Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) April 18, 2020

Neptunium extraction by N,N-dialkylamides

  • Jarrod M. Gogolski , Peter R. Zalupski , Travis S. Grimes and Mark P. Jensen EMAIL logo
From the journal Radiochimica Acta

Abstract

Separation of neptunium by solvent extraction has been based on tributylphosphate (TBP) for decades, but TBP is not fully incinerable, which adds to the burden of long-lived radioactive waste. Alternatives to TBP for uranium and plutonium extraction, such as the N,N-diakylamides, previously have been explored in the hopes of transitioning to an extractant that is incinerable. Four N,N-diakylamides, N,N-dihexylhexanamide (DHHA), N,N-dihexyloctanamide (DHOA), N,N-di(2-ethylhexyl)butanamide (DEHBA), and N,N-di(2-ethylhexyl)-iso-butanamide (DEHiBA) were considered in this work for their potential to extract millimolar concentrations of Np(IV), Np(V), and Np(VI) from nitric acid solutions into organic solutions containing 1 M extractant in Exxsol D60. Under these conditions the branching of the alkyl substituents affects the extractability of Np(VI) and Np(IV), causing three of the dialkylamides, DHHA, DHOA and DEHBA, to extract neptunium in the expected order Np(VI) > Np(IV) > > Np(V). In contrast, branched DEHiBA is so poor an extractant for Np(IV) that the extraction order becomes Np(VI) > > Np(V) > Np(IV) between 0.1 and 5.6 M HNO3 due to partial oxidation of the Np(V) in nitric acid.

Acknowledgements

This work is supported by U.S. Department of Energy Offices of Nuclear Energy and Environmental Management under the Radiochemistry Traineeship program at the Colorado School of Mines. The work at the Idaho National Laboratory was performed under contract DE-AC07-05ID14517, in part supported by the Fuel Cycle Research and Development Program, Office of Nuclear Energy, U.S. Department of Energy. We gratefully thank Santa Jansone-Popova for the important insight to dialkylamide synthesis and Laetitia Delmau and David DePaoli for useful discussions on neptunium extraction.

References

1. Leoncini, A., Huskens, J., Verboom, W.: Ligands for f-element extraction used in the nuclear fuel cycle. Chem. Soc. Rev. 46, 7229 (2017).10.1039/C7CS00574ASearch in Google Scholar

2. Isaacson, R. E., Judson, B. F.: Neptunium recovery and purification at Hanford. Ind. Eng. Chem. Process Des. Dev. 3, 296 (1964).10.2172/4080927Search in Google Scholar

3. Taylor, R. J., Gregson, C. R., Carrott, M. J., Mason, C., Sarsfield, M. J.: Progress towards the full recovery of neptunium in an advanced PUREX process. Solvent Extr. Ion Exch. 31, 442 (2013).10.1080/07366299.2013.800438Search in Google Scholar

4. Chen, H., Taylor, R. J., Jobson, M., Woodhead, D. A., Boxall, C., Masters, A. J., Edwards, S.: Simulation of neptunium extraction in an advanced PUREX process – model improvement. Solvent Extr. Ion Exch. 35, 1 (2017).10.1080/07366299.2016.1273684Search in Google Scholar

5. Drake, V. A.: Extraction chemistry of neptunium in Science and technology of tributyl phosphate. CRC Press, Inc, vol. 3. United States (1990).Search in Google Scholar

6. Hardy, C. J., Scargill, D.: Studies on mono- and di-n-butylphosphoric acids – III The extraction of zirconium from nitrate solution by di-n-butylphosphoric acid. J. Inorg. Nucl. Chem. 17, 337 (1961).10.1016/0022-1902(61)80160-7Search in Google Scholar

7. Usachev, V., Markov, G.: Solubility of tributyl phosphate and its degradation products in concentrated uranyl nitrate solutions and of uranyl nitrate in tributyl phosphate at elevated temperatures. Radiochemistry 46, 471 (2004).10.1007/s11137-005-0012-ySearch in Google Scholar

8. Holland, J. P., Merklin, J. F., Razvi, J.: The radiolysis of dodecane-tributylphosphate solutions. Nucl. Instr. Methods 153, 589 (1978).10.1016/0029-554X(78)91011-XSearch in Google Scholar

