Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) September 15, 2017

Effect of pKa on the extraction behavior of Am(III) in organo phosphorus acid and diglycolamide solvent system

  • K. Rama Swami , R. Kumaresan , P. K. Nayak , K. A. Venkatesan EMAIL logo and M. P. Antony
From the journal Radiochimica Acta

Abstract

A combination of neutral and acidic extractant has been proposed for the single-cycle separation of trivalent actinides from high-level liquid waste (HLLW). The nature of acidic extractant in the combined solvent formulation plays a profound role in deciding the extraction and stripping of trivalent actinides. Therefore, the extraction behavior of Am(III) in a solution of tetra-bis(2-ethylhexyl)-diglycolamide (TEHDGA) and acidic extractant (HA) was studied from nitric acid medium. The acidic extractants chosen were bis(2-ethylhexyl)phosphoric acid (HDEHP), bis(2-ethylhexyl)phosphonic acid (PC88A) and bis(2,4,4-trimethylpentyl)phosphinic acid (CYANEX-272) whose pKa values were 3.24, 4.51 and 6.37, respectively. The distribution ratio of Am(III) was measured as a function of various parameters such as concentration of nitric acid, TEHDGA, HA etc. The data were compared with those obtained in individual solvent systems namely 0.1 M TEHDGA/n-DD and HA/n-DD. Slope analysis of the extraction data indicated the synergic participation of both TEHDGA and HDEHP in the extraction of Am(III) at all acidities. However, antagonistic effect was observed at lower acidity when TEHDGA was mixed to PC88A or CYANEX-272 present in n-DD. Accordingly, a suitable mechanism has been proposed for the extraction of Am(III) at all acidities using these combined solvent formulation. Studies with fast reactor simulated high level liquid waste indicated that extraction of Am(III) was accompanied by co-extraction of lanthanides and unwanted metal ions such as Zr(IV), Mo(VI), Y(III) and Pd(II). However, addition of trans-1,2-diaminocyclohexane-N,N,N,N′-tetraaceticacid (CyDTA) reduced the extraction of unwanted metal ions. Batch extraction and stripping studies indicated the possibility of using 0.1 M TEHDGA+0.25 M HDEHP in n-dodecane for the single cycle separation of Am(III) from FR-SHLLW.

References

1. Aneheim, E., Ekberg, C., Modolo, G., Wilden, A.: Single centrifugal contactor test of a proposed group actinide extraction process for partitioning and transmutation purposes. Sep. Sci. Technol. 50, 1554 (2015).10.1080/01496395.2014.975364Search in Google Scholar

2. Takeda, T.: Minor actinides transmutation performance in a fast reactor. Ann. Nucl. Energy. 95, 48 (2016).10.1016/j.anucene.2016.04.031Search in Google Scholar

3. Ansari, S. A., Pathak, P. N., Mohapatra, P. K., Manchanda, V. K.: Chemistry of diglycolamides: promising extractants for actinide partitioning. Chem. Rev. 112, 1751 (2012).10.1021/cr200002fSearch in Google Scholar PubMed

4. Mathur, J. N., Murali, M. S., Nash, K. L.: Actinide partitioning – a review. Solvent Extr. Ion Exch. 19, 357 (2001).10.1081/SEI-100103276Search in Google Scholar

5. Nilson, M., Nash, K. L.: A review of the development and operational characteristics of the TALSPEAK process. Solvent Extr. Ion Exch. 25, 665 (2007).10.1080/07366290701634636Search in Google Scholar

6. Zhang, M. J., Lewis, F. W., Harwood, L. M.: Chapter 6 – The circuitous journey from malonamides to BTPhens: ligands for separating actinides from lanthanides. In: Michael Harmata (Ed.), Strategies and Tactics in Organic Synthesis (2013), Academic Press, Amsterdam, The Netherlands, 9, p. 177.10.1016/B978-0-08-099362-1.00006-0Search in Google Scholar

