Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) September 20, 2023

Highly efficient uptake of TcO4/ReO4 by functionalized PAFs

  • Xupeng Zhi , Xinlong Chen , Yinglin Shen EMAIL logo , Xiaomin Li , Suliang Yang and Shengdong Zhang
From the journal Radiochimica Acta

Abstract

Selective removal of 99TcO4 from complex radioactive wastewater is a challenging but meaningful task since it is important for both spent fuel reprocessing and 99TcO4 leakage handling. Here, we synthesized a series of functionalized PAF-1 framework materials, PAF-1-C-N2, PAF-1-N2-C4, PAF-1-IM and PAF-1-PY, by grafting quaternary ammonium, imidazolium and pyridinium onto the PAF framework as active sites, respectively, which purpose is to screen functional groups with high affinity for TcO4. The structures and morphological characteristics of the four adsorbents were characterized by N2 adsorption-desorption, Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscope (SEM). These materials exhibit high selectivity for TcO4/ReO4, rapid adsorption kinetics (reaching equilibrium within 30 s), and a wide pH range (pH 3–11) for ReO4/TcO4adsorption. Among them, PAF-1-IM had the best adsorption performance, and the partition coefficient K d reached 1.27 × 106 mL/g. 97.1 % and 96.9 % of ReO4 could be removed by PAF-1-IM even when the concentrations of PO43− and SO42− are 1000 times the concentration of ReO4, respectively. When the solid-liquid ratio is 10 g/L, 93.7 % of TcO4 can be removed from the simulated Low Active Wastewater (LAW), which is higher than most other TcO4 adsorbents. X-ray energy dispersive spectroscopy (EDS) and FT-IR suggest the adsorption process was anion exchange.


Corresponding author: Yinglin Shen, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China, E-mail:

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: 21976075

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: This work was supported by the National Natural Science Foundation of China (21976075).

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Icenhower, J. P., Qafoku, N. P., Zachara, J. M., Martin, W. J. The biogeochemistry of technetium: a review of the behavior of an artificial element in the natural environment. Am. J. Sci. 2010, 310, 721–752; https://doi.org/10.2475/08.2010.02.Search in Google Scholar

2. Darab, J. G., Smith, P. A. Chemistry of technetium and rhenium species during low-level radioactive waste vitrification. Chem. Mater. 1996, 8, 1004–1021; https://doi.org/10.1021/cm950418+.10.1021/cm950418+Search in Google Scholar

3. Childs, B. C., Poineau, F., Czerwinski, K. R., Sattelberger, A. P. The nature of the volatile technetium species formed during vitrification of borosilicate glass. J. Radioanal. Nucl. Chem. 2015, 306, 417–421; https://doi.org/10.1007/s10967-015-4203-5.Search in Google Scholar

4. Dileep, C. S., Jagasia, P., Dhami, P. S., Achuthan, P. V., Dakshinamoorthy, A., Tomar, B. S., Munshi, S. K., Dey, P. K. Distribution of technetium in PUREX process streams. Desalination 2008, 232, 157–165; https://doi.org/10.1016/j.desal.2007.11.053.Search in Google Scholar

5. Gephart, R. E. A short history of waste management at the Hanford Site. Phys. Chem. Earth, Parts A/B/C 2010, 35, 298–306; https://doi.org/10.1016/j.pce.2010.03.032.Search in Google Scholar

6. Wilmarth, W. R., Lumetta, G. J., Johnson, M. E., Poirier, M. R., Thompson, M. C., Suggs, P. C., Machara, N. P. Review: waste-pretreatment technologies for remediation of legacy defense nuclear wastes. Solvent Extr. Ion Exch. 2011, 29, 1–48; https://doi.org/10.1080/07366299.2011.539134.Search in Google Scholar

7. Banerjee, D., Kim, D., Schweiger, M. J., Kruger, A. A., Thallapally, P. K. Removal of TcO4− ions from solution: materials and future outlook. Chem. Soc. Rev. 2016, 45, 2724–2739; https://doi.org/10.1039/c5cs00330j.Search in Google Scholar PubMed

8. Bonnesen, P. V., Brown, G. M., Alexandratos, S. D., Bavoux, L. B., Presley, D. J., Patel, V., Ober, R., Moyer, B. A. Development of bifunctional anion-exchange resins with improved selectivity and sorptive kinetics for pertechnetate: batch-equilibrium experiments. Environ. Sci. Technol. 2000, 34, 3761–3766; https://doi.org/10.1021/es990858s.Search in Google Scholar

9. Liu, Z. W., Han, B. H. Evaluation of an imidazolium-based porous organic polymer as radioactive waste scavenger. Environ. Sci. Technol. 2020, 54, 216–224; https://doi.org/10.1021/acs.est.9b05308.Search in Google Scholar PubMed

