Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access March 9, 2020

Equibiaxially stretchable colorless and transparent polyimides for flexible display substrates

  • Jin-Hae Chang EMAIL logo

Abstract

4,4′-(4,4′-isopropylidenediphenoxy)bis(phthalic anhydride) (BPADA) was reacted with three structurally different diamines to produce poly(amic acid)s, which were then imidized to produce colorless and transparent polyimide (CPI) films through stepwise thermal cyclization. The three amines used to synthesize CPI based on BPADA are: bis(3-aminophenyl)sulfone (APS), p-xylyenediamine (p-XDA), and bis[4-(3-aminophenoxy)-phenyl] sulfone (m-BAPS). The obtained CPI films were almost colorless and exhibited excellent optical transparencies. The solubility of the CPI films in various solvents was investigated, and all the CPI films were found to be soluble in common solvents such as chloroform, dichloromethane, N,N’-dimethyl acetamide, and pyridine. The thermo-optical properties and oxygen transmission rates (O2TRs) of the CPI films were examined for various biaxial stretching ratios in the range of 100–150%, and their properties were compared. When the stretching ratio changed from 100 to 150%, the glass transition temperature and yellow index did not show any significant change; however, the O2TR decreased for all CPI films.

References

[1] Maya, E. M., A. E. Lozano, J. Abajo, and J. G. Campa. Chemical modification of copolyimides with bulky pendent groups: Effect of modification on solubility and thermal stability. Polymer Degradation & Stability, Vol. 92, No. 12, 2007, pp. 2294–2299.10.1016/j.polymdegradstab.2007.01.042Search in Google Scholar

[2] Savard, O., T. J. Peckham, Y. Yang, and S. Holdcroft. Structure– property relationships for a series of polyimide copolymers with sulfonated pendant groups. Polymer, Vol. 49, No. 23, 2008, pp. 4949–4959.10.1016/j.polymer.2008.09.011Search in Google Scholar

[3] Kim, S.-U., C. Lee, S. Sundar, W. Jang, S.-J. Yang, and H. Han. J. Synthesis and characterization of soluble polyimides containing trifluoromethyl groups in their backbone. Polym. Sci., Part B. Polym. Phys., Vol. 42, 2004, pp. 4303–4312.10.1002/polb.20270Search in Google Scholar

[4] Liaw, D.-J., B.-Y. Liaw, and C.-W. Yu. Synthesis and characterization of new organosoluble polyimides based on flexible diamine. Polymer, Vol. 42, No. 12, 2001, pp. 5175–5179.10.1016/S0032-3861(00)00822-3Search in Google Scholar

[5] Wang, L., Z. Zhao, J. Li, and C. Chen. Synthesis and characterization of fluorinated polyimides for pervaporation of nheptane/thiophene mixtures. European Polymer Journal, Vol. 42, No. 6, 2006, pp. 1266–1272.10.1016/j.eurpolymj.2005.12.013Search in Google Scholar

[6] Tian, Y., S. Liu, H. Ding, L. Wang, B. Liu, and Y. Shi. Formation of deformed honeycomb-patterned films from fluorinated polyimide. Polymer, Vol. 48, No. 8, 2007, pp. 2338–2344.10.1016/j.polymer.2007.02.028Search in Google Scholar

[7] Wang, P.-C., and A. G. MacDiarmid. Integration of polymer-dispersed liquid crystal composites with conducting polymer thin films toward the fabrication of flexible display devices. Displays, Vol. 28, No. 3, 2007, pp. 101–104.10.1016/j.displa.2007.04.006Search in Google Scholar

[8] Choi, M.-C., Y. Kim, and C.-S. Ha. Polymers for flexible displays: From material selection to device applications. Progress in Polymer Science, Vol. 33, No. 6, 2008, pp. 581–630.10.1016/j.progpolymsci.2007.11.004Search in Google Scholar

[9] Burrows, P. E., G. L. Graft, M. E. Gross, P. M. Martin, M. K. Shi, M. Hall, E. Mast, C. Bonham, W. Bennett, and M. B. Sullivan. Ultra barrier flexible substrates for flat panel displays. Displays, Vol. 22, No. 2, 2001, pp. 65–69.10.1016/S0141-9382(00)00064-0Search in Google Scholar