9. McCann, K., Drader, J. A., Braley, J. C.: Comparing branched versus straight-chained monoamide extractants for actinide recovery. Sep. Purif. Rev. 47, 49 (2018).10.1080/15422119.2017.1321018Search in Google Scholar

10. Gasparini, G. M., Grossi, G.: Review article long chain disubstituted aliphatic amides as extracting agents in industrial applications of solvent extraction. Solvent Extr. Ion Exch. 4, 1233 (1986).10.1080/07366298608917921Search in Google Scholar

11. Parikh, K. J., Pathak, P. N., Misra, S. K., Tripathi, S. C., Dakshinamoorthy, A., Manchanda, V. K.: Radiolytic degradation studies on N,N-dihexyloctanamide (DHOA) under PUREX process conditions. Solvent Extr. Ion Exch. 27, 244 (2009).10.1080/07366290802672303Search in Google Scholar

12. Drader, J. A., Boubals, N., Cams, B., Guillaumont, D., Guilbaud, P., Saint-Louis, G., Berthon, L.: Radiolytic stability of N,N-dialkyl amide: effect on Pu(IV) complexes in solution. Dalton Trans. 47, 251 (2017).10.1039/C7DT03447DSearch in Google Scholar

13. Gasparini, G. M., Grossi, G.: Application of N,N-dialkyl aliphatic amides in the separation of some actinides. Sep. Sci. Technol. 15, 825 (1980).10.1080/01496398008076273Search in Google Scholar

14. Siddall, T. H.: Effects of structure of N,N-disubstituted amides on their extraction of actinide and zirconium nitrates and of nitric acid. J. Phys. Chem. 64, 1863 (1960).10.1021/j100841a014Search in Google Scholar

15. Musikas, C., Condamines, N., Cuillerdier, C.: Separation chemistry for the nuclear industry. Anal. Sci. 7, 11 (1991).10.2116/analsci.7.Supple_11Search in Google Scholar

16. Manchanda, V. K., Ruikar, P. B., Sriram, S., Nagar, M. S., Pathak, P. N., Gupta, K. K., Singh, R. K., Chitnis, R. R., Dhami, P. S., Ramanujam, A.: Distribution behavior of U(VI), Pu(IV), Am(III), and Zr(IV) with N,N-dihexyl octanamide under uranium-loading conditions. Nucl. Technol. 134, 231 (2001).10.13182/NT01-A3198Search in Google Scholar

17. Condamines, N., Musikas, C.: The extraction by N,N-dialkylamides. II. Extraction of actinide cations. Solvent Extr. Ion Exch. 10, 69 (1992).10.1080/07366299208918093Search in Google Scholar

18. Manchanda, V. K., Pathak, P. N., Rao, A. K.: Di(2-Ethylhexyl) Pivalamide (D2EHPVA): a promising extractant for selective removal of uranium from high level nuclear waste solutions. Solvent Extr. Ion Exch. 22, 353 (2004).10.1081/SEI-120030396Search in Google Scholar

19. Kumari, N., Pathak, P. N., Prabhu, D. R., Manchanda, V. K.: Comparison of extraction behavior of neptunium from nitric acid medium employing tri-n-butyl phosphate and N,N-dihexyl octanamide as extractants. Sep. Sci. Technol. 47, 1492 (2012).10.1080/01496395.2011.653034Search in Google Scholar

20. Mahanty, B., Kanekar Avinash, S., Ansari Seraj, A., Bhattacharyya, A., Mohapatra Prasanta, K.: Separation of neptunium from actinides by monoamides: a solvent extraction study. Radiochim. Acta 107, 369 (2019).10.1515/ract-2018-3074Search in Google Scholar

21. Mathur, J. N., Ruikar, P. B., Balarama Krishna, M. V., Murali, M. S., Nagar, M. S., Iyer, R. H.: Extraction of Np(IV), Np(VI), Pu(IV) and U(VI) with amides, BEHSO and CMPO from nitric acid medium. Radiochim. Acta 73, 199 (1996).10.1524/ract.1996.73.4.199Search in Google Scholar

