Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) October 3, 2023

Fabrication, swift heavy ion irradiation, and damage analysis of lanthanide targets

  • Carl-Christian Meyer EMAIL logo , Ernst Artes , Markus Bender , Joachim Brötz , Christoph E. Düllmann , Constantin Haese , Egon Jäger , Birgit Kindler , Bettina Lommel , Marton Major , Maximilian Rapps , Dennis Renisch , Christina Trautmann and Alexander Yakushev
From the journal Radiochimica Acta

Abstract

One limiting factor in progress in the discovery and study of new superheavy elements (SHE) is the maximum achievable thickness and irradiation stability of current generation actinide targets. The desired thickness of targets, using full excitation function widths, cannot be achieved with current target technology, especially the widely used molecular plating (MP). The aim of this study was to transfer progress in the electrochemistry of lanthanides and actinides to the production of targets. Here, we report on the production of lanthanide targets using anhydrous electrochemical routes. In a first irradiation series, thulium thin films with areal densities up to 1800 μg/cm2 were produced using anhydrous triflate compounds and subjected to irradiation tests, using 6.0 MeV/u 48Ca ions at a fluence of 3.9 × 1014 ions/cm2 and 8.6 MeV/u 197Au ions at fluences in the range of 3.0 × 1011 to 1.0 × 1013 ions/cm2. The thin films were characterised before and after the irradiations using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX).


Corresponding author: Carl-Christian Meyer, Department Chemie – Standort TRIGA, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany; and Helmholtz-Institut Mainz, 55099 Mainz, Germany, E-mail:

Acknowledgment

We would like to thank our colleagues from the research reactor TRIGA Mainz for carrying out the neutron activation of the lanthanide standards. Special thanks for the support with Raman spectroscopy and sample irradiation go to the colleagues from the GSI Materials Research department. We also acknowledge the local support of the mechanical workshop at the Mainz TRIGA reactor site. The results presented here are based on the experiment U308, which was performed at the beam line X8/TASCA and on irradiations at the M3-beamline of the UNILAC at the GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany) in the frame of FAIR Phase-0.

  1. Research ethics: There are no ethical objections to the research presented here.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: This research was supported by the German BMBF (grant No 05P21NMFN2) and by the Helmholtz Institute Mainz.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Oganessian, Yu. Ts., Utyonkov, V. Superheavy nuclei from 48Ca-induced reactions. Nucl. Phys. A 2015, 944, 62; https://doi.org/10.1016/j.nuclphysa.2015.07.003.Search in Google Scholar

2. Trautmann, N., Folger, H. Preparation of actinide targets by electrodeposition. Nucl. Instrum. Methods Phys. Res., Sect. A 1989, 282, 102; https://doi.org/10.1016/0168-9002(89)90117-4.Search in Google Scholar

3. Runke, J., Düllmann, Ch. E., Eberhardt, K., Ellison, P., Gregorich, K., Hofmann, S., Jäger, E., Kindler, B., Kratz, J., Krier, J., Lommel, B., Mokry, C., Nitsche, H., Roberto, J. B., Rykaczewski, K. P., Schädel, M., Thörle-Pospiech, P., Trautmann, N., Yakushev, A. Preparation of actinide targets for the synthesis of the heaviest elements. J. Radioanal. Nucl. Chem. 2014, 299, 1081; https://doi.org/10.1007/s10967-013-2616-6.Search in Google Scholar

4. Düllmann, Ch. E., Artes, E., Dragoun, A., Haas, R., Jäger, E., Kindler, B., Lommel, B., Mangold, K.-M., Meyer, C.-C., Mokry, C., Munnik, F., Rapps, M., Renisch, D., Runke, J., Seibert, A., Stöckl, M., Thörle-Pospiech, P., Trautmann, C., Trautmann, N., Yakushev, A. Advancements in the fabrication and characterization of actinide targets for superheavy element production. J. Radioanal. Nucl. Chem. 2023, 332, 1505; https://doi.org/10.1007/s10967-022-08631-4.Search in Google Scholar

