Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) July 29, 2021

Application of instumetal neutron activation analysis method for determination of some trace elements in lichens around three sites in Algiers

  • Tarek Azli , Zohra Bouhila , Ammar Mansouri , Mohammed Messaoudi ORCID logo EMAIL logo , Zineb Zergoug , Dallel Boukhadra and Samir Begaa ORCID logo EMAIL logo
From the journal Radiochimica Acta

Abstract

Trace elements (TEs) constitute a major part of pollution, which can induce a detrimental impact on public health. A precise analysis of these elements in the environment is an important parameter in the evaluation of the population's quality of life. This work aims to quantify the concentration of some trace elments in enviromental samples using Istrumental Neutron Activation Analysis technique (INAA); also a comparative study between three sampling points (Draria, Baraki and Reghaia) were done. The Samples and standards were irradiated for 6 h at “NUR” research reactor with a thermal neutron flux of 1013 n cm−2 s−1, and analyzed by gamma ray spectrometry using HPGe detector. Seventeen elements were assessed: Ba, Br, Ce, Co, Cr, Hf, Fe, La, Nd, Rb, Sb, Sc, Se, Sm, Sr, Yb and Zn in this study. The accuracy of the method was evaluated by analyzing Certified Reference Materials (CRMs) and Standard Reference Materials (SRMs). The data obtained in this work may contribute to obtaining information about a possible rank of pollution and the different capabilities of elemental bioaccumulation by lichens.


Corresponding authors: Mohammed Messaoudi and Samir Begaa, Reactor Chemistry Department, Nuclear Research Centre of Birine, P.O. Box 180, Ain Oussera, 17200, Djelfa, Algeria, E-mail: (M. Messaoudi), (S. Begaa)

Acknowledgements

This study has been carried out at El-Nur Research reactor. The authors would like to thank the Director General of CRND; many thanks are extended to the Editor and Reviewers for their valuable comments.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Fiałkiewicz-Kozieł, B., Łokas, E., Gałka, M., Kołaczek, P., De Vleeschouwer, F., Le Roux, G., Smieja-Król, B. Influence of transboundary transport of trace elements on mountain peat geochemistry (Sudetes, Central Europe). Quat. Sci. Rev. 2020, 230, 106162.10.1016/j.quascirev.2020.106162Search in Google Scholar

2. Klimek, B., Tarasek, A., Hajduk, J. Trace element concentrations in lichens collected in the Beskidy mountains, the outer western carpathians. Bull. Environ. Contam. Toxicol. 2015, 94; https://doi.org/10.1007/s00128-015-1478-8.Search in Google Scholar PubMed PubMed Central

3. Yan, B., Liu, S., Zhao, B., Li, X., Fu, Q., Jiang, G. China’s fight for clean air and human health. Environ. Sci. Technol. 2018, 52; https://doi.org/10.1021/acs.est.8b03137.Search in Google Scholar PubMed

4. Ahmed, F., Bibi, M. H., Fukushima, T., Seto, K., Ishiga, H. Recent sedimentary environment of coastal lagoon in southwestern Japan: evidence from major and trace elements. Environ. Monit. Assess. 2011, 173, 167; https://doi.org/10.1007/s10661-010-1379-6.Search in Google Scholar PubMed

5. Chen, R., Yin, P., Meng, X., Wang, L., Liu, C., Niu, Y., Liu, Y., Liu, J., Qi, J., You, J., Kan, H., Zhou, M. Associations between coarse particulate matter air pollution and cause-specific mortality: a nationwide analysis in 272 Chinese cities. Environ. Health Perspect. 2019, 127, 017008; https://doi.org/10.1289/ehp2711.Search in Google Scholar

6. Fuertes, E., Sunyer, J., Gehring, U., Porta, D., Forastiere, F., Cesaroni, G., Vrijheid, M., Guxens, M., Annesi-Maesano, I., Slama, R., Maier, D., Kogevinas, M., Bousquet, J., Chatzi, L., Lertxundi, A., Basterrechea, M., Esplugues, A., Ferrero, A., Wright, J., Mason, D., McEachan, R., Garcia-Aymerich, J., Jacquemin, B. Associations between air pollution and pediatric eczema, rhinoconjunctivitis and asthma: a meta-analysis of European birth cohorts. Environ. Int. 2020, 136, 105474; https://doi.org/10.1016/j.envint.2020.105474.Search in Google Scholar PubMed