[10] Chiang, C.-J., C. Winscom, S. Bull, and A. Monkman. Mechanical modeling of flexible OLED devices. Organic Electronics, Vol. 10, No. 7, 2009, pp. 1268–1274.10.1016/j.orgel.2009.07.003Search in Google Scholar

[11] Choi, I. W., and J.-H. Chang. Characterization of Colorless and Transparent Polyimide Films Synthesized with Various Amine Monomers. Polymer (Korea), Vol. 35, No. 5, 2010, pp. 480–484.10.7317/pk.2010.34.5.480Search in Google Scholar

[12] Chen, B.-K., Y.-T. Fang, and J.-R. Cheng. Synthesis of Low Dielectric Constant Polyetherimide Films. Macromolecular Symposia, Vol. 242, No. 1, 2006, pp. 34–39.10.1002/masy.200651006Search in Google Scholar

[13] Eichstadt, A. E., T. C. Ward, M. D. Bagwell, D. L. Farr, and J. E. McGrath. Synthesis and Characterization of Amorphous Partially Aliphatic Polyimide Copolymers Based on Bisphenol-A Dianhydride. Macromolecules, Vol. 35, No. 20, 2002, pp. 7561–7568.10.1021/ma020835pSearch in Google Scholar

[14] Yoonessi, M., D. A. Scheiman, M. Dittler, J. A. Peck, J. Ilavsky, J. R. Gaier, and M. A. Meador. High-temperature multifunctional magnetoactive nickel graphene polyimide nanocomposites. Polymer, Vol. 54, No. 11, 2013, pp. 2776–2784.10.1016/j.polymer.2013.03.015Search in Google Scholar

[15] Huang, T., R. Lu, C. Su, H. Wang, Z. Guo, P. Liu, Z. Huang, H. Chen, and T. Li. Chemically modified graphene/polyimide composite films based on utilization of covalent bonding and oriented distribution. ACS Applied Materials & Interfaces, Vol. 4, No. 5, May 2012, pp. 2699–2708.10.1021/am3003439Search in Google Scholar PubMed

[16] Heo, C., and J.-H. Chang. Polyimide nanocomposites based on functionalized graphene sheets: Morphologies, thermal properties, and electrical and thermal conductivities. Solid State Sciences, Vol. 24, 2013, pp. 6–14.10.1016/j.solidstatesciences.2013.06.012Search in Google Scholar

[17] Prattipati, V., Y. S. Hu, M. S. Bandi, D. A. Schiraldi, A. Hiltner, and E. Baer. Improving the transparency of stretched poly(ethylene terephthalate)/polyamide blends. Journal of Applied Polymer Science, Vol. 99, No. 1, 2006, pp. 225–235.10.1002/app.22463Search in Google Scholar

[18] Rajeev, R. S., E. Harkin-Jones, K. Soon, T. McNally, G. Menary, C. G. Armstrong, and P. J. Martin. Studies on the effect of equibiaxial stretching on the exfoliation of nanoclays in polyethylene terephthalate. European Polymer Journal, Vol. 45, No. 2, 2009, pp. 332–340.10.1016/j.eurpolymj.2008.10.036Search in Google Scholar

[19] Masuda, J., and M. Ohkura. Preparation and characterization of biaxially oriented polypropylene film with high molecular orientation in the machine direction by sequential biaxial stretching. Journal of Applied Polymer Science, Vol. 106, No. 6, 2007, pp. 4031–4037.10.1002/app.27067Search in Google Scholar

[20] Hu, Y. S., V. Prattipati, A. Hiltner, E. Baer, and S. Mehta. Improving transparency of stretched PET/MXD6 blends by modifying PET with isophthalate. Polymer, Vol. 46, No. 14, 2005, pp. 5202–5210.10.1016/j.polymer.2005.04.027Search in Google Scholar

[21] Choi C.-H., Y.-M. Kim, and J.-H. Chang. Colorless and transparent polyimide films for flexible displays. Polymer Science and Technology. Vol. 23, 2012, pp. 296-306.Search in Google Scholar

[22] King, J.-S., W. T. Whang, W.-C. Lee, and L.-M. Chang. Effect of backbone on the biaxial retardation of polyimide films in uniaxial stretch. Materials Chemistry and Physics, Vol. 103, No. 1, 2007, pp. 35–40.10.1016/j.matchemphys.2006.12.005Search in Google Scholar

