati A, Azizah A, Rozman H, Musa L. The flexural and impact properties of kenaf-polypropylene composites filled with montmorillonite filler. Polym-Plast Technol Eng 2012; 51: 208–213.10.1080/03602559.2011.625376Search in Google Scholar

Teixeira EdM, Pasquini D, Curvelo AAS, Corradini E, Belgacem MN, Dufresne A. Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohydr Polym 2009; 78: 422–431.10.1016/j.carbpol.2009.04.034Search in Google Scholar

Teng C, Ma C, Haung Y, Yuen S, Weng C, Chen H, Su S. Effect of MWCNT content on rheological and dynamic mechanical properties of multiwalled carbon nanotube/polypropylene composites. Compos Part A 2008; 39: 1869–1875.10.1016/j.compositesa.2008.09.004Search in Google Scholar

Thyveetil MA, Coveney PV, Greenwell HC, Suter JL. Computer simulation study of the structural stability and materials properties of DNA-intercalated layered double hydroxides. J Am Chem Soc 2008; 130: 4742–4756.10.1021/ja077679sSearch in Google Scholar PubMed

Tingaut P, Zimmermann T, Lopez-Suevos F. Synthesis and characterization of bionanocomposites with tunable properties from poly (lactic acid) and acetylated microfibrillated cellulose. Biomacromolecules 2009; 11: 454–464.10.1021/bm901186uSearch in Google Scholar PubMed

Tolaymat TM, El Badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Total Environ 2010; 408: 999–1006.10.1016/j.scitotenv.2009.11.003Search in Google Scholar PubMed

Tome LC, Pinto RJB, Trovatti E, Freire CSR, Silvestre AJD, Neto CP, Gandini A. Transparent bionanocomposites with improved properties prepared from acetylated bacterial cellulose and poly (lactic acid) through a simple approach. Green Chem 2011; 13: 419–427.10.1039/c0gc00545bSearch in Google Scholar

Valentini L, Bittolo Bon S, Cardinali M, Fortunati E, Kenny J. Cellulose nanocrystals thin films as gate dielectric for flexible organic field-effect transistors. Mater Lett 2014; 126: 55–58.10.1016/j.matlet.2014.04.003Search in Google Scholar

Vartiainen J, Tuominen M, Nättinen K. Bio-hybrid nanocomposite coatings from sonicated chitosan and nanoclay. J Appl Polym Sci 2010; 116: 3638–3647.10.1002/app.31922Search in Google Scholar

Vicosa AL, Gomes ACO, Soares BG, Paranhos CM. Effect of sepiolite on the physical properties and swelling behavior of rifampicin-loaded nanocomposite hydrogels. Express Polym Lett 2009; 3: 518–524.10.3144/expresspolymlett.2009.64Search in Google Scholar

Villmow T, Poetschke P, Pegel S, Haeussler L, Kretzschmar B. Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly (lactic acid) matrix. Polymer 2008; 49: 3500–3509.10.1016/j.polymer.2008.06.010Search in Google Scholar

Viseras C, Aguzzi C, Cerezo P, Bedmar MC. Biopolymer-clay nanocomposites for controlled drug delivery. Mater Sci Technol 2008; 24: 1020–1026.10.1179/174328408X341708Search in Google Scholar

Vlieger JJ. Green plastics for food packaging. In Ahvenainen R, editor. Novel food packaging techniques. Boca Raton, FL: CRC Press, 2003: 519–534.10.1533/9781855737020.4.519Search in Google Scholar

Wan YZ, Luo H, He F, Liang H, Huang Y, Li XL. Mechanical, moisture absorption, and biodegradation behaviours of bacterial cellulose fibre-reinforced starch biocomposites. Compos Sci Technol 2009; 69: 1212–1217.10.1016/j.compscitech.2009.02.024Search in Google Scholar

Wang DY, Leuteritz A, Wang YZ, Wagenknecht U, Heinrich G. Preparation and burning behaviours of flame retarding biodegradable poly (lactic acid) nanocomposite based on zinc aluminium layered double hydroxide. Polym Degrad Stab 2010; 95: 2474–2480.10.1016/j.polymdegradstab.2010.08.007Search in Google Scholar

Wang DY, Song YP, Lin L, Wang XL, Wang YZ. A novel phosphorous-containing poly (lactic acid) towards its flame retardation. Polymer 2011; 52: 233–238.10.1016/j.polymer.2010.11.023Search in Google Scholar

