Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 25, 2019

Spiral spin structures and skyrmionsin multiferroics

  • Takashi Kurumaji ORCID logo EMAIL logo
From the journal Physical Sciences Reviews

Abstract

In this article, we focus on (1) type-II multiferroics driven by spiral spin orderings and (2) magnetoelectric couplings in multiferroic skyrmion-hosting materials. We present both phenomenological understanding and microscopic mechanisms for spiral spin state, which is one of the essential starting points for type-II multiferroics and magnetic skyrmions. Two distinct mechanisms of spiral spin states (frustration and Dzyaloshinskii–Moriya [DM] interaction) are discussed in the context of the lattice symmetry. We also discuss the spin-induced ferroelectricity on the basis of the symmetry and microscopic atomic configurations. We compare two well-known microscopic models: the generalized inverse DM mechanism and the metal-ligand d-p hybridization mechanism. As a test for these models, we summarize the multiferroic properties of a family of triangular-lattice antiferromagnets. We also give a brief review of the magnetic skyrmions. Three types of known skyrmion-hosting materials with multiferroicity are discussed from the view point of crystal structure, magnetism, and origins of the magnetoelectric couplings. For exploration of new skyrmion-hosting materials, we also discuss the theoretical models for stabilizing skyrmions by magnetic frustration in centrosymmetric system. Several basic ideas for material design are given, which are successfully demonstrated by the recent experimental evidences for the skyrmion formation in centrosymmetric frustrated magnets.

References

[1] Herpin A. Theorie du Magnetisme. Paris: Press Universitaires de France, 1968.Search in Google Scholar

[2] Erickson RA. The antiefrromagnetic structure of manganese dioxide by neutron diffraction. Phys Rev. 1952;85:745.Search in Google Scholar

[3] Herpin A, Mériel P. Étude de l’antiferromagnétisme helicoidal de MnAu2 par diffraction de neutrons. J Phys (Paris). 1961;22:337.10.1051/jphysrad:01961002206033700Search in Google Scholar

[4] Kaplan TA. Classical spin-configuration stability in the presence of competing exchange forces. Phys Rev. 1959;116:888.10.1103/PhysRev.116.888Search in Google Scholar

[5] Yoshimori A. A new type of antiferromagnetic structure in the rutile type crystal. J Phys Soc Jpn. 1959;14:807.10.1143/JPSJ.14.807Search in Google Scholar

[6] Villain J. La structure des substances magnetiques. J Phys Chem Solids. 1959;11:303.10.1016/0022-3697(59)90231-8Search in Google Scholar

[7] Chattopadhyay T. Modulated magnetic phases in rare earth metallic systems. Science. 1994;264:226.10.1126/science.264.5156.226Search in Google Scholar

[8] Cox DE. Neutron-diffraction determination of magnetic structures. IEEE Trans Magn. 1972;8:161.10.1109/TMAG.1972.1067272Search in Google Scholar

[9] Rossat-Mignod J. Magnetic structures. Methods Exp Phys. 1987;23:69.10.1016/S0076-695X(08)60770-XSearch in Google Scholar

[10] Koehler WC, Moon RM, Trego AL, Mackintosh AR. Antiferromagnetism in chromium alloys. I. neutron diffraction. Phys Rev. 1966;151:405.10.1103/PhysRev.151.405Search in Google Scholar

[11] Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y. Magnetic control of ferroelectric polarization. Nature. 2003;426:55.10.1038/nature02018Search in Google Scholar PubMed

[12] Khomskii D. Classifying multiferroics: Mechanisms and effects. Physics. 2009;2:20.10.1103/Physics.2.20Search in Google Scholar

[13] Skyrme TH. A non-linear field theory. Proc R Soc. 1961;A260:127.10.1142/9789812795922_0013Search in Google Scholar

[14] Belavin AA, Polyakov AM. Metastable states of two-dimensional isotropic ferromagnets. JETP Lett. 1975;22:503.Search in Google Scholar

[15] Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, et al. Skyrmion lattice in a chiral magnet. Science. 2009;323:915.10.1126/science.1166767Search in Google Scholar PubMed

[16] Yu XZ, Onose Y, Kanazawa N, Park JH, Han JH, Matsui Y, et al. Real-space observation of a two-dimensional skyrmion crystal. Nature. 2010;465:901.10.1038/nature09124Search in Google Scholar PubMed

[17] Seki S, Yu XZ, Ishiwata S, Tokura Y. Observation of skyrmions in a multiferroic material. Science. 2012;336:198.10.1126/science.1214143Search in Google Scholar PubMed

[18] Cheong S-W, Mostovoy M. Multiferroics: a magnetic twist for ferroelectricity. Nat Mater. 2007;6:13.10.1038/nmat1804Search in Google Scholar PubMed

[19] Fiebig M. Revival of the magnetoelectric effect. J Phys D: Appl Phys. 2005;38:R123.10.1088/0022-3727/38/8/R01Search in Google Scholar

[20] Wang KF, Liu J-M, Ren ZF. Multiferroicity: the coupling between magnetic and polarization orders. Adv Phys. 2009;58:321.10.1080/00018730902920554Search in Google Scholar

[21] Tokura Y, Seki S, Nagaosa N. Multiferroics of spin origin. Rep Prog Phys. 2014;77:076501.10.1088/0034-4885/77/7/076501Search in Google Scholar PubMed

[22] Dong S, Liu J-M, Cheong S-W, Ren Z. Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology. Adv Phys. 2015;64:519.10.1080/00018732.2015.1114338Search in Google Scholar

[23] Figbig M, Lottermoser T, Meier D, Trassin M. The evolution of multiferroics. Nat Rev Mater. 2016;1:16046.10.1038/natrevmats.2016.46Search in Google Scholar

[24] Bousquet E, Cano A. Non-collinear magnetism in multiferroic perovskites. J Phys: Cond Mater. 2016;28:123001.10.1088/0953-8984/28/12/123001Search in Google Scholar PubMed

[25] Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB, Liu B, et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science. 2003;299:1719.10.1126/science.1080615Search in Google Scholar PubMed

[26] Martin LW, Chu Y-H, Ramesh R. Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films. Mater Sci Eng R. 2010;68:89.10.1016/j.mser.2010.03.001Search in Google Scholar

[27] Nagaosa N, Tokura Y. Topological properties and dynamics of magnetic skyrmions. Nat Nanotech. 2013;8:899.10.1038/nnano.2013.243Search in Google Scholar PubMed

[28] Jiang W, Chen G, Liu K, Zang J, te Velthusis SG, Hoffmann A. Skyrmions in magnetic multilayers. Phys Rep. 2017;704:1.10.1016/j.physrep.2017.08.001Search in Google Scholar