5. Dmitriev, S., Popeko, A. High-power radioactive targets as one of the key problems in further development of the research program on synthesis of new superheavy elements. J. Radioanal. Nucl. Chem. 2015, 305, 927; https://doi.org/10.1007/s10967-014-3920-5.Search in Google Scholar

6. Stodel, C. Methods of targets’ characterization. EPJ Web Conf. 2020, 229, 02001; https://doi.org/10.1051/epjconf/202022902001.Search in Google Scholar

7. Oganessian, Yu. Ts., Utyonkov, V., Popeko, A., Solovyev, D., Abdullin, F. S., Dmitriev, S., Ibadullayev, D., Itkis, M., Kovrizhnykh, N., Kuznetsov, D., Petrushkin, O. V., Podshibiakin, A. V., Polyakov, A. N., Sagaidak, R. N., Schlattauer, L., Shirokovsky, I. V., Shubin, V. D., Shumeiko, M. V., Tsyganov, Y. S., Voinov, A. A., Subbotin, V. G., Bekhterev, V. V., Belykh, N. A., Chernyshev, O. A., Gikal, K. B., Ivanov, G. N., Khalkin, A. V., Konstantinov, V. V., Osipov, N. F., Paschenko, S. V., Protasov, A. A., Semin, V. A., Sorokoumov, V. V., Sychev, K. P., Verevochkin, V. A., Yakovlev, B. I., Antoine, S., Beeckman, W., Jehanno, P., Yavor, M. I., Shcherbakov, A. P., Rykaczewski, K. P., King, T. T., Roberto, J. B., Brewer, N. T., Grzywacz, R. K., Gan, Z. G., Zhang, Z. Y., Huang, M. H., Yang, H. B. DGFRS-2—a gas-filled recoil separator for the Dubna super heavy element factory. Nucl. Instrum. Methods Phys. Res., Sect. A 2022, 1033, 166640; https://doi.org/10.1016/j.nima.2022.166640.Search in Google Scholar

8. Oganessian, Yu. Ts. Heaviest nuclei from 48Ca-induced reactions. J. Phys. G Nucl. Part. Phys. 2007, 34, R165; https://doi.org/10.1088/0954-3899/34/4/r01.Search in Google Scholar

9. Gulbekian, G., Dmitriev, S., Itkis, M., Oganessyan, Yu. Ts., Gikal, B., Kalagin, I., Semin, V., Bogomolov, S., Buzmakov, V., Ivanenko, I., Kazarinov, N. Y., Osipov, N. F., Pashenko, S. V., Sokolov, V. A., Pchelkin, N. N., Prokhorov, S. V., Khabarov, M. V., Gikal, K. B. Start-up of the DC-280 cyclotron, the basic facility of the factory of superheavy elements of the laboratory of nuclear reactions at the joint institute for nuclear research. Phys. Part. Nucl. Lett. 2019, 16, 866; https://doi.org/10.1134/s1547477119060177.Search in Google Scholar

10. Sakai, H., Haba, H., Morimoto, K., Sakamoto, N. Facility upgrade for superheavy-element research at RIKEN. Eur. Phys. J. A 2022, 58, 238; https://doi.org/10.1140/epja/s10050-022-00888-3.Search in Google Scholar PubMed PubMed Central

11. Lauber, S., Yaramyshev, S., Basten, M., Aulenbacher, K., Barth, W., Burandt, C., Droba, M., Dziuba, F., Forck, P., Gettmann, V., Kuerzeder, T., List, J., Miski-Oglu, M., Podlech, H., Rubin, A., Schwarz, M. An Alternating phase focusing injector for heavy ion acceleration. Nucl. Instrum. Methods Phys. Res., Sect. A 2022, 1040, 167099; https://doi.org/10.1016/j.nima.2022.167099.Search in Google Scholar

12. Parker, W., Falk, R. Molecular plating: a method for the electrolytic formation of thin inorganic films. Nucl. Instrum. Methods 1962, 16, 355; https://doi.org/10.1016/0029-554x(62)90142-8.Search in Google Scholar