Wang HS, Qiu ZB. Crystallization kinetics and morphology of biodegradable poly (l-lactic acid)/graphene oxide nanocomposites: influences of graphene oxide loading and crystallization temperature. Thermochim Acta 2012; 527: 40–46.10.1016/j.tca.2011.10.004Search in Google Scholar

Wang X, Hu Y, Song L, Xuan S, Xing W, Bai Z. Flame retardancy and thermal degradation of IFR poly (lactic acid)/starch biocomposites. Ind Eng Chem Res 2014; 50: 713–720.10.1021/ie1017157Search in Google Scholar

Wei M, Yuan Q, Evans DG, Wang Z, Duan X. Layered solids as a “molecular container” for pharmaceutical agents: l-tyrosineintercalated layered double hydroxides. J Mater Chem 2005; 15: 1197–1203.10.1039/B416068ASearch in Google Scholar

Wei LL, Wang DY, Chen HB, Chen L, Wang XL, Wang YZ. Effect of phosphorous-containing flame retardant on the thermal properties and ease of Ignition of poly (lactic acid). Polym Degrad Stab 2011; 96: 1557–1561.10.1016/j.polymdegradstab.2011.05.018Search in Google Scholar

Weiner S, Wagner HD. The material bone: structure mechanical function relations. Annu Rev Mater Sci 1998; 28: 271–298.10.1146/annurev.matsci.28.1.271Search in Google Scholar

Westland JA, Penny GS, Lenk DA. Forming by dispersing water-insoluble reticulated bacterial cellulose in aqueous transport medium to make mud having plastic viscosity of at least 5 cp; adding drill solids, bentonite and/or soda ash. U.S. Patent US5362713 A, 1994a.Search in Google Scholar

Westland JA, Penny GS, Stephens RS, Winslow AR. Method of supporting fractures in geological formations and hydraulic fluid composition for same. U.S. Patent US5350528 A, 1994b.Search in Google Scholar

Westman M, Fifiuld L. Natural fiber reinforced composites; a review. National Technical Information Service, USA, Department of Commerce, 2010.10.2172/989448Search in Google Scholar

Woehl MA, Canestraro CD, Mikowski A, Sierakowski MR, Ramos LP, Wypych F. Bionanocomposites of thermoplastic starch reinforced with bacterial cellulose nanofibres: effect of enzymatic treatment on mechanical properties. Carbohydr Polym 2010; 80: 866–873.10.1016/j.carbpol.2009.12.045Search in Google Scholar

Wu D, Zhang Y, Zhang M, Yu W. Selective localization of multiwalled carbon nanotubes in poly(epsilon-caprolactone)/polylactide blend. Biomacromolecules 2009; 10: 417–424.10.1021/bm801183fSearch in Google Scholar PubMed

Xiang C, Joo YL, Frey MW. Nanocomposite fibers electro-spun from poly (lactic acid)/cellulose nano-crystals. J Bio-Based Mater Bio-Energ 2009; 3: 147–155.10.1166/jbmb.2009.1016Search in Google Scholar

Xie F, Halley PJ, Averous L. Rheology to understand and optimize processibility, structures and properties of starch polymeric materials. Prog Polym Sci 2012; 37: 595–623.10.1016/j.progpolymsci.2011.07.002Search in Google Scholar

Xu JZ, Chen T, Yang CL, Li ZM, Mao YM, Zeng BQ, Hsiao BS. Isothermal crystallization of poly (l-lactide) induced by graphene nanosheets and carbon nanotubes: a comparative study. Macromolecules 2010; 43: 5000–5008.10.1021/ma100304nSearch in Google Scholar

Yadollahi M, Namazi H, Barkhordari S. Preparation and properties of carboxymethyl cellulose/layered double hydroxide bionanocomposite films. Carbohydr Polym 2014; 108: 83–90.10.1016/j.carbpol.2014.03.024Search in Google Scholar PubMed

Yadollahia M, Farhoudiana S, Namazia H. One-pot synthesis of antibacterial chitosan/silver bio-nanocompositehydrogel beads as drug delivery systems. Int J Biol Macromol 2015; 79: 37–43.10.1016/j.ijbiomac.2015.04.032Search in Google Scholar

Yamaguchi I, Tokuchi K, Fukuzaki H, Koyama Y, Takakuda K, Monma H, Tanaka J. Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites. J Biomed Mater Res 2001; 55: 20–27.10.1002/1097-4636(200104)55:1<20::AID-JBM30>3.0.CO;2-FSearch in Google Scholar