[29] Yamasaki Y, Miyahara S, Kaneko Y, He J-P, Arima T, Tokura Y. Magnetic reversal of the ferroelectric polarization in a multiferroic spinel oxide.Phys Rev Lett. 2006;96:207204.10.1103/PhysRevLett.96.207204Search in Google Scholar PubMed

[30] Ishiwata S, Taguchi Y, Murakawa H, Onose Y, Tokura Y. Low-magnetic-field control of electric polarization vector in a helimagnet. Science. 2008;319:1643.10.1126/science.1154507Search in Google Scholar PubMed

[31] White JS, Honda T, Kimura K, Kimura T, Niedermayer Ch, Zaharko O, et al. Coupling of magnetic and ferroelectric hysteresis by a multicomponent magnetic structure in Mn2GeO4.Phys Rev Lett. 2012;108:077204.10.1103/PhysRevLett.108.077204Search in Google Scholar PubMed

[32] Izyumov Y. Modulated, or long-periodic, magnetic structures of crystals. Usp Fiz Nauk. 1984;144:439.10.1070/PU1984v027n11ABEH004120Search in Google Scholar

[33] Kishine J-I, Ovchinnikov AS. Theory of monoaxial chiral helimagnet. Solid State Phys. 2015;66:1.10.1016/bs.ssp.2015.05.001Search in Google Scholar

[34] Murakawa H, Onose Y, Tokura Y. Electric-field switching of a magnetic propagation vector in a helimagnet. Phys Rev Lett. 2009;103:147201.10.1103/PhysRevLett.103.147201Search in Google Scholar PubMed

[35] Hornreich RM, Luban M, Shtrikman S. Critical behavior at the onset of k -space instability on the λ line. Phys Rev Lett. 1975;35:1678.10.1103/PhysRevLett.35.1678Search in Google Scholar

[36] Michelson A. Phase diagrams near the Lifshiftz point. II. Systems with cylindrical, hexagonal, and rhombohedral symmetry having an easy plane of magnetization. Phys Rev B. 1977;16:585.10.1103/PhysRevB.16.585Search in Google Scholar

[37] Dyzaloshinskii IE. Theory of helicoidal structures in antiferromagnets. I. nonmetals. Sov Phys JETP. 1965;19:960.Search in Google Scholar

[38] Tanaka M, Takayoshi H, Ishida M, Endoh Y. Crystal chirality and helicity of the helical spin density wave in MnSi. I. Convergent-beam electron diffraction. J Phys Soc Jpn. 1985;54:2970.10.1143/JPSJ.54.2970Search in Google Scholar

[39] Ishida M, Endoh Y, Mitsuda S, Ishikawa Y, Tanaka M. Crystal chirality and helicity of the helical spin density wave in MnSi. II. polarized neutron diffraction. J Phys Soc Jpn. 1985;54:2975.10.1143/JPSJ.54.2975Search in Google Scholar

[40] Grigoriev SV, Chernyshov D, Dyadkin VA, Dmitriev V, Maleyev SV, Moskvin EV, et al. Crystal handedness and spin helix chirality in Fe1-xCoxSi. Phys Rev Lett. 2009;102:037204.10.1103/PhysRevLett.102.037204Search in Google Scholar PubMed

[41] Shibata K, Yu XZ, Hara T, Morikawa D, Kanazawa N, Kimoto K, et al. Towards control of the size and helicity of skyrmions in helimagnetic alloys by spin–orbit coupling. Nat Nanotech. 2013;8:723.10.1038/nnano.2013.174Search in Google Scholar PubMed

[42] Dyadkin V, Prsa K, Grigoriev SV, White JS, Huang P, Ronnow HM, et al. Chirality of structure and magnetism in the magnetoelectric compound Cu2OSeO3.Phys Rev B. 2014;89:140409(R).10.1103/PhysRevB.89.140409Search in Google Scholar

[43] Kousaka Y, Koyama T, Ohishi K, Kakurai K, Hutanu V, Ohsumi H, et al. Monochiral helimagnetism in homochiral crystals of CsCuCl3. Phys Rev Mater. 2017;1:071402(R).10.1103/PhysRevMaterials.1.071402Search in Google Scholar

[44] Matsumura T, Kita Y, Kubo K, Yoshikawa Y, Michimura S, Inami T, et al. Chiral soliton lattice formation in monoaxial helimagnet Yb(Ni1-xCux)3Al9. J Phys Soc Jpn. 2017;86:124702.10.7566/JPSJ.86.124702Search in Google Scholar

[45] Dzyaloshinskii IE. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J Phys Chem Solids. 1958;4:241.10.1016/0022-3697(58)90076-3Search in Google Scholar

[46] Moriya T. Anisotropic superexchange interaction and weak ferromagnetism. Phys Rev. 1960;120:91.10.1103/PhysRev.120.91Search in Google Scholar

[47] Gignoux D, Schmitt D. Frustration in rare earth intermetallic compounds. J Alloys Comp. 2001;326:143.10.1016/S0925-8388(01)01253-1Search in Google Scholar

[48] Ruderman MA, Kittel C. Indirect exchange coupling of nuclear magnetic moments by conduction electrons. Phys Rev. 1954;96:99.10.1103/PhysRev.96.99Search in Google Scholar

[49] Kasuya T. A theory of metallic ferro- and antiferromagnetism on Zener’s model. Prog Theor Phys. 1956;16:45.10.1143/PTP.16.45Search in Google Scholar

[50] Yosida K. Magnetic properties of Cu-Mn alloys. Phys Rev. 1957;106:893.10.1103/PhysRev.106.893Search in Google Scholar

[51] Newnham RE, Kramer JJ, Schulze WA, Cross LE. Magnetoferroelectricity in Cr2BeO4. J Appl Phys. 1978;49:6088.10.1063/1.324527Search in Google Scholar

[52] Santoro RP, Newnham RE, Am J. Magnetic properties of chromium chrysoberyl. Ceram Soc. 1964;47:491.10.1111/j.1151-2916.1964.tb13796.xSearch in Google Scholar

[53] Cox DE, Frazer BC, Newnham RE, Santoro RP. Neutron diffraction investigation of the spiral magnetic structure in Cr2BeO4. J Appl Phys. 1969;40:1124.10.1063/1.1657557Search in Google Scholar

[54] Baryakhtar VG, Lvov VA, Yablonskii DA. Inhomogeneous magnetoelectric effect. Sov Phys JETP Lett. 1983;37:565.Search in Google Scholar