13. Düllmann, Ch. E., Block, M., Heßberger, F. P., Khuyagbaatar, J., Kindler, B., Kratz, J. V., Lommel, B., Münzenberg, G., Pershina, V., Renisch, D., Schädel, M., Yakushev, A. Five decades of GSI superheavy element discoveries and chemical investigation. Radiochim. Acta 2022, 110, 417; https://doi.org/10.1515/ract-2022-0015.Search in Google Scholar

14. Lens, L., Yakushev, A., Düllmann, C. E., Asai, M., Ballof, J., Block, M., David, H. M., Despotopulos, J., Di Nitto, A., Eberhardt, K., Even, J., Götz, M., Götz, S., Haba, H., Harkness-Brennan, L., Heßberger, F.-P., Herzberg, R. D., Hoffmann, J., Hübner, A., Jäger, E., Judson, D., Khuyagbaatar, J., Kindler, B., Komori, Y., Konki, J., Kratz, J. V., Krier, J., Kurz, N., Laatiaoui, M., Lahiri, S., Lommel, B., Maiti, M., Mistry, A. K., Mokry, C., Moody, K., Nagame, Y., Omtvedt, J. P., Papadakis, P., Pershina, V., Runke, J., Schädel, M., Scharrer, P., Sato, T., Shaughnessy, D., Schausten, B., Thörle-Pospiech, P., Trautmann, N., Tsukada, K., Uusitalo, J., Ward, A., Wegrzecki, M., Wiehl, N., Yakusheva, V. Online chemical adsorption studies of Hg, Tl, and Pb on SiO2 and Au surfaces in preparation for chemical investigations on Cn, Nh, and Fl at TASCA. Radiochim. Acta 2018, 106, 949; https://doi.org/10.1515/ract-2017-2914.Search in Google Scholar

15. Moiseeva, A., Aliev, R., Unezhev, V., Zagryadskiy, V., Latushkin, S., Aksenov, N., Gustova, N., Voronuk, M., Starodub, G. Y., Ogloblin, A. Cross section measurements of 151Eu (3He, 5n) reaction: new opportunities for medical alpha emitter 149Tb production. Sci. Rep. 2020, 10, 1; https://doi.org/10.1038/s41598-020-57436-6.Search in Google Scholar PubMed PubMed Central

16. Vascon, A., Santi, S., Isse, A., Reich, T., Drebert, J., Christ, H., Düllmann, Ch. E., Eberhardt, K. Elucidation of constant current density molecular plating. Nucl. Instrum. Methods Phys. Res., Sect. A 2012, 696, 180; https://doi.org/10.1016/j.nima.2012.08.072.Search in Google Scholar

17. Kurth, F., Froemel, J., Tanaka, S., Esashi, M., Gessner, T. Electroplating of neodymium iron alloys. In 2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS); Institute of Electrical and Electronics Engineers Inc.: New York, 2016; p. 405.10.1109/NEMS.2016.7758278Search in Google Scholar

18. Vascon, A., Wiehl, N., Reich, T., Drebert, J., Eberhardt, K., Düllmann, Ch. E. The performance of thin layers produced by molecular plating as α-particle sources. Nucl. Instrum. Methods Phys. Res., Sect. A 2013, 721, 35; https://doi.org/10.1016/j.nima.2013.04.050.Search in Google Scholar

19. Vascon, A., Runke, J., Trautmann, N., Cremer, B., Eberhardt, K., Düllmann, Ch. E. Quantitative molecular plating of large-area 242Pu targets with improved layer properties. Appl. Radiat. Isot. 2015, 95, 36; https://doi.org/10.1016/j.apradiso.2014.10.002.Search in Google Scholar PubMed

20. Lommel, B., Düllmann, Ch. E., Kindler, B., Renisch, D. Status and developments of target production for research on heavy and superheavy nuclei and elements. Eur. Phys. J. A 2023, 59, 14; https://doi.org/10.1140/epja/s10050-023-00919-7.Search in Google Scholar

21. Myhre, K. G., Delashmitt, J. C., Sims, N. J., Van Cleve, S. M., Boll, R. A. Samarium thin films molecular plated from N, N-dimethylformamide characterized by XPS. Surf. Sci. Spectra 2018, 25, 024003; https://doi.org/10.1116/1.5052011.Search in Google Scholar