Yan SF, Yin JB, Yang JY, Chen XS. Structural characteristics and thermal properties of plasticized poly (l-lactide)-silica nanocomposites synthesized by sol-gel method. Mater Lett 2007; 61: 2683–2686.10.1016/j.matlet.2006.10.023Search in Google Scholar

Yang W, Fortunati E, Dominici F, Kenny JM, Puglia D. Effect of processing conditions and lignin content on thermal, mechanical and degradative behavior of lignin nanoparticles/polylactic (acid) bionanocomposites prepared by melt extrusion and solvent casting. Eur Polym J 2015; 71: 126–139.10.1016/j.eurpolymj.2015.07.051Search in Google Scholar

Yew SP, Tang HY, Sudesh K. Photocatalytic activity and biodegradation of polyhydroxybutyrate films containing titanium dioxide. Polym Degrad Stab 2006; 91: 1800–1807.10.1016/j.polymdegradstab.2005.11.011Search in Google Scholar

Yokoyama A, Gelinsky M, Kawasaki T, Kohgo T, König U, Pompe W, Watari F. Biomimetic porous scaffolds with high elasticity made from mineralized collagen – an animal study. J Biomed Mater Res Part B 2005; 75: 464–472.10.1002/jbm.b.30331Search in Google Scholar

Yong L, Qinglin W, Craig M, Yao F, Yanjun X. Influence of nanoclay on properties of HDPE/Wood composites. J Appl Polym Sci 2007; 106: 3958–3966.10.1002/app.27048Search in Google Scholar

Young R, Kinloch AI, Novoselov KS. The mechanics of graphene nanocomposites: A Review. Compos Sci Technol 2012; 72: 1459–1476.10.1016/j.compscitech.2012.05.005Search in Google Scholar

Youssef AM, Bujdosó T, Hornok V, Papp S, Kiss B, Abd El-Hakim A, Dékány I. Structural and thermal properties of polystyrene nanocomposites containing hydrophilic and hydrophobic layered double hydroxide. Appl Clay Sci 2013; 77–78: 46–51.10.1016/j.clay.2013.03.011Search in Google Scholar

Youssef AM, Abdel-Aziz MS, El-Sayed SM. Chitosan nanocomposite films based on Ag-NP and Au-NP biosynthesis by bacillus subtilis as packaging material. Int J Biol Macromol 2014; 69: 185–191.10.1016/j.ijbiomac.2014.05.047Search in Google Scholar

Youssef AM, El-Sayedb SM, Salamab HH, El-Sayedb H, Dufresnec A. Evaluation of bionanocomposites as packaging material on properties of soft white cheese during storage period. Carbohydr Polym 2015a; 132: 274–285.10.1016/j.carbpol.2015.06.075Search in Google Scholar PubMed

Youssef AM, Yousef HA, El-Sayed SM, Kamel S. Mechanical and antibacterial properties of novel high performance chitosan/nanocomposite films. Int J Biol Macromol 2015b; 76: 25–32.10.1016/j.ijbiomac.2015.02.016Search in Google Scholar PubMed

Yu J, Qiu Z. Preparation and properties of biodegradable poly (l-lactide)/octamethyl-polyhedral oligomeric silsesquioxanes nanocomposites with enhanced crystallization rate via simple melt compounding. ACS Appl Mater Interf 2011a; 3: 890–897.10.1021/am1012485Search in Google Scholar PubMed

Yu T, Jiang N, Li Y. Functionalized multi-walled carbon nanotube for improving the flame retardancy of ramie/poly(lactic acid) composite. Compos Sci Technol 2014; 104: 26–33.10.1016/j.compscitech.2014.08.021Search in Google Scholar

Yu J, Qiu Z. Isothermal and non-isothermal cold crystallization behaviors of biodegradable poly (l-lactide)/octavinyl-polyhedral oligomeric silsesquioxanes nanocomposites. Ind Eng Chem Res 2011b; 50: 12579–12586.10.1021/ie201691ySearch in Google Scholar

Yuan P, Tan D, Annabi-Bergaya F. Properties and applications of halloysite nanotubes: recent research advances and future prospects. Appl Clay Sci 2015; 112–113: 75–93.10.1016/j.clay.2015.05.001Search in Google Scholar