7. Zhang, A., Kuraoka, E., Kumagai, M.: Group partitioning of minor actinides and rare earths from highly active liquid waste by extraction chromatography utilizing two macroporous silica-based impregnated polymeric composites. Sep. Purif. Technol. 54, 363 (2007).10.1016/j.seppur.2006.10.009Search in Google Scholar

8. Ansari, S. A., Prabhu, D. R., Gujar, R. B., Kanekar, A. S., Rajeswari, B., Kulkarni, M. J., Murali, M. S., Babu, Y., Natarajan, V., Rajeswari, S., Suresh, A., Manivannan, R., Antony, M. P., Srinivasan, T. G., Manchanda, V. K.: Counter-current extraction of uranium and lanthanides from simulated high-level waste using N,N,N′,N′-tetraoctyl diglycolamide. Sep. Purif. Technol. 66, 118 (2009).10.1016/j.seppur.2008.11.019Search in Google Scholar

9. Lumetta, G. J., Gelis, A. V., Braley, J. C., Carter, J. C., Pittman, J. W., Warner, M. G., Vandegrift, G. F.: The TRUSPEAK concept: combining CMPO and HDEHP for separating trivalent lanthanides from the transuranic elements. Solvent Extr. Ion Exch. 31, 223 (2013).10.1080/07366299.2012.670595Search in Google Scholar

10. Braley, J. C., Lumetta, G. J., Carter, J. C.: Combining CMPO and HEH[EHP] for separating trivalent lanthanides from the transuranic elements. Solvent Extr. Ion Exch. 31, 567 (2013).10.1080/07366299.2013.785912Search in Google Scholar

11. Dhami, P. S., Chitnis, R. R., Gopalakrishnan, V., Wattal, P. K., Ramanujam, A., Bauri, A. K.: Studies on the partitioning of actinides from high level waste using a mixture of HDEHP and CMPO as extractant. Sep. Sci. Technol. 42, 439 (2007).10.1081/SS-100001082Search in Google Scholar

12. Gannaz, B., Chiarizia, R., Antonio, R. K., Hill, C., Cote, G.: Extraction of lanthanides(III) and Am(III) by mixtures of malonamide and dialkylphosphoric acid. Solvent Extr. Ion Exch. 25, 313 (2007).10.1080/07366290701285512Search in Google Scholar

13. Modolo, G., Odoj, R.: Synergistic selective extraction of actinides(III) over lanthanides from nitric acid using new aromatic diorganyldithiophosphinic acids and neutral organophosphorus compounds. Solvent Extr. Ion Exch. 17, 33 (1999).10.1080/07360299908934599Search in Google Scholar

14. Lumetta, G. J., Gelis, A. V., Carter, J. C., Nilver, C. M., Smoot, M. R.: The actinide-lanthanide separation concept. Solvent Extr. Ion Exch. 32, 333 (2014).10.1080/07366299.2014.895638Search in Google Scholar

15. Gelis, A. V., Lumetta, G. J.: Actinide lanthanide separation process – ALSEP. Ind. Eng. Chem. Res. 53, 1624 (2014).10.1021/ie403569eSearch in Google Scholar

16. Nayak, P. K., Kumaresan, R., Venkatesan, K. A., Antony, M. P., Vasudeva Rao, P. R.: A new method for partitioning of trivalent actinides from high-level liquid waste. Sep. Sci. Technol. 48, 1409 (2013).10.1080/01496395.2012.737401Search in Google Scholar

17. Nayak, P. K., Kumaresan, R., Venkatesan, K. A., Antony, M. P., Vasudeva Rao, P. R.: Extraction behavior of Am (III) and Eu (III) from nitric acid medium in tetraoctyldiglycolamide-bis (2-ethylhexyl) phosphoric acid solution. Sep. Sci. Technol. 49, 1186 (2014).10.1080/01496395.2013.874357Search in Google Scholar