22. Choi, J., Chung, Y. H. Preparation of lanthanum oxide and lanthanum oxycarbonate layers on titanium by electrodeposition with organic solution. J. Nanomater. 2016, 2016, 5140219; https://doi.org/10.1155/2016/5140219.Search in Google Scholar

23. Meyer, C.-C., Dragoun, A., Düllmann, Ch. E., Haas, R., Jäger, E., Kindler, B., Lommel, B., Prosvetov, A., Rapps, M., Renisch, D., Simon, P., Tomut, M., Trautmann, C., Yakushev, A. Chemical conversions in lead thin films induced by heavy-ion beams at Coulomb barrier energies. Nucl. Instrum. Methods Phys. Res., Sect. A 2022, 1028, 166365; https://doi.org/10.1016/j.nima.2022.166365.Search in Google Scholar

24. Zhi, Q., Junsheng, G., Zaiguo, G. Preparation of the thicker americium targets by molecular plating. Appl. Radiat. Isot. 2001, 54, 741; https://doi.org/10.1016/s0969-8043(00)00367-5.Search in Google Scholar PubMed

25. Qin, Z., Fan, H., Xu, Y., He, J., Lei, X., Liu, H., Jin, G. Preparation of thick americium targets and synthesis of 259Db. J. Nucl. Radiochem. Sci. 2002, 3, 183; https://doi.org/10.14494/jnrs2000.3.183.Search in Google Scholar

26. Hansen, P. G. The conditions for electrodeposition of insoluble hydroxides at a cathode surface: a theoretical investigation. J. Inorg. Nucl. Chem. 1959, 12, 30; https://doi.org/10.1016/0022-1902(59)80089-0.Search in Google Scholar

27. Artes, E., Düllmann, Ch. E., Meyer, C.-C., Renisch, D. The process of molecular plating and the characteristics of the produced thin films – what we have learned in 60 years and what is still unknown. EPJ Web Conf. 2023, 285, 03001; https://doi.org/10.1051/epjconf/202328503001.Search in Google Scholar

28. Hofmann, S., Heinz, S., Mann, R., Maurer, J., Khuyagbaatar, J., Ackermann, D., Antalic, S., Barth, W., Block, M., Burkhard, H., Comas, V. F., Dahl, L., Eberhardt, K., Gostic, J., Henderson, R. A., Heredia, J. A., Heßberger, F. P., Kenneally, J. M., Kindler, B., Kojouharov, I., Kratz, J. V., Lang, R., Leino, M., Lommel, B., Moody, K. J., Münzberg, G., Nelson, S. L., Nishio, K., Popeko, A. G., Runke, J., Saro, S., Shaughnessy, D. A., Stoyer, M. A., Thörle-Pospiech, P., Tinschert, K., Trautmann, N., Uusitalo, J., Wilk, P. A., Yeremin, A. V. The reaction 48Ca + 248Cm → 296116* studied at the GSI-SHIP. Eur. Phys. J. A 2012, 48, 62; https://doi.org/10.1140/epja/i2012-12062-1.Search in Google Scholar

29. Brewer, N., Utyonkov, V., Rykaczewski, K. P., Oganessian, Yu. Ts., Abdullin, F. S., Boll, R., Dean, D. J., Dmitriev, S., Ezold, J. G., Felker, L., Grzywacz, R. K., Itkis, M. G., Kovrizhnykh, N. D., McInturff, D. C., Miernik, K., Owen, G. D., Polyakov, A. N., Popeko, A. G., Roberto, J. B., Sabel’nikov, A. V., Sagaidak, R. N., Shirokovsky, I. V., Shumeiko, M. V., Sims, N. J., Smith, E. H., Subbotin, V. G., Sukhov, A. M., Svirikhin, A. I., Tsyganov, Yu. S., Van Cleve, S. M., Voinov, A. A., Vostokin, G. K., White, C. S., Hamilton, J. H., Stoyer, M. A. Search for the heaviest atomic nuclei among the products from reactions of mixed-Cf with a 48Ca beam. Phys. Rev. C 2018, 98, 024317; https://doi.org/10.1103/physrevc.98.024317.Search in Google Scholar

