Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) November 16, 2017

Complexation of a macrocyclic ligand, 2,6-di (N-methyl)formamide-calix[4]pyridine, with Eu(III) and extraction of Eu(III) and Am(III)

  • Lina Lü , Jun Liu , Yanqiu Yang EMAIL logo , Kun Li , Sheng Hu and Shunzhong Luo EMAIL logo
From the journal Radiochimica Acta

Abstract

Complexation of a new macrocyclic compound, 2,6-dimethylformamide-calix[4]pyridine (L1), with Eu(III) was studied by spectrophotometry. Stability constants of the Eu(III)/L1 complex in different solvents were determined. The results reveal that L1 forms moderately strong complexes with Eu(III) and other lanthanides in aprotic solvents and shows little binding ability with transition metals. Moreover, the binding strength of L1 weakens significantly in protic solvents. Using 2-bromodecanoic acid as the synergistic reagent, L1 extracts Am(III) and Eu(III) successfully with a separation factor of SFAm/Eu=1.3, and the distribution ratios of Am(III) and Eu(III) increases as the aqueous acidity is decreased. DFT computational studies were conducted to corroborate the solvent extraction data, and compare the coordination properties of Am(III)/Eu(III) complexes with L1 and a related, 2,6-diformamide-calix[4]pyridine (L2). The computational results suggest that L2 could form stable complexes [ML]3+ and ML(NO3)3 [where M represent Am(III) or Eu(III)] in aqueous phase, in sharp contrast to the case of L1 where such complexes in aqueous phase are not stable.

Acknowledgements

This work was supported by the National Science Foundation of China (No. 11675156 and 91326110).

References

1. Sood, D. D., Patil, S. K.: Chemistry of nuclear-fuel reprocessing – current status. J. Radioanal. Nucl. Chem. 203, 547 (1996).10.1007/BF02041529Search in Google Scholar

2. Nash, K. L., Choppin, G. R.: Separations chemistry for actinide elements: recent developments and historical perspective. Sep. Sci. Technol. 31, 255 (1997).10.1080/01496399708003198Search in Google Scholar

3. Modolo, G., Asp, H., Schreinemachers, C., Vijgen, H.: Development of a TODGA based process for partitioning of actinides from a PUREX raffinate part I: batch extraction optimization studies and stability tests. Solvent Extr. Ion Exch. 25, 703 (2007).10.1080/07366290701634578Search in Google Scholar

4. Modolo, G., Vijgen, H., Serrano-Purroy, D., Christiansen, B., Malmbeck, R., Sorel, C., Baron, P.: DIAMEX counter-current extraction process for recovery of trivalent actinides from simulated high active concentrate. Sep. Sci. Technol. 42, 439 (2007).10.1080/01496390601120763Search in Google Scholar

5. Modolo, G., Vijgen, H., Malmbeck, R., Magnusson, D., Sorel, C.: Partitioning of trivalent actinides from a PUREX raffinate using a TODGA-based solvent-extraction process. In: B. A. Moyer (Ed.), International Solvent Extraction Conference 2008 (2010), Tucson, AZ, USA, p. 521.Search in Google Scholar

6. Ansari, S. A., Pathak, P., Mohapatra, P. K., Manchanda, V. K.: Chemistry of diglycolamides: promising extractants for actinide partitioning. Chem. Rev. 112, 1751 (2012).10.1021/cr200002fSearch in Google Scholar PubMed

7. Arisaka, M., Kimura, T.: Thermodynamic and spectroscopic studies on Am(III) and Eu(III) in the extraction system of N,N,N′,N′-tetraoctyl-3-oxapentane-1,5-diamide in n-dodecane/nitric acid. Solvent Extr. Ion Exch. 29, 72 (2011).10.1080/07366299.2011.539127Search in Google Scholar

8. Paulenova, A., Alyapyshev, M. Y., Babain, V. A., Herbst, R. S., Law, J. D.: Extraction of lanthanides with diamides of dipicolinic acid from nitric acid solution. I. Sep. Sci. Technol. 43, 2606 (2008).10.1080/01496390802121636Search in Google Scholar

9. Alyapyshev, M. Y., Babain, V. A., Tkachenko, L. I., Eliseev, I. I., Didenko, A. V., Petrov, M. L.: Dependence of extraction properties of 2,6-dicarboxypyridine diamides on extractant structure. Solvent Extr. Ion Exch. 29, 619 (2011).10.1080/07366299.2011.581049Search in Google Scholar

10. Heathman, C. R., Nash, K. L.: Characterization of europium and americium dipicolinate complexes. Sep. Sci. Technol. 47, 2029 (2012).Search in Google Scholar

11. Bubeníková, M., Rais, J., Selucký, P., Kvíčala, J.: Am(III) separation from acidic solutions by diamides of dipicolinic acid. Radiochim. Acta 101, 753 (2013).10.1524/ract.2013.2084Search in Google Scholar

12. Hudson, M. J., Harwood, L. M., Laventine, D. M., Lewis, F. W.: Use of soft heterocyclic N-donor ligands to separate actinides and lanthanides. Inorg. Chem. 52, 3414 (2013).10.1021/ic3008848Search in Google Scholar PubMed