[55] Baryakhtar VG, Stefanovskii EP, Yablonskii DA. Theory of magnetic structure and electric polarization of the Cr2BeO4 system. Sov Phys JETP Lett. 1985;42:258.Search in Google Scholar

[56] Birss RP. Symmetry and magnetism. Amsterdamml: North-Holland Pub. Co., 1964Search in Google Scholar

[57] Siratori K, Akimitsu J, Kita E, Nishi M. A new method of controlling the sense of the screw spin structure. J Phys Soc Jpn. 1980;48:1111.10.1143/JPSJ.48.1111Search in Google Scholar

[58] Yamasaki Y, Sagayama H, Goto T, Matsuura M, Hirota K, Arima T, et al. Electric control of spin helicity in a magnetic ferroelectric. Phys Rev Lett. 2007;98:147204.10.1103/PhysRevLett.98.147204Search in Google Scholar PubMed

[59] Sagayama H, Abe N, Taniguchi K, Arima T, Yamasaki Y, Okuyama D, et al. Observation of spin helicity using nonresonant circularly polarized x-ray diffraction analysis. J Phys Soc Jpn. 2010;79:043711.10.1143/JPSJ.79.043711Search in Google Scholar

[60] Mostovoy M. Ferroelectricity in spiral magnets. Phys Rev Lett. 2006;96:067601.10.1103/PhysRevLett.96.067601Search in Google Scholar PubMed

[61] Sergienko IA, Dagotto E. Role of the Dzyaloshinskii-Moriya interaction in multiferroic perovskites. Phys Rev B. 2006;73:094434.10.1103/PhysRevB.73.094434Search in Google Scholar

[62] Katsura H, Nagaosa N, Balatsky AV. Spin current and magnetoelectric effect in noncollinear magnets. Phys Rev Lett. 2005;95:057205.10.1103/PhysRevLett.95.057205Search in Google Scholar PubMed

[63] Kaplan TA, Mahanti SD. Canted-spin-caused electric dipoles: A local symmetry theory. Phys Rev B. 2011;83:174432.10.1103/PhysRevB.83.174432Search in Google Scholar

[64] Xiang HJ, Kan EJ, Zhang Y, Whangbo M-H, Gong XG. General theory for the ferroelectric polarization induced by spin-spiral order. Phys Rev Lett. 2011;107:157202.10.1103/PhysRevLett.107.157202Search in Google Scholar PubMed

[65] Johnson RD, Nair S, Chapon LC, Bombardi A, Vecchini C, Prabhakaran D, et al. Cu3Nb2O8: A multiferroic with chiral coupling to the crystal structure. Phys Rev Lett. 2011;107:137205.10.1103/PhysRevLett.107.137205Search in Google Scholar PubMed

[66] Johnson RD, Chapon LC, Khalyavin DD, Manuel P, Radaelli PG, Martin C. Giant improper ferroelectricity in the ferroaxial magnet CaMn7O12. Phys Rev Lett. 2012;108:067201.10.1107/S0108767312098157Search in Google Scholar

[67] Hearmon AJ, Fabrizi F, Chapon LC, Johnson RD, Prabhakaran D, Streltsov SV, et al. Electric field control of the magnetic chiralities in ferroaxial multiferroic RbFe(MoO4)2. Phys Rev Lett. 2012;108:237201.10.1103/PhysRevLett.108.237201Search in Google Scholar PubMed

[68] Baum M, Komarek AC, Holbein S, Fernández-Díaz MT, André G, Hiess A, et al. Magnetic structure and multiferroic coupling in pyroxene NaFeSi2O6. Phys Rev B. 2015;91:214415.10.1103/PhysRevB.91.214415Search in Google Scholar

[69] Tokunaga M, Akaki M, Ito T, Miyahara S, Miyake A, Kuwahara H, et al. Magnetic control of transverse electric polarization in BiFeO3. Nat Commun. 2015;6:5878.10.1038/ncomms6878Search in Google Scholar PubMed

[70] Kimura T, Lashley JC, Ramirez AP. Inversion-symmetry breaking in the noncollinear magnetic phase of the triangular-lattice antiferromagnet CuFeO2. Phys Rev B. 2006;73:220401.10.1103/PhysRevB.73.220401Search in Google Scholar

[71] Seki S, Onose Y, Tokura Y. Spin-driven ferroelectricity in triangular lattice antiferromagnets ACrO2 (A = Cu, Ag, Li, or Na). Phys Rev Lett. 2008;101:067204.10.1103/PhysRevLett.101.067204Search in Google Scholar PubMed

[72] Kimura K, Nakamura H, Ohgushi K, Kimura T. Magnetoelectric control of spin-chiral ferroelectric domains in a triangular lattice antiferromagnet. Phys Rev B. 2008;78:140401(R).10.1103/PhysRevB.78.140401Search in Google Scholar

[73] Terada N, Khalyavin DD, Perez-Mato JM, Manuel P, Prabhakaran D, Daoud-Aladine A, et al. Magnetic and ferroelectric orderings in multiferroic α-NaFeO2. Phys Rev B. 2014;89:184421.10.1103/PhysRevB.89.184421Search in Google Scholar

[74] Kurumaji T, Seki S, Ishiwata S, Murakawa H, Tokunaga Y, Kaneko Y, et al. Magnetic-field induced competition of two multiferroic orders in a triangular-lattice helimagnet MnI2. Phys Rev Lett. 2011;106:167206.10.1103/PhysRevLett.106.167206Search in Google Scholar PubMed

[75] Kurumaji T, Seki S, Ishiwata S, Murakawa H, Kaneko Y, Tokura Y. Magnetoelectric responses induced by domain rearrangement and spin structural change in triangular-lattice helimagnets NiI2 and CoI2. Phys Rev B. 2013;87:014429.10.1103/PhysRevB.87.014429Search in Google Scholar

[76] Tokunaga Y, Okuyama D, Kurumaji T, Arima T, Nakao H, Murakami Y, et al. Multiferroicity in NiBr2 with long-wavelength cycloidal spin structure on a triangular lattice. Phys Rev B. 2011;84:060406(R).10.1103/PhysRevB.84.060406Search in Google Scholar

[77] Arima T. Ferroelectricity induced by proper-screw type magnetic order. J Phys Soc Jpn. 2007;76:073702.10.1143/JPSJ.76.073702Search in Google Scholar

[78] Ramirez AP. Strongly geometrically frustrated magnets. Annu Rev Mater Sci. 1994;24:453.10.1146/annurev.ms.24.080194.002321Search in Google Scholar