30. Mayorov, D., Tereshatov, E., Werke, T., Frey, M., Folden, C.III. Heavy-ion beam induced effects in enriched gadolinium target films prepared by molecular plating. Nucl. Instrum. Methods Phys. Res., Sect. B 2017, 407, 256; https://doi.org/10.1016/j.nimb.2017.07.012.Search in Google Scholar

31. Tracy, C. L., Lang, M., Zhang, F., Trautmann, C., Ewing, R. C. Phase transformations in Ln2O3 materials irradiated with swift heavy ions. Phys. Rev. B 2015, 92, 174101; https://doi.org/10.1103/physrevb.92.174101.Search in Google Scholar

32. Jäger, E., Brand, H., Düllmann, Ch. E., Khuyagbaatar, J., Krier, J., Schädel, M., Torres, T., Yakushev, A. High intensity target wheel at TASCA: target wheel control system and target monitoring. J. Radioanal. Nucl. Chem. 2014, 299, 1073; https://doi.org/10.1007/s10967-013-2645-1.Search in Google Scholar

33. Liu, P., Yang, Q., Tong, Y., Yang, Y. Electrodeposition of Gd–Co film in organic bath. Electrochim. Acta 2000, 45, 2147; https://doi.org/10.1016/s0013-4686(99)00434-x.Search in Google Scholar

34. Shirasaki, K., Yamamura, T., Herai, T., Shiokawa, Y. Electrodeposition of uranium in dimethyl sulfoxide and its inhibition by acetylacetone as studied by EQCM. J. Alloys Compd. 2006, 418, 217; https://doi.org/10.1016/j.jallcom.2005.10.059.Search in Google Scholar

35. Lodermeyer, J., Multerer, M., Zistler, M., Jordan, S., Gores, H., Kipferl, W., Diaconu, E., Sperl, M., Bayreuther, G. Electroplating of dysprosium, electrochemical investigations, and study of magnetic properties. J. Electrochem. Soc. 2006, 153, C242; https://doi.org/10.1149/1.2172548.Search in Google Scholar

36. Shirasaki, K., Yamamura, T., Herai, T., Shiokawa, Y., Satoh, I., Oku, M. Electrodeposition of lanthanum in aprotic solvents studied by HMDE, EQCM and XPS. ECS Meet. Abstr. 2007, 18, 849; https://doi.org/10.1149/ma2007-01/18/849.Search in Google Scholar

37. Glukhov, L., Greish, A., Kustov, L. Electrodeposition of rare earth metals Y, Gd, Yb in ionic liquids. Russ. J. Phys. Chem. A 2010, 84, 104; https://doi.org/10.1134/s0036024410010206.Search in Google Scholar

38. Suppan, G. Electroplating Dysprosium from Ionic Liquid-Based Solutions-A Promising Electrochemical Step to Produce Stronger High Performance Nd (Dy)-Fe-B Sintered Magnets. Ph.D. Thesis, University of Regensburg, Germany, 2016.10.1149/2.0911508jesSearch in Google Scholar

39. Cotton, S. Lanthanide and Actinide Chemistry; John Wiley & Sons: Chichester, West Sussex, 2013.Search in Google Scholar

40. Martinot, L., Laeckmann, D., Materne, T., Müller, V. Contribution to the knowledge of the electrochemical properties of actinides in non-aqueous media. I: the reduction of tetravalent uranium in various organic solvents. J. Less-Common Met. 1990, 163, 185; https://doi.org/10.1016/0022-5088(90)90099-6.Search in Google Scholar

41. Martinot, L., Lopes, L., Marien, J., Jérôme, C. Electrochemistry of lanthanum and uranium chlorides in organic media: deposition of lanthanum and uranium. J. Radioanal. Nucl. Chem. 2002, 253, 407; https://doi.org/10.1023/a:1020465318857.10.1023/A:1020465318857Search in Google Scholar

42. Hamidi, M. E. M., Pascal, J.-L. Synthesis and structural characterization of some anhydrous Ln(OTf)3 complexes (Ln = Sc, La, Nd, Sm, Gd and Er; OTf = CF3SO3). Polyhedron 1994, 13, 1787; https://doi.org/10.1016/s0277-5387(00)80111-4.Search in Google Scholar