7. He, T., Zhu, J., Wang, J., Ren, X., Cheng, G., Liu, X., Ma, Q., Zhang, Y., Li, Z., Ba, Y. Ambient air pollution, H19/DMR methylation in cord blood and newborn size: a pilot study in Zhengzhou City, China. Chemosphere 2018, 212, 863; https://doi.org/10.1016/j.chemosphere.2018.08.140.Search in Google Scholar PubMed

8. Kan, H. D., Shi, X. M. Research progress of ambient air pollution and human health in China. Chin. J. Prev. Med. 2019, 53, 4. https://europepmc.org/article/med/30605958.Search in Google Scholar

9. Kim, H. -J., Seo, Y. -S., Sung, J., Son, H. -Y., Yun, J. M., Kwon, H., Cho, B., Kim, J. -I., Park, J. -H. Interactions of CDH13 gene polymorphisms and ambient PM10 air pollution exposure with blood pressure and hypertension in Korean men. Chemosphere 2019, 218, 292; https://doi.org/10.1016/j.chemosphere.2018.11.125.Search in Google Scholar PubMed

10. Li, T., Yan, M., Sun, Q., Anderson, G. B. Mortality risks from a spectrum of causes associated with wide-ranging exposure to fine particulate matter: a case-crossover study in Beijing, China. Environ. Int. 2018, 111, 52; https://doi.org/10.1016/j.envint.2017.10.023.Search in Google Scholar PubMed

11. Lu, C., Zhang, W., Zheng, X., Sun, J., Chen, L., Deng, Q. Combined effects of ambient air pollution and home environmental factors on low birth weight. Chemosphere 2020, 240, 124836; https://doi.org/10.1016/j.chemosphere.2019.124836.Search in Google Scholar PubMed

12. Liu, W., Cai, J., Fu, Q., Zou, Z., Sun, C., Zhang, J., Huang, C. Associations of ambient air pollutants with airway and allergic symptoms in 13,335 preschoolers in Shanghai, China. Chemosphere 2020, 252, 126600; https://doi.org/10.1016/j.chemosphere.2020.126600.Search in Google Scholar

13. Oprea, C. D., Mihul, A. Accumulation of specific pollutants in various media in the area affected by a petrochemical center. Rom. Rep. Phys. 2003, 55, 279.Search in Google Scholar

14. Schilling, J. S., Lehman, M. E. Bioindication of atmospheric heavy metal deposition in the Southeastern US using the moss Thuidium delicatulum. Atmos. Environ. 2002, 36, 1611; https://doi.org/10.1016/s1352-2310(02)00092-4.Search in Google Scholar

15. Pacheco, A. M. G., Freitas, M., do, C., Sarmento, S. Nuclear and non-nuclear techniques for assessing the differential uptake of anthropogenic elements by atmospheric biomonitors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2007, 579, 499; https://doi.org/10.1016/j.nima.2007.04.110.Search in Google Scholar

16. Wolterbeek, H. T., Bode, P. Strategies in sampling and sample handling in the context of large-scale plant biomonitoring surveys of trace element air pollution. Sci. Total Environ. 1995, 176, 33; https://doi.org/10.1016/0048-9697(95)04828-6.Search in Google Scholar

17. NashIIIT. H., Wirth, V. Lichens, Bryophytes and Air Quality; J. Cramer, 1988. https://www.schweizerbart.de/publications/detail/isbn/9783443580094.Search in Google Scholar

18. Kłos, A., Rajfur, M., Wacławek, M. Application of enrichment factor (EF) to the interpretation of results from the biomonitoring studies. Ecol. Chem. Eng. S 2011, 18, 171–183. http://tchie.uni.opole.pl/freeECE/S_18_2/KlosRajfur_18(S2).pdf.Search in Google Scholar

19. Hale, M. E. The Biology of Lichens; Edward Arnold: London, 1967. https://www.cabdirect.org/cabdirect/abstract/19681100406.Search in Google Scholar

20. Begaa, S., Messaoudi, M. Thermal neutron activation analysis of some toxic and trace chemical element contents in Mentha pulegium L. Radiochim. Acta 2018, 106, 769; https://doi.org/10.1515/ract-2018-2942.Search in Google Scholar