22. Ban, Y., Hotoku, S., Tsutsui, N., Tsubata, Y., Matsumura, T.: Distribution behavior of neptunium by extraction with N,N-dialkylamides (DEHDMPA and DEHBA) in mixer-settler extractors. Solvent Extr. Ion Exch. 34, 37 (2016).10.1080/07366299.2015.1130423Search in Google Scholar

23. Pathak, P., Kumari, N., Prabhu, D., Manchanda, V.: Redox behavior of neptunium(V) in tributyl phosphate and N,N-dihexyl octanamide extractants dissolved in n-dodecane. J. Solution Chem. 41, 410 (2012).10.1007/s10953-012-9807-6Search in Google Scholar

24. Gupta, K. K., Manchanda, V. K., Subramanian, M. S., Singh, R. K.: N,N-Dihexyl Hexanamide: a promising extractant for nuclear fuel reprocessing. Sep. Sci. Technol. 35, 1603 (2000).10.1081/SS-100100243Search in Google Scholar

25. Magnusson, L. B., Huizenga, J. R.: Stabilities of +4 and +5 oxidation states of the actinide elements – the Np(IV)-Np(V) couple in perchloric acid solution. J. Am. Chem. Soc. 75, 2242 (1953).10.1021/ja01105a064Search in Google Scholar

26. Schulz, W. W., Horwitz, E. P.: Recent progress in the extraction chemistry of actinide ions. J. Less-Comm. Met. 122, 125 (1986).10.1016/0022-5088(86)90401-7Search in Google Scholar

27. Precek, M., Paulenova, A., Mincher, B. J.: Reduction of Np(VI) in irradiated solutions of nitric acid. Procedia Chem. 7, 51 (2012).10.1016/j.proche.2012.10.010Search in Google Scholar

28. Siddall III, T. H., Dukes, E. K.: Kinetics of HNO₂ catalyzed oxidation of neptunium(V) by aqueous solutions of nitric acid. Inorg. Chem. 81, 790 (1959).Search in Google Scholar

29. Taylor, R., Koltunov, V., Savilova, O., Zhuravleva, G. I., Denniss, I., Wallwork, A. L.: The oxidation of neptunium(IV) by nitric acid in 100% TBP and diluted TBP n-dodecane solutions. J. Alloys Compds. 271, 817 (1998).10.1016/S0925-8388(98)00225-4Search in Google Scholar

30. Mincher, B., Precek, M., Mezyk, S., Elias, G., Martin, L., Paulenova, A.: The redox chemistry of neptunium in gamma-irradiated aqueous nitric acid. Radiochim. Acta 101, 259 (2013).10.1524/ract.2013.2013Search in Google Scholar

31. Baranov, A., Erin, E., Nagaitseva, L., Chistyakov, V.: Kinetics of neptunium(V) reduction with iron(II) sulfamate in nitric acid solutions. Radiochemistry 56, 6 (2014).10.1134/S1066362214010020Search in Google Scholar

32. Friedman, H. A., Toth, L. M.: Absorption spectra of Np(III), (IV), (V) and (VI) in nitric acid solution. J. Inorg. Nucl. Chem. 42, 1347 (1980).10.1016/0022-1902(80)80298-3Search in Google Scholar

33. Nitsche, H., Lee, S. C., Gatti, R. C.: Determination of plutonium oxidation states at trace levels pertinent to nuclear waste disposal. J. Radioanal. Nucl. Chem. 124, 171 (1988).10.1007/BF02035515Search in Google Scholar

34. Thiollet, G., Musikas, C.: Synthesis and uses of the amides extractants. Solvent Extr. Ion Exch. 7, 813 (1989).10.1080/07360298908962339Search in Google Scholar

35. Jansone-Popova, S.: Personal Communication (2018).Search in Google Scholar

36. Luca, A., Etcheverry, M., Morel, J.: Emission probabilities of the main γ-rays of 237Np in equilibrium with 233Pa. Appl. Radiat. Isotopes 52, 481 (2000).10.1016/S0969-8043(99)00198-0Search in Google Scholar

37. Benedik, L., Trdin, M.: Determination of low level Np-237 by various techniques. Appl. Radiat. Isot. 126, 208 (2017).10.1016/j.apradiso.2017.02.005Search in Google Scholar PubMed