43. Apostolidis, C., Schimmelpfennig, B., Magnani, N., Lindqvist-Reis, P., Walter, O., Sykora, R., Morgenstern, A., Colineau, E., Caciuffo, R., Klenze, R., Haire, R. G., Rebizant, J., Bruchertseifer, F., Fanghänel, T. [An(H2O)9](CF3SO3)3 (An = U-Cm, Cf): exploring their stability, structural chemistry, and magnetic behavior by experiment and theory. Angew. Chem. Int. Ed. 2010, 49, 6343; https://doi.org/10.1002/anie.201001077.Search in Google Scholar PubMed

44. Kobayashi, S., Sugiura, M., Kitagawa, H., Lam, W. W.-L. Rare-earth metal triflates in organic synthesis. Chem. Rev. 2002, 102, 2227; https://doi.org/10.1021/cr010289i.Search in Google Scholar PubMed

45. Mink, J., Skripkin, M. Y., Hajba, L., Németh, C., Abbasi, A., Sandström, M. Infrared and Raman spectroscopic and theoretical studies of nonaaqua complexes of trivalent rare earth metal ions. Spectrochim. Acta, Part A 2005, 61, 1639; https://doi.org/10.1016/j.saa.2004.11.030.Search in Google Scholar PubMed

46. Izutsu, K. Electrochemistry in Nonaqueous Solutions; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, 2009.Search in Google Scholar

47. Eberhardt, K., Geppert, C. The research reactor TRIGA Mainz–a strong and versatile neutron source for science and education. Radiochim. Acta 2019, 107, 535; https://doi.org/10.1515/ract-2019-3127.Search in Google Scholar

48. Ohki, Y., Suzuki, Y., Takeuchi, T., Ouchi, A. The crystal and molecular structure of scandium (III), yttrium (III), and some lanthanoid (III) p-toluenesulfonates, [Sc(C7H7SO3)2(H2O)4](C7H7SO3)·2H2O and [M(C7H7SO3)2(H2O)6](C7H7SO3)·3H2O (M = Y, Sm, Gd, Dy, Ho, Er, Yb); and yttrium (III) and dysprosium (III) 2-naphthalenesulfonates, [M(C10H7SO3)2(H2O)6](C10H7SO3)·3H2O (M = Y, Dy). Bull. Chem. Soc. Jpn. 1988, 61, 393.Search in Google Scholar

49. Klemenčič, H., Benedik, L. Alpha-spectrometric thin source preparation with emphasis on homogeneity. Appl. Radiat. Isot. 2010, 68, 1247; https://doi.org/10.1016/j.apradiso.2009.12.013.Search in Google Scholar PubMed

50. Haas, R., Lohse, S., Düllmann, Ch. E., Eberhardt, K., Mokry, C., Runke, J. Development and characterization of a drop-on-demand inkjet printing system for nuclear target fabrication. Nucl. Instrum. Methods Phys. Res., Sect. A 2017, 874, 43; https://doi.org/10.1016/j.nima.2017.08.027.Search in Google Scholar

51. Haas, R., Hufnagel, M., Abrosimov, R., Düllmann, Ch. E., Krupp, D., Mokry, C., Renisch, D., Runke, J., Scherer, U. W. Alpha spectrometric characterization of thin 233U sources for 229(m)Th production. Radiochim. Acta 2020, 108, 923; https://doi.org/10.1515/ract-2020-0032.Search in Google Scholar

52. Ko, Y. G. Preparation and characterization of electrodeposited layers as alpha sources for alpha-particle spectrometry. J. Radioanal. Nucl. Chem. 2020, 326, 861; https://doi.org/10.1007/s10967-020-07398-w.Search in Google Scholar

53. Haas, R. Tailor-Made Thin Radionuclide Layers for Targets and Recoil Ion Sources in Nuclear Applications. Ph.D. Thesis, Johannes Gutenberg-Universität Mainz, Germany, 2020.Search in Google Scholar