13. Paulenva, A., Alyapyshev, M. Y., Babain, V. A., Herbst, R. S., Law, J. D.: Extraction of lanthanoids with diamides of dipcolinic acid from nitric acid solutions. II. Synergistic effect of ethyl-tolyl derivates and dicarbollide cobalt. Solvent Extr. Ion Exch. 32, 184 (2013).10.1080/07366299.2012.735528Search in Google Scholar

14. Yusov, A. B., Mishkevich, V. I., Fedoseev, A. M., Grigor’ev, M. S.: Complexation of An(VI) (An=U, Np, Pu, Am) with 2,6-pyridinedicarboxylic acid in aqueous solutions. Synthesis and structures of new crystalline compounds of U(VI), Np(VI), and Pu(VI). Radiochemistry 55, 269 (2013).10.1134/S1066362213030053Search in Google Scholar

15. Mowafy, E. A.: Evaluation of selectivity and radiolysis behavior of some promising isonicotinamids and dipicolinamides as extractants. Radiochimica Acta 95, 539 (2007).10.1524/ract.2007.95.9.539Search in Google Scholar

16. Xu, C., Wang, J., Chen, J.: Solvent extraction of strontium and cesium: a review of recent progress. Solvent Extr. Ion Exch. 30, 623 (2012).10.1080/07366299.2012.700579Search in Google Scholar

17. Casnati, A., Ca’, N. D., Fontanella, M., Sansone, F., Ugozzoli, F., Ungaro, R., Liger, K., Dozol, J.-F.: Calixarene-based picolinamide extractants for selective An/Ln separation from radioactive waste. Eur. J. Org. Chem. 2005, 2338 (2005).10.1002/ejoc.200400793Search in Google Scholar

18. Yang, Y., Luo, S., Yang, T., Hao, F.: Calixarene derivatives for An(III)/Ln(III) separation in nuclear fuel reprocessing. Progress. Chem. 23, 1345 (2011).Search in Google Scholar

19. Xiao, C., Wu, Q., Wang, C., Zhao, Y., Chai, Z., Shi, W.: Quantum chemistry study of uranium(VI), neptunium(V), and plutonium(IV,VI) complexes with preorganized tetradentate phenanthrolineamide ligands. Inorg. Chem. 53, 10846 (2014).10.1021/ic500816zSearch in Google Scholar

20. Lan, J., Wang, C., Wu, Q., Wang, S., Feng, Y., Zhao, Y., Chai, Z., Shi, W.: A quasi-relativistic density functional theory study of the actinyl(VI, V) (An=U, Np, Pu) complexes with a six-membered macrocycle containing pyrrole, pyridine, and furan subunits. J. Phy. Chem. A 119, 9178 (2015).10.1021/acs.jpca.5b06370Search in Google Scholar

21. Yang, Y., Hu, S., Fang, Y., Wei, H., Hu, S., Wang, D., Yang, L., Zhang, H., Luo, S.: Density functional theory study of the Eu(III) and Am(III) complexes with two 1,10-phenanthroline-type ligands. Polyhedron 95, 86 (2015).10.1016/j.poly.2015.03.032Search in Google Scholar

22. Dean, J. A.: Analytical Chemistry Handbook (1995), McGraw-Hill, New York, p. 3.Search in Google Scholar

23. Gong, H., Zhang, X., Wang, D., Ma, H., Zhang, Q., Wang, M.: Methylazacalixpyridines: remarkable bridging nitrogen-tuned conformations and cavities with unique recognition properties. Chem. Eur. J. 12, 9262 (2006).10.1002/chem.200600377Search in Google Scholar

24. Gans, P., Sabatini, A., Vacca, A.: Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of grograms. Talanta 43, 1739 (1996).10.1016/0039-9140(96)01958-3Search in Google Scholar

25. Frish, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C, Jaramillo, J., Gomperts, R. E., Stratmann, O., Yazyev, A. J., Austin, R., Cammi, C., Pomelli, J. W., Ochterski, R., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J.: Gaussian 09. Wallingford, CT, Gaussian Inc. (2010).Search in Google Scholar

26. Küchle, W., Dolg, M., Stoll, H., Preuss, H.: Energy-adjusted pseudopotentials for the actinides. Parameter sets and test calculations for thorium and thorium monoxide. J. Chem. Phys. 100, 7535 (1994).10.1063/1.466847Search in Google Scholar

27. Cao, X., Dolg, M.: Segmented contraction scheme for small-core actinide pseudopotential basis sets. J. Mol. Struc. Theochem. 673, 203 (2004).10.1016/j.theochem.2003.12.015Search in Google Scholar

28. Tomasi, J., Persico, M.: Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem. Rev. 94, 2027 (1994).10.1021/cr00031a013Search in Google Scholar

29. Chipman, D. M.: Comutation of pKa from dielectric continuum theory. J. Phy. Chem. A 106, 7413 (2002).10.1021/jp020847cSearch in Google Scholar