[23] Jang, J., and D. K. Lee. Oxygen barrier properties of biaxially oriented polypropylene/polyvinyl alcohol blend films. Polymer, Vol. 45, No. 5, 2004, pp. 1599–1607.10.1016/j.polymer.2003.12.046Search in Google Scholar

[24] Fan, B. G., L. D. Maio, L. Incarnato, P. Scarfato, and D. Acierno. The relative significance of biaxial stretch ratio effects on the permeability of oriented PET film. Packaging Technology & Science, Vol. 13, No. 3, 2000, pp. 123–132.10.1002/1099-1522(200005)13:3<123::AID-PTS502>3.0.CO;2-GSearch in Google Scholar

[25] Terui, Y., and S. Ando. J. Coeflcients of molecular packing and intrinsic birefringence of aromatic polyimides estimated using refractive indices and molecular polarizabilities. Polym. Sci., Part B. Polym. Phys., Vol. 42, 2004, pp. 2354–2366.10.1002/polb.20114Search in Google Scholar

[26] Perrin-Sarazin, F., M. Ton-That, M. Bureau, and J. Denault. Micro-and nano-structure in polypropylene/clay nanocomposites. Polymer, Vol. 46, No. 25, 2005, pp. 11624–11634.10.1016/j.polymer.2005.09.076Search in Google Scholar

[27] Pavia, D. L., G. M. Lampman, and G. S. Kriz. Introduction to spectroscopy. Chapt 2. Harcourt Brace College Publishers, New York, 2008, Chapter 2, pp. 14–95.Search in Google Scholar

[28] Fernandez-Blazquez, J. P., and A. Bello. E, Perez. Observation of Two Glass Transitions in a Thermotropic Liquid-Crystalline Polymer. Macromolecules, Vol. 37, 2004, pp. 9018–9026.10.1021/ma049354rSearch in Google Scholar

[29] Ash, B. J., L. S. Schadler, and R. W. Siegel. Glass transition behavior of alumina/polymethylmethacrylate nanocomposites. Materials Letters, Vol. 55, No. 1-2, 2002, pp. 83–87.10.1016/S0167-577X(01)00626-7Search in Google Scholar

[30] Butt, M. S., Z. Akhtar, M. Z. Zaman, and A. Munir. Synthesis and characterization of some novel aromatic polyimides. European Polymer Journal, Vol. 41, No. 7, 2005, pp. 1638–1646.10.1016/j.eurpolymj.2005.01.016Search in Google Scholar

[31] Min, U., J. C. Kim, and J.-H. Chang. Transparent polyimide nanocomposite films: Thermo-optical properties, morphology, and gas permeability. Polymer Engineering and Science, Vol. 51, No. 11, 2011, pp. 2143–2150.10.1002/pen.22059Search in Google Scholar

[32] Tyan, H. L., Y. C. Liu, and K. H. Wei. Thermally and Mechanically Enhanced Clay/Polyimide Nanocomposite via Reactive Organoclay. Chemistry of Materials, Vol. 11, No. 7, 1999, pp. 1942–1947.10.1021/cm990187xSearch in Google Scholar

[33] Numata, S., S. Oohara, K. Fujisaki, J. Imaizumi, and N. Kinjo. Thermal expansion behavior of various aromatic polyimides. Journal of Applied Polymer Science, Vol. 31, No. 1, 1986, pp. 101–110.10.1002/app.1986.070310110Search in Google Scholar

[34] Liou, H.-C., P. S. Ho, and R. Stierman. Thickness dependence of the anisotropy in thermal expansion of PMDA-ODA and BPDA-PDA thin films. Thin Solid Films, Vol. 339, No. 1-2, 1999, pp. 68–73.10.1016/S0040-6090(98)01065-7Search in Google Scholar

[35] Yang, C. P., and Y. Y. Su. Colorless and high organosoluble polyimides from 2,5-bis(3,4-dicarboxyphenoxy)-t-butylbenzene dianhydride and aromatic bis(ether amine)s bearing pendent trifluoromethyl groups. Polymer, Vol. 46, No. 15, 2005, pp. 5778–5788.10.1016/j.polymer.2005.04.077Search in Google Scholar