Yun S, Kim J. Multi-walled carbon nanotubes-cellulose paper for a chemical vapor sensor. Sensor Actuat B 2010; 150: 308–313.10.1016/j.snb.2010.06.068Search in Google Scholar

Zahedi M, Pirayesh H, Khanjanzadeh H, Tabar MM. Organo-modified montmorillonite reinforced walnut shell/polypropylene composites. Mater Design 2013; 51: 803–809.10.1016/j.matdes.2013.05.007Search in Google Scholar

Zaitsev VS, Filimonov DS, Presnyakov IA, Gambino RJ, Chu B. Physical and chemical properties of magnetite and magnetite-polymer nanoparticles and their colloidal dispersions. J Colloid Interf Sci 1999; 212: 49–57.10.1006/jcis.1998.5993Search in Google Scholar PubMed

Zampaloni M, Pourboghrat F, Yankovich SA, Rodgers BN, Moore J, Drzal LT, Mohanty AK, Misra M. Kenaf natural fiber reinforced polypropylene composites: a discussion on manufacturing problems and solutions. Compos: Part A 2007; 38: 1569–1580.10.1016/j.compositesa.2007.01.001Search in Google Scholar

Zhang X, Sun J, Fang S, Han X, Li Y, Zhang C. Thermal, crystalline, and mechanical properties of octa (3-chloropropylsilsesquioxane)/ poly(l-lactic acid) hybrid films. J Appl Polym Sci 2011; 122: 296–303.10.1002/app.34059Search in Google Scholar

Zhang Y, Carbonell RG, Rojas OJ. Bioactive cellulose nanofibrils for specific human IgG binding. Biomacromolecules 2013a; 14: 4161–4168.10.1021/bm4007979Search in Google Scholar PubMed

Zhang Y, Nypelö T, Salas C, Arboleda J, Hoeger I, Rojas OJ. Cellulose nanofibrils: from strong materials to bioactive surfaces. J Renew Resour 2013b; 1: 195–211.10.7569/JRM.2013.634115Search in Google Scholar

Zhao Y, Wang K, Zhu F, Xue P, Jia M. Properties of poly (vinyl chloride)/wood flour/montmorillonite composites: effects of coupling agents and layered silicate. Polym Degrad Stab 2006; 91: 2874–2883.10.1016/j.polymdegradstab.2006.09.001Search in Google Scholar

Zheng XT, Zhou SB, Xiao Y, Yu XJ, Li XH, Wu PZ. Shape memory effect of poly (d, l-lactide)/Fe3 O4 nanocomposites by inductive heating of magnetite particles. Colloid Surface B 2009; 71: 67–72.10.1016/j.colsurfb.2009.01.009Search in Google Scholar PubMed

Zhong Y, Poloso T, Hetzer M, Kee D. Enhancement of wood/polyethylene composites via compatibilization and incorporation of organoclay particles. Polym Eng Sci 2007; 47: 797–803.10.1002/pen.20756Search in Google Scholar

Zhuliahani A, Rozman H, Tay G. Preparation of epoxy-kenaf nanocomposite based on montmorillonite. Adv Mater Res 2011; 65: 469–474.10.4028/www.scientific.net/AMR.264-265.469Search in Google Scholar

Zimmermann T, Pöhler E, Geiger T. Cellulose fibrils for polymer reinforcement. Adv Eng Mater 2004; 6: 754–761.10.1002/adem.200400097Search in Google Scholar

Zoppe JO, Ruottinen V, Ruotsalainen J, Rönkkö S, Johansson L, Hinkkanen A, Järvinen K, Seppälä J. Synthesis of cellulose nanocrystals carrying tyrosine sulfate mimetic ligands and inhibition of alphavirus infection. Biomacromolecules 2014; 15: 1534–1542.10.1021/bm500229dSearch in Google Scholar PubMed

Zou H, Wu S, Shen J. Polymer/silica nanocomposites: preparation, characterization: properties and applications. Chem Rev 2008; 108: 3893–3957.10.1021/cr068035qSearch in Google Scholar PubMed

Zuhudi N, Lin R, Jayaraman K. Flammability, thermal, and dynamic mechanical properties of bamboo-glass hybrid composites. J Thermoplast Compos Mater 2014; 25: 793–806.10.1177/0892705714563118Search in Google Scholar

Received: 2015-8-14
Accepted: 2015-12-12
Published Online: 2016-2-19
Published in Print: 2016-6-1

©2016 by De Gruyter

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/revce-2015-0046/html
Scroll to top button