10. Li, J., Dai, X., Zhu, L., Xu, C., Zhang, D., Silver, M. A., Li, P., Chen, L. H., Li, Y. Z., Zuo, D. W., Zhang, H., Xiao, C. L., Chen, J., Diwu, J., Farha, O. K., Albrecht-Schmitt, T. E., Chai, Z. F., Wang, S. A. (TcO4−)-Tc-99 remediation by a cationic polymeric network. Nat. Commun. 2018, 9, 3007; https://doi.org/10.1038/s41467-018-05380-5.Search in Google Scholar PubMed PubMed Central

11. Zhi, X., Li, X., Dong, F., Huang, Y., Yang, S., Yan, T., Shen, Y. A hydrophobic imidazolium cationic framework for selective adsorption of TcO4−/ReO4− from aqueous solutions. Mater. Adv. 2022, 3, 4870–4877; https://doi.org/10.1039/d2ma00220e.Search in Google Scholar

12. Hao, M., Chen, Z., Yang, H., Waterhouse, G. I. N., Ma, S., Wang, X. Pyridinium salt-based covalent organic framework with well-defined nanochannels for efficient and selective capture of aqueous 99TcO4−. Sci. Bull. 2022, 67, 924–932; https://doi.org/10.1016/j.scib.2022.02.012.Search in Google Scholar PubMed

13. Sun, Q., Zhu, L., Aguila, B., Thallapally, P. K., Xu, C., Chen, J., Wang, S., Rogers, D., Ma, S. Q. Optimizing radionuclide sequestration in anion nanotraps with record pertechnetate sorption. Nat. Commun. 2019, 10, 9; https://doi.org/10.1038/s41467-019-09630-y.Search in Google Scholar PubMed PubMed Central

14. Gu, B., Brown, G. M., Bonnesen, P. V., Liang, L., Moyer, B. A., Ober, R., Alexandratos, S. D. Development of novel bifunctional anion-exchange resins with improved selectivity for pertechnetate sorption from contaminated groundwater. Environ. Sci. Technol. 2000, 34, 1075–1080; https://doi.org/10.1021/es990951g.Search in Google Scholar

15. Long, K. M., Goff, G. S., Ware, S. D., Jarvinen, G. D., Runde, W. H. Anion exchange resins for the selective separation of technetium from uranium in carbonate solutions. Ind. Eng. Chem. Res. 2012, 51, 10445–10450; https://doi.org/10.1021/ie300534e.Search in Google Scholar

16. Li, J., Zhu, L., Xiao, C. L., Chen, L. H., Chai, Z. F., Wang, S. A. Efficient uptake of perrhenate/pertechnenate from aqueous solutions by the bifunctional anion-exchange resin. Radiochim. Acta 2018, 106, 581–591; https://doi.org/10.1515/ract-2017-2829.Search in Google Scholar

17. Li, J., Chen, L., Shen, N. N., Xie, R. Z., Sheridan, M. V., Chen, X. J., Sheng, D. P., Zhang, D., Chai, Z. F., Wang, S. Rational design of a cationic polymer network towards record high uptake of (TcO4−)-Tc-99 in nuclear waste. Sci. China Chem. 2021, 64, 1251–1260; https://doi.org/10.1007/s11426-020-9962-9.Search in Google Scholar

18. Custelcean, R., Moyer, B. A. Anion separation with metal-organic frameworks. Eur. J. Inorg. Chem. 2007, 2007, 1321–1340; https://doi.org/10.1002/ejic.200700018.Search in Google Scholar

19. Tian, Y., Zhu, G. Porous aromatic frameworks (PAFs). Chem. Rev. 2020, 120, 8934–8986; https://doi.org/10.1021/acs.chemrev.9b00687.Search in Google Scholar PubMed

20. Li, B. Y., Sun, Q., Zhang, Y. M., Abney, C. W., Aguila, B., Lin, W. B., Ma, S. Q. Functionalized porous aromatic framework for efficient uranium adsorption from aqueous solutions. ACS Appl. Mater. Interfaces 2017, 9, 12511–12517; https://doi.org/10.1021/acsami.7b01711.Search in Google Scholar PubMed

21. Banerjee, D., Elsaidi, S. K., Aguila, B., Li, B., Kim, D., Schweiger, M. J., Kruger, A. A., Doonan, C. J., Ma, S., Thallapally, P. K. Removal of pertechnetate-related oxyanions from solution using functionalized hierarchical porous frameworks. Chem. – Eur. J. 2016, 22, 17581–17584; https://doi.org/10.1002/chem.201603908.Search in Google Scholar PubMed

22. Li, B., Zhang, Y., Krishna, R., Yao, K., Han, Y., Wu, Z., Ma, D., Shi, Z., Pham, T., Space, B., Liu, J., Thallapally, P. K., Liu, J., Chrzanowski, M., Ma, S. Introduction of π-complexation into porous aromatic framework for highly selective adsorption of ethylene over ethane. J. Am. Chem. Soc. 2014, 136, 8654–8660; https://doi.org/10.1021/ja502119z.Search in Google Scholar PubMed

23. Wang, P., Jiang, L., Zou, X., Tan, H., Zhang, P., Li, J., Liu, B., Zhu, G. Confining polyoxometalate clusters into porous aromatic framework materials for catalytic desulfurization of dibenzothiophene. ACS Appl. Mater. Interfaces 2020, 12, 25910–25919; https://doi.org/10.1021/acsami.0c05392.Search in Google Scholar PubMed