18. Nayak, P. K., Kumaresan, R., Venkatesan, K. A., Rajeswari, S., Subramanian, G. G. S., Antony, M. P., Vasudeva Rao, P. R.: Single-cycle separation of americium (III) from simulated high-level liquid waste using tetra-bis (2-ethylhexyl) diglycolamide and bis (2-ethylhexyl) phosphoric acid solution. J. Environ. Chem. Eng. 1, 559 (2013).10.1016/j.jece.2013.06.023Search in Google Scholar

19. Nayak, P. K., Kumaresan, R., Venkatesan, K. A., Chaurasia, S., Subramanian, G. G. S., Prathibha, T., Syamala, K. V., Robert Selvan, B., Rajeswari, S., Antony, M. P., Vasudeva Rao, P. R., Bhanage, B. M.: Studies on the feasibility of using completely incinerable reagents for the single-cycle separation of americium (III) from simulated high-level liquid waste. Radiochim. Acta. 103, 265 (2015).10.1515/ract-2014-2280Search in Google Scholar

20. Ravi, J., Venkatesan, K. A., Antony, M. P., Srinivasan, T. G., Vasudeva Rao, P. R.: Single-cycle method for partitioning of trivalent actinides using completely incinerable reagents from nitric acid medium. Radiochim. Acta. 102, 599 (2014).10.1515/ract-2014-2183Search in Google Scholar

21. Wang, X., Li, W., Meng, S., Li, D.: The extraction of rare earths using mixtures of acid-ic phosphorus-based reagents or their thio-analogues. J. Chem. Technol. Biot. 81, 761 (2006).10.1002/jctb.1532Search in Google Scholar

22. Zhengshui, H., Ying, P., Wanwu, M., Xun, Fu.: Purification of organophosphorus acid extractants. Solvent Extr. Ion Exch. 13, 965 (1995).10.1080/07366299508918312Search in Google Scholar

23. Gujar, R. B., Pathak, P. N., Dhekane, G. B., Mohapatra, P. K.: Extraction of some hexavalent actinide ions from nitric acid medium using several substituted diglycolamides. Solvent Extr. Ion Exch. 32, 637 (2014).10.1080/07366299.2014.926136Search in Google Scholar

24. Lee, M., Lee, J., Kim, J., Lee, G.: Solvent extraction of neodymium ions from hydrochloric acid solution using PC88A and saponified PC88A. Sep. Purif. Technol. 46, 72 (2005).10.1016/j.seppur.2005.04.014Search in Google Scholar

25. Gupta, B., Mudhar, N., Singh, I.: Separations and recovery of indium and gallium using bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex 272). Sep. Purif. Technol. 57, 294 (2007).10.1016/j.seppur.2007.04.011Search in Google Scholar

26. Takayama, R., Ooe, K., Yahagi, W., Fujisawa, H., Komori, Y., Kikunaga, H., Yoshimura, T., Takahashi, N., Takahisa, K., Haba, H., Kudou Y.: Solvent extraction of trivalent actinides with di(2-ethylhexyl) phosphoric acid. Proc. Radiochim. Acta. 1, 157 (2011).10.1524/rcpr.2011.0029Search in Google Scholar

27. Kondo, Y., Matsumura, M., Kubota, M.: Solid formation in simulated high level liquid waste of relatively low nitric acid concentration. J. Radioanal. Nucl. Chem. 17, 7301 (1994).10.1007/BF02061126Search in Google Scholar

28. Mincher, B. J., Modolo, G., Mezyk, S. P.: The effects of radiation chemistry on solvent extraction 3: a review of actinide and lanthanide extraction. Solvent Extr. Ion Exch. 27, 579 (2009).10.1080/07366290903114098Search in Google Scholar

Received: 2017-1-27
Accepted: 2017-7-21
Published Online: 2017-9-15
Published in Print: 2018-1-26

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.5.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2017-2769/html
Scroll to top button