[79] Collins MF, Petrenko OA. Triangular antiferromagnets. Can J Phys. 1997;75:605.10.1139/p97-007Search in Google Scholar

[80] Balents L. Spin liquids in frustrated magnets. Nature. 2010;464:199.10.1038/nature08917Search in Google Scholar PubMed

[81] Terada N. Spin and orbital orderings behind multiferroicity in delafossite and related compounds. J Phys: Condens Matter. 2014;26:453202.10.1088/0953-8984/26/45/453202Search in Google Scholar PubMed

[82] McGuire MA. Crystal and magnetic structures in layered, transition metal dihalides and trihalides. Crystals. 2017;7:121.10.3390/cryst7050121Search in Google Scholar

[83] Mitsuda S, Yoshizawa H, Yaguchi N, Mekata M. Neutron diffraction study of CuFeO2. J Phys Soc Jpn. 1991;60:1885.10.1143/JPSJ.60.1885Search in Google Scholar

[84] Petrenko OA, Balakrishnan G, Lees MR, Paul DM, Hoser A. High-magnetic-field behavior of the triangular-lattice antiferromagnet CuFeO2. Phys Rev B. 2000;62:8983.10.1103/PhysRevB.62.8983Search in Google Scholar

[85] Mitsuda S, Mase M, Prokes K, Kitazawa H, Aruga Katori H. Field-induced magnetic phase transitions in a triangular lattice antiferromagnet CuFeO2 up to 14.5 T. J Phys Soc Jpn. 2000;69:3513.10.1143/JPSJ.69.3513Search in Google Scholar

[86] Nakajima T, Mitsuda S, Kanetsuki S, Prokes K, Podlensnyak A, Kimura H, et al. Spin noncollinearlity in multiferroic phase of triangular lattice antiferromagnet CuFe1-xAlxO2. J Phys Soc Jpn. 2007;76:043709.10.1143/JPSJ.76.043709Search in Google Scholar

[87] Kanetsuki S, Mitsuda S, Nakajima T, Anazawa D, Katori HA, Prokes S. Field-induced ferroelectric state in frustrated magnet CuFe1-xAlxO2. J Phys: Condens Matter. 2007;19:145244.10.1088/0953-8984/19/14/145244Search in Google Scholar

[88] Seki S, Yamasaki Y, Shiomi Y, Iguchi S, Onose Y, Tokura Y. Impurity-doping-induced ferroelectricity in the frustrated antiferromagnet CuFeO2. Phys Rev B. 2007;75:100403(R).10.1103/PhysRevB.75.100403Search in Google Scholar

[89] Nakajima T, Mitsuda S, Takahashi K, Yamano M, Masuda K, Yamazaki H, et al. Comprehensive study on ferroelectricity induced by a proper-screw-type magnetic ordering in multiferroic CuFeO2: Nonmagnetic impurity effect on magnetic and ferroelectric order. Phys Rev B. 2009;79:214423.10.1103/PhysRevB.79.214423Search in Google Scholar

[90] Cable JW, Wilkinson MK, Wollan EO, Koehler WC. Neutron diffraction investigation of the magnetic order in MnI2. Phys Rev. 1962;125:1860.10.1103/PhysRev.125.1860Search in Google Scholar

[91] Sato T, Kadowaki H, Iio K. Successive phase transitions in the hexagonal-layered Heisenberg antiferromagnets MnX2 (X = Br, I). Physica B. 1995;213:224.10.1016/0921-4526(95)00112-MSearch in Google Scholar

[92] Wu X, Cai Y, Xie Q, Weng H, Fan H, Hu J. Magnetic ordering and multiferroicity in MnI2. Phys Rev B. 2012;86:134413.10.1103/PhysRevB.86.134413Search in Google Scholar

[93] Utesov OI, Syromyatnikov AV. Cascades of phase transitions in spiral magnets caused by dipolar forces. Phys Rev B. 2017;95:214420.10.1103/PhysRevB.95.214420Search in Google Scholar

[94] Utesov OI, Syromyatnikov AV. Control of multiferroic order by magnetic field in frustrated helimagnet MnI2. Theory. J Magn Magn Mater. 2019;475:98.10.1016/j.jmmm.2018.11.099Search in Google Scholar

[95] Day P, Dinsdale A, Krausz ER, Robbins DJ. Optical and neutron diffraction study of the magnetic phase diagram of NiBr2. J Phys C. 1976;9:2482.10.1088/0022-3719/9/13/008Search in Google Scholar

[96] Day P, Ziebeck KR. Incommensurate spin structure in the lowtemperature magnetic phase of NiBr2. J Phys C. 1980;13:L523.10.1088/0022-3719/13/21/005Search in Google Scholar

[97] Adam A, Billerey D, Terrier C, Mainard R, Pegnault LP, Rossat-Mignod J, et al. Neutron diffraction study of the commensurate and incommensurate magnetic structures of NiBr2. Solid State Commun. 1980;35:1.10.1016/0038-1098(80)90757-7Search in Google Scholar

[98] Pollard RJ, McCann VH, Ward JB. Electronic and magnetic properties of 57Fe in NiCl2, NiBr2, NiI2 and CoI2 from Mossbauer spectroscopy. J Phys C. 1982;15:6807.10.1088/0022-3719/15/33/017Search in Google Scholar

[99] Miyahara S, Furukawa N. Theory of antisymmetric spin-pair-dependent electric polarization in multiferroics. Phys Rev B. 2016;93:014445.10.1103/PhysRevB.93.014445Search in Google Scholar

[100] Zhang JT, Ji C, Wang JL, Xia WS, Guo BX, Lu XM, et al. Spin-induced ferroelectricity in a triangular-lattice antiferromagnet studied by magnetoelectric coupling tensors. Phys Rev B. 2017;96:235136.10.1103/PhysRevB.96.235136Search in Google Scholar

[101] Murakawa H, Onose Y, Miyahara S, Furukawa N, Tokura Y. Ferroelectricity induced by spin-dependent metal-ligand hybridization in Ba2CoGe2O7. Phys Rev Lett. 2010;105:137202.10.1103/PhysRevLett.105.137202Search in Google Scholar

[102] Kurumaji T, Ohgushi K, Tokura Y. Magnetoelectric responses from the respective magnetic R and Fe subsystems in the noncentrosymmetric antiferromagnets RFe3(BO3)4 (R = Eu, Gd, and Tb). Phys Rev B. 2014;89:195126.10.1103/PhysRevB.89.195126Search in Google Scholar

[103] Rado GT. Mechanism of the magnetoelectric effect in an antiferromagnet. Phys Rev Lett. 1961;6:609.10.1103/PhysRevLett.6.609Search in Google Scholar