24. You, B., Zou, M., Xu, R., Tian, Y., Wang, B., Zhu, G. Metal−free catalysis of the reductive amination of aldehydes using a phosphonium−doped porous aromatic framework. Mol. Catal. 2022, 530, 112600; https://doi.org/10.1016/j.mcat.2022.112600.Search in Google Scholar

25. Ben, T., Ren, H., Ma, S., Cao, D., Lan, J., Jing, X., Wang, W., Xu, J., Deng, F., Simmons, J. M., Qiu, S., Zhu, G. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew. Chem. Int. Ed. 2009, 48, 9457–9460; https://doi.org/10.1002/anie.200904637.Search in Google Scholar PubMed

26. Shen, Y. L., Chu, N. N., Yang, S. L., Li, X. M., Cao, H., Tian, G. X. Quaternary phosphonium-grafted porous aromatic framework for preferential uranium adsorption in alkaline solution. Ind. Eng. Chem. Res. 2019, 58, 18329–18335; https://doi.org/10.1021/acs.iecr.9b03580.Search in Google Scholar

27. Xu, D., Chen, L., Dai, X., Li, B., Wang, Y., Liu, W., Li, J., Tao, Y., Wang, Y., Liu, Y., Peng, G., Zhou, R., Chai, Z., Wang, S. A porous aromatic framework functionalized with luminescent iridium(III) organometallic complexes for turn-on sensing of 99TcO4–. ACS Appl. Mater. Interfaces 2020, 12, 15288–15297; https://doi.org/10.1021/acsami.0c01929.Search in Google Scholar PubMed

28. Zhu, L., Sheng, D. P., Xu, C., Dai, X., Silver, M. A., Li, J., Li, P., Wang, Y. X., Wang, Y. L., Chen, L. H., Xiao, C. L., Chen, J., Zhou, R. H., Zhang, C., Farha, O. K., Chai, Z. F., Albrecht-Schmitt, T. E., Wang, S. Identifying the recognition site for selective trapping of (TcO4−)-Tc-99 in a hydrolytically stable and radiation resistant cationic metal-organic framework. J. Am. Chem. Soc. 2017, 139, 14873–14876; https://doi.org/10.1021/jacs.7b08632.Search in Google Scholar PubMed

29. Huang, Y., Li, X., Wu, F., Yang, S., Dong, F., Zhi, X., Chen, X., Tian, G., Shen, Y. A novel functionalized ionic liquid for highly selective extraction of TcO4–. Inorg. Chem. 2022, 61, 10609–10617; https://doi.org/10.1021/acs.inorgchem.2c01775.Search in Google Scholar PubMed

30. Han, D., Li, X., Peng, J., Xu, L., Li, J., Li, H., Zhai, M. A new imidazolium-based polymeric ionic liquid gel with high adsorption capacity for perrhenate. RSC Adv. 2016, 6, 69052–69059; https://doi.org/10.1039/c6ra12239f.Search in Google Scholar

31. Dong, F., Li, X., Huang, Y., Zhi, X., Yang, S., Shen, Y. Highly efficient uptake of TcO4– by imidazolium-functionalized wood sawdust. ACS Omega 2021, 6, 25672–25679; https://doi.org/10.1021/acsomega.1c03784.Search in Google Scholar PubMed PubMed Central

32. Da, H. J., Yang, C. X., Yan, X. P. Cationic covalent organic nanosheets for rapid and selective capture of perrhenate: an analogue of radioactive pertechnetate from aqueous solution. Environ. Sci. Technol. 2019, 53, 5212–5220; https://doi.org/10.1021/acs.est.8b06244.Search in Google Scholar PubMed

33. Wang, S. A., Alekseev, E. V., Juan, D. W., Casey, W. H., Phillips, B. L., Depmeier, W., Albrecht-Schmitt, T. E. NDTB-1: a supertetrahedral cationic framework that removes TcO4− from solution. Angew. Chem. Int. Ed. 2010, 49, 1057–1060; https://doi.org/10.1002/anie.200906397.Search in Google Scholar PubMed

34. You, W., Hugar, K. M., Selhorst, R. C., Treichel, M., Peltier, C. R., Noonan, K. J. T., Coates, G. W. Degradation of organic cations under alkaline conditions. J. Org. Chem. 2021, 86, 254–263; https://doi.org/10.1021/acs.joc.0c02051.Search in Google Scholar PubMed

35. Dickson, J. O., Harsh, J. B., Lukens, W. W., Pierce, E. M. Perrhenate incorporation into binary mixed sodalites: the role of anion size and implications for technetium-99 sequestration. Chem. Geol. 2015, 395, 138–143; https://doi.org/10.1016/j.chemgeo.2014.12.009.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/ract-2023-0218).


Received: 2023-08-21
Accepted: 2023-09-02
Published Online: 2023-09-20
Published in Print: 2023-11-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.6.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2023-0218/html
Scroll to top button