[36] Choi, I. H., and J.-H. Chang. Colorless polyimide nanocomposite films containing hexafluoroisopropylidene group. Polymers for Advanced Technologies, Vol. 22, No. 5, 2011, pp. 682–689.10.1002/pat.1565Search in Google Scholar

[37] Yang, C. P., S. H. Hsiao, and Y. C. Chen. Soluble and light-colored polyimides from 2,3,2′,3′-oxydiphthalic anhydride and aromatic diamines. Journal of Applied Polymer Science, Vol. 97, No. 3, 2005, pp. 1352–1360.10.1002/app.21839Search in Google Scholar

[38] Chung, C. L., and S. H. Hsiao. Novel organosoluble fluorinated polyimides derived from 1,6-bis(4-amino-2-trifluoromethylphenoxy)naphthalene and aromatic dianhydrides. Polymer, Vol. 49, No. 10, 2008, pp. 2479–2485.10.1016/j.polymer.2008.03.047Search in Google Scholar

[39] Chen, K., X. C. Kazuaki, Y. N. Endo, M. Higa, and K. Okamoto. Synthesis and properties of novel sulfonated polyimides bearing sulfophenyl pendant groups for fuel cell application. Polymer, Vol. 50, No. 2, 2009, pp. 510–518.10.1016/j.polymer.2008.11.020Search in Google Scholar

[40] Ghaemy, M., R. Porazizollahy, and M. Bazzar. Novel thermal stable organosoluble polyamides and polyimides based on quinoxalin bulky pendent group. Macromolecular Research, Vol. 19, No. 6, 2011, pp. 528–536.10.1007/s13233-011-0611-8Search in Google Scholar

[41] Kim, M. H., M. H. Hoang, D. H. Choi, M. J. Cho, H. K. Ju, D. W. Kim, and C. J. Lee. Electro-optic effect of a soluble nonlinear optical polyimide containing two different chromophores with different sizes in the side chain. Macromolecular Research, Vol. 19, No. 4, 2011, pp. 403–407.10.1007/s13233-011-0410-2Search in Google Scholar

[42] Yang, C.-P., R.-S. Chen, and K.-H. Chen. Organosoluble and light-colored fluorinated polyimides based on 2,2-bis[4-(4-amino-2-trifluoromethylphenoxy)phenyl]propane and aromatic dianhydrides. Journal of Applied Polymer Science, Vol. 95, No. 4, 2005, pp. 922–935.10.1002/app.21277Search in Google Scholar

[43] Jarus, D., A. Hiltner, and E. Baer. Barrier properties of polypropylene/polyamide blends produced by microlayer coextrusion. Polymer, Vol. 43, No. 8, 2002, pp. 2401–2408.10.1016/S0032-3861(01)00790-XSearch in Google Scholar

[44] LeBaron, P. C., Z. W. Wang, and T. J. Pinnavaia. Polymer-layered silicate nanocomposites: An overview. Applied Clay Science, Vol. 15, No. 1-2, 1999, pp. 11–29.10.1016/S0169-1317(99)00017-4Search in Google Scholar

[45] Kim, J. H., W. J. Koros, and D. R. Paul. Physical aging of thin 6FDA-based polyimide membranes containing carboxyl acid groups. Part I. Transport properties. Polymer, Vol. 47, No. 9, 2006, pp. 3094–3103.10.1016/j.polymer.2006.02.083Search in Google Scholar

[46] Liu, R. Y. F., Y. S. Hu, M. R. Hibbs, D. M. Collard, D. A. Schiraldi, A. Hiltner, and E. Baer. Improving oxygen barrier properties of poly(ethylene terephthalate) by incorporating isophthalate. I. Effect of orientation. Journal of Applied Polymer Science, Vol. 98, No. 4, 2005, pp. 1615–1628.10.1002/app.22213Search in Google Scholar

[47] Min, U., and J.-H. Chang. Thick films: Properties, technology and applications (I. P. Panzini, ed.). Nova Sci. Publisher Inc, New York, 2012, Chapter 5, pp. 261–282.Search in Google Scholar

Received: 2019-09-27
Accepted: 2019-12-11
Published Online: 2020-03-09

© 2020 Jin-Hae Chang, published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 13.5.2024 from https://www.degruyter.com/document/doi/10.1515/rams-2020-0003/html
Scroll to top button