[104] Kurumaji T. Magnetoelectric responses in magnetic insulators without inversion symmetry Thesis. University of Tokyo, 2014.Search in Google Scholar

[105] Dzyaloshinskii IE, Ivanov BA. Localized topological solitons in a ferromagnet. Sov Phys JETP Lett. 1979;29:592.Search in Google Scholar

[106] Ivanov BA, Stephanovich VA, Zhmudskii AA. Magnetic vortices – The microscopic analogs of magnetic bubbles. J Magn Magn Mater. 1990;88:116.10.1016/S0304-8853(97)90021-4Search in Google Scholar

[107] Abanov A, Pokrovsky VL. Skyrmion in a real magnetic film. Phys Rev B. 1998;58:889(R).10.1103/PhysRevB.58.R8889Search in Google Scholar

[108] Bezvershenko AV, Kolezhuk AK, Ivanov BA. Stabilization of magnetic skyrmions by RKKY interactions. Phys Rev B. 2018;97:054408.10.1103/PhysRevB.97.054408Search in Google Scholar

[109] Bogdanov AN, Yablonskii DA. Thermodynamically stable “vortices” in magnetically ordered crystals. The mixed state of magnets. Sov Phys JETP. 1989;95:178.Search in Google Scholar

[110] Bogdanov AN, Hubert A. Thermodynamically stable magnetic vortex states in magnetic crystals. J Magn Magn Mater. 1994;138:255.10.1016/0304-8853(94)90046-9Search in Google Scholar

[111] Rowland J, Banerjee S, Randeria M. Skyrmions in chiral magnets with Rashba and Dresselhaus spin-orbit coupling. Phys Rev B. 2016;93:020404(R).10.1103/PhysRevB.93.020404Search in Google Scholar

[112] Wilson MN, Butenko AB, Bogdanov AN, Monchesky TL. Chiral skyrmions in cubic helimagnet films: The role of uniaxial anisotropy. Phys Rev B. 2014;89:094411.10.1103/PhysRevB.89.094411Search in Google Scholar

[113] Adams T, Mühlbauer S, Pfleiderer C, Jonietz F, Bauer A, Neubauer A, et al. Long-range crystalline nature of the skyrmion lattice in MnSi. Phys Rev Lett. 2011;107:217206.10.1103/PhysRevLett.107.217206Search in Google Scholar PubMed

[114] Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz PG, et al. Topological Hall effect in the A phase of MnSi. Phys Rev Lett. 2009;102:186602.10.1103/PhysRevLett.102.186602Search in Google Scholar PubMed

[115] Yu XZ, Kanazawa N, Onose Y, Kimoto K, Zhang WZ, Ishiwata S, et al. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat Mater. 2011;10:106.10.1038/nmat2916Search in Google Scholar PubMed

[116] Miyadai T, Kikuchi K, Kondo H, Sakka S, Arai M, Ishikawa Y. Magnetic properties of Cr1⁄3NbS2. J Phys Soc Jpn. 1983;52:1394.10.1007/978-94-009-7825-6_203Search in Google Scholar

[117] Li W, Jin C, Che R, Wei W, Lin L, Zhang L, et al. Emergence of skyrmions from rich parent phases in the molybdenum nitrides. Phys Rev B. 2016;93:060409(R).10.1103/PhysRevB.93.060409Search in Google Scholar

[118] Tokunaga Y, Yu XZ, White JS, Ronnow HM, Morikawa D, Taguchi Y, et al. A new class of chiral materials hosting magnetic skyrmions beyond room temperature. Nat Commun. 2015;6:7638.10.1038/ncomms8638Search in Google Scholar PubMed PubMed Central

[119] Karube K, White JS, Reynolds N, Gavilano JL, Oike H, Kikkawa A, et al. Robust metastable skyrmions and their triangular-square lattice structural transition in a high-temperature chiral magnet. Nat Mater. 2016;15:1237.10.1038/nmat4752Search in Google Scholar PubMed

[120] Nayak AK, Kumar V, Ma T, Werner P, Pippel E, Sahoo R, et al. Magnetic antiskyrmions above room temperature in tetragonal Heusler materials. Nature. 2017;548:561.10.1038/nature23466Search in Google Scholar PubMed

[121] Kézsmárki I, Bordács S, Milde P, Neuber E, Eng LM, White JS, et al. Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8. Nat Mater. 2015;14:1116.10.1038/nmat4402Search in Google Scholar

[122] Fujima Y, Abe N, Tokunaga Y, Arima T. Thermodynamically stable skyrmion lattice at low temperatures in a bulk crystal of lacunar spinel GaV4Se8. Phys Rev B. 2017;95:180410(R).10.1103/PhysRevB.95.180410Search in Google Scholar

[123] Bordács S, Butykai A, Szigeti BG, White JS, Cubitt R, Leonov AO, et al. Equilibrium skyrmion lattice ground state in a polar easy-plane magnet. Sci Rep. 2017;7:7584.10.1038/s41598-017-07996-xSearch in Google Scholar

[124] Kurumaji T, Nakajima T, Ukleev V, Feoktystov A, Arima T, Kakurai K, et al. Néel-Type Skyrmion Lattice in the Tetragonal Polar Magnet VOSe2O5. Phys Rev Lett. 2017;119:237201.10.1103/PhysRevLett.119.237201Search in Google Scholar

[125] Togawa Y, Koyama T, Takayanagi K, Mori S, Kousaka Y, Akimitsu J, et al. Chiral magnetic soliton lattice on a chiral helimagnet. Phys Rev Lett. 2012;108:107202.10.1103/PhysRevLett.108.107202Search in Google Scholar

[126] Courbion G, Jacoboni C, de Pape R. The dimorphism of LiMnFeF6: A new kind of cationic order in the structural type Na2SiF6. J Solid State Chem. 1982;45:127.10.1016/0022-4596(82)90299-7Search in Google Scholar

[127] McAlister SP, Strobel P. Magnetic order in M2Mo3O8 single crystals (M = Mn, Fe, Co, Ni). J Magn Magn Mater. 1983;30:340.10.1016/0304-8853(83)90073-2Search in Google Scholar

[128] Betrand D, Kerner-Czeskleba H. Étude structurale et magnétique de molybdates d'éléments de transition. J Phys. 1975;36:379.10.1051/jphys:01975003605037900Search in Google Scholar