38. Gupta, K. K., Manchanda, V. K., Subramanian, M. S., Singh, R. K.: Thermodynamics of extraction of uranium(VI) and plutonium(IV) with some long-chain aliphatic amides. Radiochim. Acta 85, 103 (1999).10.1524/ract.1999.85.34.103Search in Google Scholar

39. McCann, K., Mincher, B. J., Schmitt, N. C., Braley, J. C.: Hexavalent actinide extraction Using N,N-dialkyl amides. Ind. Eng. Chem. Res. 56, 6515 (2017).10.1021/acs.iecr.7b01181Search in Google Scholar

40. Acher, E., Dumas, T., Tamain, C., Boubals, N., Solari, P. L., Guillaumont, D.: Inner to outer-sphere coordination of plutonium(IV) with N,N-dialkyl amide: influence of nitric acid. Dalton Trans. 46, 3812 (2017).10.1039/C7DT00031FSearch in Google Scholar PubMed

41. Aguilar, M.: Graphical Treatment of Liquid-Liquid Equilibrium Data in Developments in Solvent Extraction. Ellis Horwood, West Sussex, England (1988), p. 87.Search in Google Scholar

42. Acher, E., Hacene Cherkaski, Y., Dumas, T., Tamain, C., Guillaumont, D., Boubals, N., Javierre, G., Hennig, C., Solari, P. L., Charbonnel, M.-C.: Structures of plutonium(IV) and uranium(VI) with N,N-dialkyl amides from crystallography, x-ray absorption spectra, and theoretical calculations. Inorg. Chem. 55, 5558 (2016).10.1021/acs.inorgchem.6b00592Search in Google Scholar PubMed

43. Suzuki, S., Sasaki, Y., Yaita, T., Kimura, T.: Study on selective separation of uranium by N,N-dialkyl-amide in ARTIST process, paper presented at the ATALANTE, France (2004).Search in Google Scholar

44. Huizenga, J. R., Magnusson, L. B.: Oxidation-reduction reactions of neptunium(IV) and -(V). J. Am. Chem. Soc. 73, 3202 (1951).10.1021/ja01151a061Search in Google Scholar

45. Neck, V., Kim, J. I., Seidel, B. S., Marquardt, C. M., Dardenne, K., Jensen, M. P., Hauser, W.: A spectroscopic study of the hydrolysis, colloid formation and solubility of Np(IV). Radiochim. Acta 89, 439 (2001).10.1524/ract.2001.89.7.439Search in Google Scholar

46. Drader, J., Saint-Louis, G., Muller, J. M., Charbonnel, M. C., Guilbaud, P., Berthon, L., Roscioli-Johnson, K. M., Zarzana, C. A., Rae, C., Groenewold, G. S., Mincher, B. J., Mezyk, S. P., McCann, K., Boyes, S. G., Braley, J.: Radiation chemistry of the branched-chain monoamide di-2-ethylhexyl-isobutyramide. Solvent Extr. Ion Exch. 35, 480 (2017).10.1080/07366299.2017.1379713Search in Google Scholar

47. Ishimori, T., Nakamura, E.: Distribution of neptunium between TBP and some mineral acids. Bull. Chem. Soc. Jpn. 32, 713 (1959).10.1246/bcsj.32.713Search in Google Scholar

48. Vidyalakshmi, V., Subramanian, M. S., Rajeswari, S., Srinivasan, T. G., Rao, P. R. V.: Interfacial tension studies of N,N-dialkyl amides. Solvent Extr. Ion Exch. 21, 399 (2003).10.1081/SEI-120020218Search in Google Scholar

49. Jha, R. K., Gupta, K. K., Kulkarni, P. G., Gurba, P. B., Janardan, P., Changarani, R. D., Dey, P. K., Pathak, P. N., Manchanda, V. K.: Third phase formation studies in the extraction of Th(IV) and U(VI) by N,N-dialkyl aliphatic amides. Desalination 232, 225 (2008).10.1016/j.desal.2007.11.054Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/ract-2020-0002).


Received: 2020-01-06
Accepted: 2020-03-10
Published Online: 2020-04-18
Published in Print: 2020-09-25

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.6.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2020-0002/html
Scroll to top button