54. Nečas, D., Klapetek, P. Gwyddion: an open-source software for SPM data analysis. Open Phys. 2012, 10, 181; https://doi.org/10.2478/s11534-011-0096-2.Search in Google Scholar

55. Haas, R., Meyer, C.-C., Böhland, S., Düllmann, Ch. E., Mäder, J., Tinschert, K. ODIn—a setup for off-line deposit irradiations of thin layers for nuclear physics applications. Nucl. Instrum. Methods Phys. Res., Sect. A 2020, 957, 163366; https://doi.org/10.1016/j.nima.2019.163366.Search in Google Scholar

56. Ritchie, N. W. Getting started with NIST* DTSA-II. Microsc. Today 2011, 19, 26; https://doi.org/10.1017/s155192951000132x.Search in Google Scholar

57. Eberhardt, K., Düllmann, Ch. E., Haas, R., Mokry, C., Runke, J., Thörle-Pospiech, P., Trautmann, N. AIP Conf. Proc. 2018, 1962, 030009.Search in Google Scholar

58. Oganessian, Yu. Ts., Abdullin, F. Sh., Dmitriev, S. N., Gostic, J. M., Hamilton, J. H., Henderson, R. A., Itkis, M. G., Moody, K. J., Polyakov, A. N., Ramayya, A. V., Roberto, J. B., Rykaczewski, K. P., Sagaidak, S. N., Shaughnessy, D. A., Shirokovsky, I. V., Stoyer, N. J., Subbotin, V. G., Sukhov, A. M., Tsyganov, Yu. S., Utyonkov, V. K., Voinov, A. A., Vostokin, G. K. Investigation of the 243Am + 48Ca reaction products previously observed in the experiments on elements 113, 115, and 117. Phys. Rev. C 2013, 87, 014302; https://doi.org/10.1103/physrevc.87.014302.Search in Google Scholar

59. Loveland, W., Yao, L., Asner, D. M., Baker, R., Bundgaard, J., Burgett, E., Cunningham, M., Deaven, J., Duke, D., Greife, U., Grimes, S., Heffner, M., Hill, T., Isenhower, D., Klay, J. L., Kleinrath, V., Kornilov, N., Laptev, A. B., Massey, T. N., Meharchand, R., Qu, H., Ruz, J., Sangiorgio, S., Selhan, B., Snyder, L., Stave, S., Tatishvili, G., Thornton, R. T., Tovesson, F., Towell, R. S., Watson, S., Wendt, B., Wood, L. Targets for precision measurements. Nucl. Data Sheets 2014, 119, 383; https://doi.org/10.1016/j.nds.2014.08.106.Search in Google Scholar

60. Lommel, B., Kindler, B. In Digital Encyclopedia of Applied Physics; WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009; Chapter 20, p. 619.10.1002/3527600434.eap494.pub2Search in Google Scholar

61. Lommel, B., Brüchle, W., Eberhardt, K., Hartmann, W., Hübner, A., Kindler, B., Kratz, J. V., Liebe, D., Schädel, M., Steiner, J. Backings and targets for chemical and nuclear studies of transactinides with TASCA. Nucl. Instrum. Methods Phys. Res., Sect. A 2008, 590, 141; https://doi.org/10.1016/j.nima.2008.02.045.Search in Google Scholar

62. Artes, E. Herstellung von f-Element Targets mit hohen Flächengewichten. MA Thesis, Johannes Gutenberg University Mainz, Germany, 2020.Search in Google Scholar

63. Vascon, A., Santi, S., Isse, A., Kühnle, A., Reich, T., Drebert, J., Eberhardt, K., Düllmann, Ch. E. Smooth crack-free targets for nuclear applications produced by molecular plating. Nucl. Instrum. Methods Phys. Res., Sect. A 2013, 714, 163; https://doi.org/10.1016/j.nima.2013.03.003.Search in Google Scholar

64. Repelin, Y., Proust, C., Husson, E., Beny, J. Vibrational spectroscopy of the C-form of yttrium sesquioxide. J. Solid State Chem. 1995, 118, 163; https://doi.org/10.1006/jssc.1995.1326.Search in Google Scholar