[129] Wang W, Pascut GL, Gao B, Tyson TA, Haule K, Kiryukhin V, et al. Unveiling hidden ferrimagnetism and giant magnetoelectricity in polar magnet Fe2Mo3O8. Sci Rep. 2015;5:12268.10.1038/srep12268Search in Google Scholar PubMed PubMed Central

[130] Kurumaji T, Ishiwata S, Tokura Y. Doping-tunable ferrimagnetic phase with large linear magnetoelectric effect in a polar magnet Fe2Mo3O8. Phys Rev X. 2015;5:031034.10.1103/PhysRevX.5.031034Search in Google Scholar

[131] Kurumaji T, Ishiwata S, Tokura Y. Diagonal magnetoelectric susceptibility and effect of Fe doping in the polar ferrimagnet Mn2Mo3O8. Phys Rev B. 2017;95:045142.10.1103/PhysRevB.95.045142Search in Google Scholar

[132] Romaka VV, Romaka L, Romaniv I, Hlil EK, Rykavets Z, Kuzhel B. Crystallographic, magnetic and electrical characteristics of R3Ni8Sn4 compounds (R = Y, Nd, Sm, Gd, and Tb). J Alloys Compd. 2017;701:358.10.1016/j.jallcom.2017.01.029Search in Google Scholar

[133] Fornasini ML, Manfrinetti P, Mazzone D. Crystal structure of trieuropium octacopper tetrastannide, Eu3Cu8Sn4. Z Kristallogr NCS. 2003;218:279.10.1524/ncrs.2003.218.3.279Search in Google Scholar

[134] Ryan DH, Cadogan JM, Rejali R, Boyer CD. Complex incommensurate helicoidal magnetic ordering of EuNiGe3. J Phys: Condens Matter. 2016;28:266001.10.1088/0953-8984/28/26/266001Search in Google Scholar PubMed

[135] Zheludev A, Shirane G, Sasago Y, Kiode N, Uchinokura K. Spiral phase and spin waves in the quasi-two-dimensional antiferromagnet Ba2CuGe2O7. Phys Rev B. 1996;54:15163.10.1103/PhysRevB.54.15163Search in Google Scholar PubMed

[136] Mühlbauer S, Gvassaliya S, Ressouche E, Pomjakushina E, Zheludev A. Phase diagram of the Dzyaloshinskii-Moriya helimagnet Ba2CuGe2O7 in canted magnetic fields. Phys Rev B. 2012;86:024417.10.1103/PhysRevB.86.024417Search in Google Scholar

[137] Hoffmann M, Zimmermann B, Müller GP, Schürhoff D, Kiselev NS, Melcher C, et al. Antiskyrmions stabilized at interfaces by anisotropic Dzyaloshinskii-Moriya interactions. Nat Commun. 2017;8:308.10.1038/s41467-017-00313-0Search in Google Scholar PubMed PubMed Central

[138] Meunier G, Bertaud M. Constantes cristallographiques de CuSe2O5, CuSeO3 et CuaSeO4. J Appl Cryst. 1976;9:364.10.1107/S0021889876011540Search in Google Scholar

[139] Effenberger H, Pertlik F. The crystal structures of the copper(II)-oxo-selenites Cu2O(SeO3) (cubic and monoclinic), and Cu4O(SeO3)3 (monoclinic and triclinic). Monatsh Chem. 1986;117:887.10.1007/BF00811258Search in Google Scholar

[140] Khon K. A new ferrimagnet Cu2SeO6. J Phys Soc Jpn. 1977;42:2065.10.1143/JPSJ.42.2065Search in Google Scholar

[141] Bos J-W, Colin CV, Palstra TT. Magnetoelectric coupling in the cubic ferrimagnet Cu2OSeO3. Phys Rev B. 2008;78:094416.10.1103/PhysRevB.78.094416Search in Google Scholar

[142] Adams T, Chacon A, Wagner M, Bauer A, Brandl G, Pedersen B, et al. Long-wavelength helimagnetic order andskyrmion lattice phase in Cu2OSeO3. Phys Rev Lett. 2012;108:237204.10.1103/PhysRevLett.108.237204Search in Google Scholar PubMed

[143] Seki S, Kim J-H, Inosov DS, Georgii R, Keimer B, Ishiwata S, et al. Formation and rotation of skyrmion crystal in the chiral-lattice insulator Cu2OSeO3. Phys Rev B. 2012;85:220406.10.1103/PhysRevB.85.220406Search in Google Scholar

[144] Seki S, Ishiwata S, Tokura Y. Magnetoelectric nature of skyrmions in a chiral magnetic insulator Cu2OSeO3. Phys Rev B. 2012;86:060403(R).10.1103/PhysRevB.86.060403Search in Google Scholar

[145] Yang JH, Li ZL, Lu XZ, Whangbo M-H, Wei S-H, Gong XG, et al. Strong Dzyaloshinskii-Moriya interaction and origin of ferroelectricity in Cu2OSeO3. Phys Rev Lett. 2012;109:107203.10.1103/PhysRevLett.109.107203Search in Google Scholar PubMed

[146] Janson O, Rousochatzakis I, Tsirlin AA, Belesi M, Leonov AA, Rössler UK, et al. The quantum nature of skyrmions and half-skyrmions in Cu2OSeO3. Nat Commun. 2014;5:5376.10.1038/ncomms6376Search in Google Scholar PubMed

[147] Ozerov M, Romhanyi J, Melesi M, Berger H, Ansermet J-P, van Den Brink J, et al. Establishing the fundamental magnetic interactions in the chiral skyrmionic Mott insulator Cu2OSeO3 by terahertz electron spin resonance. Phys Rev Lett. 2014;113:157205.10.1103/PhysRevLett.113.157205Search in Google Scholar PubMed

[148] Romhanyi J, van Den Brink J, Rousochatzakis I. Entangled tetrahedron ground state and excitations of the magnetoelectric skyrmion material Cu2OSeO3. Phys Rev B. 2014;90:140404.R.10.1103/PhysRevB.90.140404Search in Google Scholar

[149] Gnezdilov VP, Lamonova KV, Pashkevich Y, Lemmens P, Berger H, Bussy F, et al. Magnetoelectricity in the ferrimagnetic Cu2OSeO3: symmetry analysis and Raman scattering study. Low Temp Phys. 2010;36:550.10.1063/1.3455808Search in Google Scholar

[150] Miller KH, Xu XS, Berger H, Knowles ES, Arenas DJ, Meisel MW, et al. Magnetodielectric coupling of infrared phonons in single-crystal Cu2OSeO3. Phys Rev B. 2010;82:144107.10.1103/PhysRevB.82.144107Search in Google Scholar