21. Benarfa, A., Begaa, S., Messaoudi, M., Hamlat, N., Sawicka, B. Elemental composition analysis of Pistacia lentiscus L., leaves collected from Mitidja plain in Algeria using instrumental neutron activation analysis (INAA) technique. Radiochim. Acta 2020, 108, 821; https://doi.org/10.1515/ract-2020-0011.Search in Google Scholar

22. Abdusamadzoda, D., Abdushukurov, D. A., Zinicovscaia, I., Duliu, O. G., Vergel, K. N. Assessment of the ecological and geochemical conditions in surface sediments of the Varzob river, Tajikistan. Microchem. J. 2020, 158, 105173; https://doi.org/10.1016/j.microc.2020.105173.Search in Google Scholar

23. Henderson, P. General geochemical properties and abundances of the rare earth elements. Rare Earth Elem. Geochem. 1984, 2, 1. https://doi.org/10.1016/B978-0-444-42148-7.50006-X.Search in Google Scholar

24. Kornienko, V., Avtonomov, P. Application of neutron activation analysis for heavy oil production control. Procedia – Soc. Behav. Sci. 2015, 195, 2451; https://doi.org/10.1016/j.sbspro.2015.06.277.Search in Google Scholar

25. Shulyakova, O., Avtonomov, P., Kornienko, V. New developments of neutron activation analysis applications. Procedia – Soc. Behav. Sci. 2015, 195, 2717; https://doi.org/10.1016/j.sbspro.2015.06.380.Search in Google Scholar

26. Adams, F., Dams, R. A compilation of precisely determined gamma-transition energies of radionuclides produced by reactor irradiation. J. Radioanal. Chem. 1969, 3, 99; https://doi.org/10.1007/bf02514003.Search in Google Scholar

27. Begaa, S., Messaoudi, M., Benarfa, A. Statistical approach and neutron activation analysis for determining essential and toxic elements in two kinds of Algerian artemisia plant. Biol. Trace Elem. Res. 2021, 199; https://doi.org/10.1007/s12011-020-02358-7.Search in Google Scholar

28. Begaa, S., Messaoudi, M. Toxicological aspect of some selected medicinal plant samples collected from djelfa, Algeria region. Biol. Trace Elem. Res. 2019, 187, 301; https://doi.org/10.1007/s12011-018-1365-3.Search in Google Scholar

29. Carreras, H. A., Pignata, M. L. Biomonitoring of heavy metals and air quality in Cordoba City, Argentina, using transplanted lichens. Environ. Pollut. 2002, 117, 77; https://doi.org/10.1016/s0269-7491(01)00164-6.Search in Google Scholar

30. Brunialti, G., Frati, L. Biomonitoring of nine elements by the lichen Xanthoria parietina in Adriatic Italy: a retrospective study over a 7-year time span. Sci. Total Environ. 2007, 387, 289; https://doi.org/10.1016/j.scitotenv.2007.06.033.Search in Google Scholar PubMed

31. Bouhila, Z., Mouzai, M., Azli, T., Nedjar, A., Mazouzi, C., Zergoug, Z., Boukhadra, D., Chegrouche, S., Lounici, H. Investigation of aerosol trace element concentrations nearby Algiers for environmental monitoring using instrumental neutron activation analysis. Atmos. Res. 2015, 166, 49; https://doi.org/10.1016/j.atmosres.2015.06.013.Search in Google Scholar

32. Cocozza, C., Ravera, S., Cherubini, P., Lombardi, F., Marchetti, M., Tognetti, R. Integrated biomonitoring of airborne pollutants over space and time using tree rings, bark, leaves and epiphytic lichens. Urban For. Urban Green. 2016, 17, 177; https://doi.org/10.1016/j.ufug.2016.04.008.Search in Google Scholar

33. Demirbas, A. Trace element concentrations in ashes from various types of lichen biomass species. Energy Sources 2004, 26, 499; https://doi.org/10.1080/00908310490429687.Search in Google Scholar

34. Peng, J., Gong, J. Vacuolar sequestration capacity and long-distance metal transport in plants. Front. Plant Sci. 2014, 5, 19; https://doi.org/10.3389/fpls.2014.00019.Search in Google Scholar PubMed PubMed Central

Received: 2021-05-02
Accepted: 2021-07-16
Published Online: 2021-07-29
Published in Print: 2021-09-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.6.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2021-1050/html
Scroll to top button