65. Ubaldini, A., Carnasciali, M. M. Raman characterisation of powder of cubic RE2O3 (RE = Nd, Gd, Dy, Tm, and Lu), Sc2O3 and Y2O3. J. Alloys Compd. 2008, 454, 374; https://doi.org/10.1016/j.jallcom.2006.12.067.Search in Google Scholar

66. Kobayashi, S., Hachiya, I. Lanthanide triflates as water-tolerant Lewis acids. Activation of commercial formaldehyde solution and use in the aldol reaction of silyl enol ethers with aldehydes in aqueous media. J. Org. Chem. 1994, 59, 3590; https://doi.org/10.1021/jo00092a017.Search in Google Scholar

67. Roberto, J., Alexander, C. W., Boll, R. A., Burns, J., Ezold, J., Felker, L., Hogle, S. L., Rykaczewski, K. Actinide targets for the synthesis of super-heavy elements. Nucl. Phys. A 2015, 944, 99; https://doi.org/10.1016/j.nuclphysa.2015.06.009.Search in Google Scholar

68. Beesley, A., Crespo, M., Weiher, N., Tsapatsaris, N., Cózar, J., Esparza, H., Méndez, C., Hill, P., Schroeder, S., Montero-Cabrera, M. Evolution of chemical species during electrodeposition of uranium for alpha spectrometry by the Hallstadius method. Appl. Radiat. Isot. 2009, 67, 1559; https://doi.org/10.1016/j.apradiso.2009.03.031.Search in Google Scholar PubMed

69. Burns, J. D., Myhre, K. G., Sims, N. J., Stracener, D. W., Boll, R. A. Effects of annealing temperature on morphology and thickness of samarium electrodeposited thin films. Nucl. Instrum. Methods Phys. Res., Sect. A 2016, 830, 95; https://doi.org/10.1016/j.nima.2016.05.062.Search in Google Scholar

70. Toulemonde, M., Assmann, W., Trautmann, C., Grüner, F., Mieskes, H., Kucal, H., Wang, Z. Electronic sputtering of metals and insulators by swift heavy ions. Nucl. Instrum. Methods Phys. Res., Sect. B 2003, 212, 346; https://doi.org/10.1016/s0168-583x(03)01721-x.Search in Google Scholar

71. Ferrier, M. G., Batista, E. R., Berg, J. M., Birnbaum, E. R., Cross, J. N., Engle, J. W., La Pierre, H. S., Kozimor, S. A., Pacheco, J. S. L., Stein, B. W., Stieber, S. C. E., Wilson, J. J. Spectroscopic and computational investigation of actinium coordination chemistry. Nat. Commun. 2016, 7, 1; https://doi.org/10.1038/ncomms12312.Search in Google Scholar PubMed PubMed Central

72. Berthet, J. C., Lance, M., Nierlich, M., Ephritikhine, M. Simple preparations of the anhydrous and solvent-free uranyl and cerium (IV) triflates UO2(OTf)2 and Ce(OTf)4-crystal structures of UO2(OTf)2(py)3 and [{UO2 (py)4}2 (μ-O)] [OTf]2. Eur. J. Inorg. Chem. 2000, 2000, 1969; https://doi.org/10.1002/1099-0682(200009)2000:9<1969::aid-ejic1969>3.0.co;2-0.10.1002/1099-0682(200009)2000:9<1969::AID-EJIC1969>3.0.CO;2-0Search in Google Scholar

73. Massaux, J., Duyckaerts, G. Méthode de préparation de sels anhydres de lanthanides pour la polarographie en solvants non aqueux aprotiques. Anal. Chim. Acta 1974, 73, 416; https://doi.org/10.1016/s0003-2670(01)85482-9.Search in Google Scholar

74. Yanagihara, N., Nakamura, S., Nakayama, M. A thermal study of several lanthanide triflates. Polyhedron 1998, 17, 3625; https://doi.org/10.1016/s0277-5387(98)00158-2.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/ract-2023-0197).


Received: 2023-07-18
Accepted: 2023-09-12
Published Online: 2023-10-03
Published in Print: 2023-11-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2023-0197/html
Scroll to top button