[151] White JS, Levatic I, Omrani AA, Egetenmeyer N, Prsa K, Zivkovic I, et al. Electric field control of the skyrmion lattice in Cu2OSeO3. J Phys: Condens Matter. 2012;24:432201.10.1088/0953-8984/24/43/432201Search in Google Scholar PubMed

[152] Okamura Y, Kagawa F, Seki S, Tokura Y. Transition to and from the skyrmion lattice phase by electric fields in a magnetoelectric compound. Nat Commun. 2016;7:12669.10.1038/ncomms12669Search in Google Scholar PubMed PubMed Central

[153] White JS, Prsa K, Huang P, Omrani AA, Zivkovic I, Bartkowiak M, et al. Electric-field-induced skyrmion distortion and giant lattice rotation in the magnetoelectric insulator Cu2OSeO3. Phys Rev Lett. 2014;113:107203.10.1103/PhysRevLett.113.107203Search in Google Scholar

[154] White JS, Zivkovic I, Kruchkov AJ, Bartkowiak M, Magrez A, Ronnow HM. Electric-field-driven topological phase switching and skyrmion-lattice metastability in magnetoelectric Cu2OSeO3. Phys Rev Appl. 2018;10:014021.10.1103/PhysRevApplied.10.014021Search in Google Scholar

[155] Pocha R, Johrendt D, Pöttgen R. Electronic and structural instabilities in GaV4S8 and GaMo4S8. Chem Mater. 2000;12:2882.10.1021/cm001099bSearch in Google Scholar

[156] Brasen D, Vandenberg JM, Robbins M, Willens RH, Reed WA, Sherwood RC, et al. Magnetic and crystallographic properties of spinels of the type AxB2S4 where A = Al, Ga, and B = Mo, V, Cr. J Solid State Chem. 1975;13:298.10.1016/0022-4596(75)90141-3Search in Google Scholar

[157] Haeuseler H, Reil S, Elitok E. Structural investigations in the system Ga0.5V2S4–Ga0.5V2Se4. Int J Inorg Mater. 2001;3:409.10.1016/S1466-6049(01)00018-6Search in Google Scholar

[158] Sahoo Y, Rstogi AK. Evidence of hopping conduction in the V4-cluster compound GaV4S8. J Phys: Condens Matter. 1993;5:5953.10.1088/0953-8984/5/32/023Search in Google Scholar

[159] Yadev CS, Nigam AK, Rastogi AK. Thermodynamic properties of ferromagnetic Mott-insulator GaV4S8. Physica B. 2008;403:1474.10.1016/j.physb.2007.10.172Search in Google Scholar

[160] Nakamura H, Ikeno R, Motoyama G, Kohara T, Kajinami Y, Tabata Y. Low-field multi-step magnetization of GaV4S8 single crystal. J Phys: Conf Ser. 2009;145:012077.10.1088/1742-6596/145/1/012077Search in Google Scholar

[161] Bichler D, Johrendt D. Interplay of Magnetism and Bonding in GaV4–xCrxSe8. Chem Mater. 2011;23:3014.10.1021/cm200776vSearch in Google Scholar

[162] Ehlers D, Stasinopoulos I, Tsurkan V, Krug von Nidda H-A, Fehér T, Leonov A, et al. Skyrmion dynamics under uniaxial anisotropy. Phys Rev B. 2016;94:014406.10.1103/PhysRevB.94.014406Search in Google Scholar

[163] Ruff E, Widmann S, Lunkenheimer P, Tsurkan V, Bordács S, Kézsmarki I, et al. Multiferroicity and skyrmions carrying electric polarization in GaV4S8. Sci Adv. 2015;10:e1500916.10.1126/sciadv.1500916Search in Google Scholar

[164] Zhang JT, Wang JL, Yang XQ, Xia WS, Lu XM, Zhu JS. Magnetic properties and spin-driven ferroelectricity in multiferroic skyrmion host GaV4S8. Phys Rev B. 2017;95:085136.10.1103/PhysRevB.95.085136Search in Google Scholar

[165] Meunier PG, Bertaud M, Galy J. Cristallochimie du sé1énium(+IV). I. VSe2O6, une structure à trois chaînes parallé1es (VO5)n6n- indépendantes pontées par des groupements (Se2O)6+. Acta Crystallogr Sect B. 1974;30:2834.10.1107/S0567740874008260Search in Google Scholar

[166] Trombe J-C, Gleizes A, Galy J, Renard J-P, Journaux Y, Verdaguer M. Structure and magnetic properties of vanadyl chins crystal structure of VOSeO3 and comparative magnetic study of VOSeO3 and VOSe2O5. Nouv J Chim. 1987;11:321.Search in Google Scholar

[167] Kim S-H, Halasyamani PS, Melot BC, Seshadri R, Green MA, Sefat AS, et al. Experimental and computational investigation of the polar ferrimagnet VOSe2O5. Chem Mater. 2010;22:5047.10.1021/cm1011839Search in Google Scholar

[168] Kurumaji T. Unpublished.Search in Google Scholar

[169] Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat Phys. 2011;7:713.10.1038/nphys2045Search in Google Scholar

[170] Romming N, Hanneken C, Menzel M, Bickel JE, Wolter B, von Bergmann K, et al. Writing and deleting single magnetic skyrmions. Science. 2013;341:636.10.1126/science.1240573Search in Google Scholar

[171] Shiba H. Dipole-dipole interaction as a possible origin of incommensurate magnetic structures in triangular antiferromagnets. Solid State Commun. 1982;41:511.10.1016/0038-1098(82)90188-0Search in Google Scholar

[172] Fujita M, Nakanishi T, Machida K. Triple-vortex-lattice magnetic structures of itinerant-fermion systems on a triangular lattice. Phys Rev B. 1992;45:2190.10.1103/PhysRevB.45.2190Search in Google Scholar PubMed

[173] Gekht RS. Magnetic states and phase transitions in frustrated triangular-lattice antiferromagnets. Usp Fiz Nauk. 1989;159:261.10.3367/UFNr.0159.198910b.0261Search in Google Scholar

[174] Kamiya Y, Batista C. Magnetic vortex crystals in frustrated Mott insulator. Phys Rev X. 2014;4:011023.10.1103/PhysRevX.4.011023Search in Google Scholar

[175] Seabra L, Sindzingre P, Momoi T, Shannon N. Novel phases in a square-lattice frustrated ferromagnet: 1/3-magnetization plateau, helicoidal spin liquid, and vortex crystal. Phys Rev B. 2016;93:085132.10.1103/PhysRevB.93.085132Search in Google Scholar