30. Persson, I.: Solvation and complex formation in strongly solvating solvents. Pure Appl. Chem. 58, 1153 (1986).10.1351/pac198658081153Search in Google Scholar

31. Reichardt, C.: Solvatochromic dyes as solvent polarity indicators. Chem. Rev. 94, 2319 (1994).10.1021/cr00032a005Search in Google Scholar

32. Kimura, T., Nagaishi, R., Kato, Y., Yoshida, Z.: Luminescence study on preferential solvation of Europium(III) in water/nonaqueous solvent mixtures. J. Alloys Compd. 323–324, 164 (2001).10.1016/S0925-8388(01)01121-5Search in Google Scholar

33. Bernardoa, P. D., Melchiorb, A., Tolazzi, M., Zanonto, P. L.: Thermodynamics of lanthanide(III) complexation in non-aqueous solvents. Coordination Chem. Rev. 256, 328 (2012).10.1016/j.ccr.2011.07.010Search in Google Scholar

34. Yang, Y., Yu, K., Yang, L., Liu, J., Li, K., Luo, S.: One single molecule as a multifunctional fluorescent probe for ratiometric sensing of Fe3++, Cr3+ and colorimetric sensing of Cu2++. Sensors 15, 49 (2015).10.3390/s150100049Search in Google Scholar PubMed PubMed Central

35. Kolarik, Z.: Complexation and separation of lanthanides(III) and actinides(III) by heterocyclic N-donors in solutions. Chem. Rev. 108, 4208 (2008).10.1021/cr078003iSearch in Google Scholar PubMed

36. Lan, J., Shi, W., Yuan, L., Zhao, Y., Li, J., Chai, Z.: Trivalent actinide and lanthanide separations by tetradentate nitrogen ligands: a quantum chemistry study. Inorg. Chem. 50, 9230 (2011).10.1021/ic200078jSearch in Google Scholar PubMed

37. Puntus, L. N., Lyssenko, K. A., Pekareva, I. S., Bünzli, J.-C.: Intermolecular interactions as actors in energy-transfer processes in lanthanide complexes with 2,2′-bipyridine. J. Chem. Phys. B 113, 9265 (2009).10.1021/jp902390zSearch in Google Scholar PubMed

38. Lan, J., Shi, W., Yuan, L., Feng, Y., Zhao, Y., Chai, Z.: Thermodynamic study on the complexation of Am(III) and Eu(III) with tetradentate nitrogen ligands: a probe of complex species and reactions in aqueous solution. J. Phy. Chem. A 116, 504 (2012).10.1021/jp206793fSearch in Google Scholar PubMed

39. Yang, Y., Liu, J., Yang, L., Li, K., Zhang, H., Luo, S., Rao, L.: Probing the difference in covalence by enthalpy measurements: a new heterocyclic N-donor ligand for actinide/lanthanide separation. Dalton Trans. 44, 8959 (2015).10.1039/C5DT00679ASearch in Google Scholar PubMed

40. Rao, L., Tian, G., Teat, S. J.: Complexation of Np(v) with N,N-dimethyl-3-oxa-glutaramic acid and related ligands: thermodynamics, optical properties and structural aspects. Dalton Trans. 39, 3326 (2010).10.1039/b922851aSearch in Google Scholar PubMed

41. Schmidt, C., Saadioui, M., Boehmer, V., Host, V., Spirlet, M.-R., Desreux, J. F., Brisach, F., Arnaud-Neu, F., Dozol, J.-F.: Modification of calix[4]arenes with CMPO-functions at the wide rim. Synthesis, solution behavior, and separation of actinides from lanthanides. Org. Biomol. Chem. 1, 4089 (2003).10.1039/B307929ESearch in Google Scholar

42. Tian, G., Rao, L., Teat, S. J., Liu, G.: Quest for environmentally benign ligands for actinide separations: thermodynamic, spectroscopic, and structural characterization of U(VI) complexes with oxa-diamide and related ligands. Chem. Eur. J. 15, 4172 (2009).10.1002/chem.200801155Search in Google Scholar PubMed

43. Macerata, E., Sansone, F., Baldini, L., Ugozzoli, F., Brisach, F., Haddaoui, J., Hubscher-Bruder, V., Arnaud-Neu, F., Mariani, M., Ungaro, R., Casnati, A.: Calix[6]arene-picolinamide extractants for radioactive waste treatment: effect of additional carboxy binding sites in the pyridine 6-positions on complexation, extraction efficiency and An/Ln separation. Chem, Eur. J. 2010, 2675 (2010).10.1002/ejoc.200901479Search in Google Scholar

44. Tian, G., Teat, S. J., Rao, L.: Structural and thermodynamic study of the complexes of Nd(III) with N,N,N′,N′-tetramethyl-3-oxa-glutaramide and the acid analogues. Inorg. Chem. 53, 9477 (2014).10.1021/ic5004484Search in Google Scholar PubMed

Received: 2017-7-13
Accepted: 2017-9-27
Published Online: 2017-11-16
Published in Print: 2018-3-28

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2017-2852/html
Scroll to top button