Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 22, 2021

Azo (Hydrazone) pigments: general principles

  • Robert Christie EMAIL logo
From the journal Physical Sciences Reviews

Abstract

This paper presents an overview of the general chemical principles underlying the structures, synthesis and technical performance of azo pigments, the dominant chemical class of industrial organic pigments in the yellow, orange, and red shade areas, both numerically and in terms of tonnage manufactured. A description of the most significant historical features in this group of pigments is provided, starting from the discovery of the chemistry on which azo colorants are based by Griess in the mid-nineteenth century, through the commercial introduction of the most important classical azo pigments in the early twentieth century, including products known as the Hansa Yellows, β-naphthol reds, including metal salt pigments, and the diarylide yellows and oranges, to the development in the 1950s and 1960s of two classes of azo pigments that exhibit high performance, disazo condensation pigments and benzimidazolone-based azo pigments. A feature that complicates the description of the chemical structures of azo pigments is that they exist in the solid state as the ketohydrazone rather than the hydroxyazo form, in which they have been traditionally been illustrated. Numerous structural studies conducted over the years on an extensive range of azo pigments have demonstrated this feature. In this text, they are referred to throughout as azo (hydrazone) pigments. Since a common synthetic procedure is used in the manufacture of virtually all azo (hydrazone) pigments, this is discussed in some detail, including practical aspects. The procedure brings together two organic components as the fundamental starting materials, a diazo component and a coupling component. An important reason for the dominance of azo (hydrazone) pigments is that they are highly cost-effective. The syntheses generally involve low cost, commodity organic starting materials and are carried out in water as the reaction solvent, which offers obvious economic and environmental advantages. The versatility of the approach means that an immense number of products may be prepared, so that they have been adapted structurally to meet the requirements of many applications. On an industrial scale, the processes are straightforward, making use of simple, multi-purpose chemical plant. Azo pigments may be produced in virtually quantitative yields and the processes are carried out at or below ambient temperatures, thus presenting low energy requirements. Finally, provided that careful control of the reaction conditions is maintained, azo pigments may be prepared directly by an aqueous precipitation process that can optimise physical form, with control of particle size distribution, crystalline structure, and surface character. The applications of azo pigments are outlined, with more detail reserved for subsequent papers on individual products.

References

1. Christie RM. Colour chemistry. 2nd ed. London: RSC Ch 3, 2015.Search in Google Scholar

2. Zollinger H. Color chemistry. 3rd ed. Weinheim: Wiley-VCH Verlag GmbH Ch 7, 2003.Search in Google Scholar

3. Christie RM. The organic and inorganic chemistry of pigments, surface coatings reviews. London: OCCA, 2002.Search in Google Scholar

4. Hunger K, Schmidt MU. Industrial organic pigments. 4th ed. Weinheim: Wiley-VCH Verlag GmbH Ch 2, 2019.Search in Google Scholar

5. Griess P. Vorlaufige Notiz uber die Einwirkung von saltpetriger Saure auf Amidodinitro und Aminonitrophenyl saure. Liebigs Ann. Chem. 1858:106;123–125.10.1002/jlac.18581060114Search in Google Scholar

6. VM. The 125th anniversary of the griess reagent. J Anal Chem. 2004;59:1002–5.10.1023/B:JANC.0000043920.77446.d7Search in Google Scholar

7. Whitaker A. Crystal structures of Azo pigments based on acetoacetanilides. J Soc Dyers Colour. 1988;104:294.10.1111/j.1478-4408.1988.tb01172.xSearch in Google Scholar

8. Barrow MJ, Christie RM, Lough AJ, Monteith JE, Standring PS. The crystal structure of CI pigment yellow 12. Dyes Pigm. 1989;1:109.Search in Google Scholar

9. Zollinger H. Diazo chemistry I: aromatic and heteroaromatic compounds. Weinheim: VCH, 1994.10.1002/3527601724Search in Google Scholar

10. Rys P, Zollinger H. Fundamentals of the chemistry and applications of dyes. London: Wiley-Interscience, 1972.Search in Google Scholar

11. Faulkner EB, Schwartz RJ. High performance pigments. 2nd ed. Weinheim: Wiley-VCH Verlag GmbH, 2009.10.1002/9783527626915Search in Google Scholar

Published Online: 2021-04-22

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.6.2024 from https://www.degruyter.com/document/doi/10.1515/psr-2020-0148/html
Scroll to top button