[176] Rousochatzakis I, Rössler UK, van Den Brink J, Daghofer M. Kitaev anisotropy induces mesoscopic ℤ2 vortex crystals in frustrated hexagonal antiferromagnets. Phys Rev B. 2016;93:104417.10.1103/PhysRevB.93.104417Search in Google Scholar

[177] Yao X, Dong S. Topological triple-vortex lattice stabilized by mixed frustration in expanded honeycomb Kitaev-Heisenberg model. Sci Rep. 2016;6:26750.10.1038/srep26750Search in Google Scholar

[178] Wang Z, Kamiya Y, Nevidomskyy AH, Batista C. Three-dimensional crystallization of vortex strings in frustrated quantum magnets. Phys Rev Lett. 2015;115:107201.10.1103/PhysRevLett.115.107201Search in Google Scholar

[179] Shapiro SM, Gurewitz E, Parks RD, Kupferberg LC. Multiple-q magnetic structure in CeAl2. Phys Rev Lett. 1979;43:1748.10.1103/PhysRevLett.43.1748Search in Google Scholar

[180] Bak P, Lebech B. “Triple-q ” modulated magnetic structure and critical behavior of Neodymium. Phys Rev Lett. 1978;40:800.10.1103/PhysRevLett.40.800Search in Google Scholar

[181] Lassailly Y, Vettier C, Holtzberg F, Burlet P. Evidence of 4-q magnetic structure in TmS. Physica. 1986;136B:391.10.1016/S0378-4363(86)80098-5Search in Google Scholar

[182] Normile PS, Rotter M, Detlefs C, Jensen J, Canfield PC, Blanco JA. Magnetic ordering in GdNi2B2C revisited by resonant x-ray scattering: Evidence for the double-q model. Phys Rev B. 2013;88:054413.10.1103/PhysRevB.88.054413Search in Google Scholar

[183] Marcus GG, Kim D-J, Tutmaher JA, Rodriguez-Rivera JA, Birk JO, Niederneyer C, et al. Multi-q mesoscale magnetism in CeAuSb2. Phys Rev Lett. 2018;120:097201.10.1103/PhysRevLett.120.097201Search in Google Scholar PubMed

[184] Gao S, Zaharko O, Tsurkan V, Su Y, White JS, Tucker GS, et al. Spiral spin-liquid and the emergence of a vortex-like state in MnSc2S4. Nat Phys. 2017;13:157.10.1038/nphys3914Search in Google Scholar

[185] Ishiwata S, Nakajima T, Kim J-H, Inosov DS, Kanazawa N, White JS, et al. Emergent topological spin structures in a centrosymmetric cubic perovskite. arXiv: 1806.02309.10.1103/PhysRevB.101.134406Search in Google Scholar

[186] Okubo T, Chung S, Kawamura H. Multiple-q states and the skyrmion lattice of the triangular-lattice Heisenberg antiferromagnet under magnetic fields. Phys Rev Lett. 2012;108:017206.10.1103/PhysRevLett.108.017206Search in Google Scholar PubMed

[187] Leonov AO, Mostovoy M. Multiply periodic states and isolated skyrmions in an anisotropic frustrated magnet. Nat Commun. 2015;6:8275.10.1038/ncomms9275Search in Google Scholar PubMed PubMed Central

[188] Lin S-Z, Hayami S. Ginzburg-Landau theory for skyrmions in inversion-symmetric magnets with competing interactions. Phys Rev. 2016;93:064430.10.1103/PhysRevB.93.064430Search in Google Scholar

[189] Hayami S, Lin S-Z, Batista C. Bubble and skyrmion crystals in frustrated magnets with easy-axis anisotropy. Phys Rev B. 2016;93:184413.10.1103/PhysRevB.93.184413Search in Google Scholar

[190] Hayami S, Ozawa R, Motome Y. Effective bilinear-biquadratic model for noncoplanar ordering in itinerant magnets. Phys Rev B. 2017;95:224424.10.1103/PhysRevB.95.224424Search in Google Scholar

[191] Zhang X, Xia J, Zhou Y, Liu X, Zhang H, Ezawa M. Skyrmion dynamics in a frustrated ferromagnetic film and current-induced helicity locking-unlocking transition. Nat Commun. 2017;8:1717.10.1038/s41467-017-01785-wSearch in Google Scholar PubMed PubMed Central

[192] Batista CD, Lin S-Z, Hayami S, Kamiya Y. Frustration and chiral orderings in correlated electron systems. Rep Prog Phys. 2016;79:084504.10.1088/0034-4885/79/8/084504Search in Google Scholar PubMed

[193] Ozawa R, Hayami S, Motome Y. Zero-field skyrmions with a high topological number in itinerant magnets. Phys Rev Lett. 2017;118:147205.10.1103/PhysRevLett.118.147205Search in Google Scholar PubMed

[194] Kurumaji T, Nakajima T, Hirschberger M, Kikkawa A, Yamasaki Y, Sagayama H, et al. Skyrmion lattice with a giant topological Hall effect in a frustrated triangular-lattice magnet. arXiv: 1805.10719.10.1126/science.aau0968Search in Google Scholar PubMed

[195] Kotsanidis PA, Yakinthos JK, Gamari-Seale E. Magnetic properties of the ternary rare earth silicides R2PdSi3 (R = Pr, Nd, Gd, Tb, Dy, Ho, Er, Tm and Y). J Magn Magn Mater. 1990;87:199.10.1016/0304-8853(90)90215-CSearch in Google Scholar

[196] Szytula A, Hofmann M, Penc B, Slaski M, Majumdar S, Sampathkumaran EV, et al. Magnetic behaviour of R2PdSi3 compounds with R = Ce, Nd, Tb–Er. J Magn Magn Mater. 1999;202:365.10.1016/S0304-8853(99)00410-2Search in Google Scholar

[197] Saha SR, Sugawara H, Matsuda TD, Sato H, Malik R, Sampathkumaran EV. Magnetic anisotropy, first-order-like metamagnetic transitions, and large negative magnetoresistance in single-crystal Gd2PdSi3. Phys Rev B. 1999;60:12162.10.1103/PhysRevB.60.12162Search in Google Scholar

[198] Hirschberger M, Nakajima T, Gao S, Peng L, Kikkawa A, Kurumaji T, et al. Skyrmion phase and competing magnetic orders on a breathing kagome lattice. arXiv: 1812.02553.10.1038/s41467-019-13675-4Search in Google Scholar PubMed PubMed Central

Published Online: 2019-09-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 2.6.2024 from https://www.degruyter.com/document/doi/10.1515/psr-2019-0016/html
Scroll to top button