Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 22, 2020

Extraction and bioprocessing with supercritical fluids

  • José Coelho ORCID logo EMAIL logo , Paolo Trucillo , Beatriz Nobre , António Figueiredo Palavra , Roberta Campardelli and Ernesto Reverchon
From the journal Physical Sciences Reviews

Abstract

Supercritical fluid (SCF) technologies have emerged as a real alternative to various natural product extraction processes and pharmaceutical production to obtain micronized particles, coprecipitates, nanocomposite polymer structures and liposomes, in addition to other increasingly larger applications described in literature. In the present work, a brief literature review of the application of supercritical fluid extraction (SFE) is presented. This is evidenced by several publications and patents, contributions from several countries and the increase of industries around the world dedicated to this technique. Next, we aim to focus the analysis of SFE on a review of the literature applied to microalgae as a substitute primitive feedstock due to its high growth rate, valuable biologically active lipophilic substances, and photosynthetic efficiency without competition with food sources or needs of arable lands. We finally discussing an SCF bioprocess with a very new perspective for liposome production focalized on its potential at industrial scale.

References

[1] Reverchon E, De Marco I. Supercritical fluid extraction and fractionation of natural matter. J Supercrit Fluids. 2006;38:146–66.10.1016/j.supflu.2006.03.020Search in Google Scholar

[2] Sovovà H, Stateva RP. Supercritical fluid extraction from vegetable materials. Rev Chem Eng. 2011;27:79–156.10.1515/REVCE.2011.002Search in Google Scholar

[3] Coelho JP, Palavra AF. Supercritical fluid extraction of compounds from spices and herbs. In: Fornari T, Stateva RP, editors. High pressure fluid technology for green food processing. New York Dordrecht London: Cham Heidelberg, 2015:357–96.10.1007/978-3-319-10611-3_10Search in Google Scholar

[4] Stahl E, Schilz W. Extraction with supercritical gases in coupling with thin-layer chromatography - 1. Comm.: instrumentation, operation and applications. Fresenius’ Zeitschrift für Anal Chemie. 1969;280:99–104.10.1007/BF00592408Search in Google Scholar

[5] Scopus [Internet]. 2018. Available at: https://www.scopus.com/. Accessed: 15 Nov 2018.Search in Google Scholar

[6] SITEC [Internet]. Available at: https://www.sitec-hp.ch/en/Willkommen. Accessed: 18 Nov 2018.Search in Google Scholar

[7] JODA [Internet]. Available at: https://www.joda-tech.com/co2-scfe/. Accessed: 19 Nov 2018.Search in Google Scholar

[8] Phasex [Internet]. Available at: http://www.phasex4scf.com/. Accessed: 19 Nov 2018.Search in Google Scholar

[9] EXTRATEX [Internet]. Available at: http://www.extratex-sfi.com/Home. Accessed: 17 Nov 2018.Search in Google Scholar

[10] Eden Labs [Internet]. Available at: https://www.edenlabs.com/. Accessed: 17 Nov 2018.Search in Google Scholar

[11] NATEX [Internet]. Available at: https://www.natex.at/. Accessed: 18 Nov 2018.Search in Google Scholar

[12] UMAX [Internet]. Available at: http://iumax.koreasme.com/eng/company1.html. Accessed: 18 Nov 2018.Search in Google Scholar

[13] Aromtech [Internet]. Available at: http://aromtech.com/en/company/. Accessed: 18 Nov 2018.Search in Google Scholar

[14] Valensa [Internet]. Available at: http://valensa.com/. Accessed: 17 Nov 2018.10.18551/rjoas.2018-04.02Search in Google Scholar

[15] Flavex Naturextrakte [Internet]. Available at: http://www.flavex.com/flavex_home_cms_2_13_13.html. Accessed: 18 Nov 2018.Search in Google Scholar

[16] King JW. Modern supercritical fluid technology for food applications. Annu Rev Food Sci Technol. 2014;5:215–38.10.1146/annurev-food-030713-092447Search in Google Scholar PubMed

[17] Palavra AM, Coelho JP, Barroso JG, Rauter AP, Fareleira JMNA, Mainar A, et al. Supercritical carbon dioxide extraction of bioactive compounds from microalgae and volatile oils from aromatic plants. J Supercrit Fluids. 2011;60:21–7.10.1016/j.supflu.2011.04.017Search in Google Scholar

[18] Michalak I, Dmytryk A, Wieczorek PP, Rój E, Łęska B, Górka B, et al. Supercritical algal extracts: a source of biologically active compounds from nature. J Chem. 2015;2015:1–14.10.1155/2015/597140Search in Google Scholar

[19] Taher H, Al-Zuhair S, Al-Marzouqi AH, Haik Y, Farid M, Tariq S. Supercritical carbon dioxide extraction of microalgae lipid: process optimization and laboratory scale-up. J Supercrit Fluids. 2014;86:57–66.10.1016/j.supflu.2013.11.020Search in Google Scholar

[20] Yellapu SK, Bharti , Kaur R, Kumar RL, Tiwari B, Zhang X, et al. Recent developments of downstream processing for microbial lipids and conversion to biodiesel. Bioresour Technol. 2018;256:515–28.10.1016/j.biortech.2018.01.129Search in Google Scholar PubMed

[21] Mozafari MR. Liposomes: an overview of manufacturing techniques. Cell Mol Biol Lett. 2005;10:711–19.Search in Google Scholar

[22] Darani KK, Mozafari MR. Supercritical fluids technology in bioprocess industries: A review. J Biochem TechJ. 2009;2:144–52.Search in Google Scholar

[23] Trucillo P, Campardelli R, Reverchon E. Production of liposomes loaded with antioxidants using a supercritical CO2 assisted process. Powder Technol. 2018;323:155–62.10.1016/j.powtec.2017.10.007Search in Google Scholar

[24] Herrero M, Ibáñez E. Green processes and sustainability: An overview on the extraction of high added-value products from seaweeds and microalgae. J Supercrit Fluids. 2015;96:211–6.10.1016/j.supflu.2014.09.006Search in Google Scholar

[25] Ranjith Kumar R, Hanumantha Rao P, Arumugam M. Lipid extraction methods from microalgae: a comprehensive review. Front Energy Res. 2015;2:1–9.10.3389/fenrg.2014.00061Search in Google Scholar

[26] Stahl E, Quirin KW, Blagrove RJ. Extraction of seed oils with supercritical carbon dioxide: effect on residual proteins. J Agric Food Chem. 1984;32:938–40.10.1021/jf00124a058Search in Google Scholar

[27] Nakhost Z, Karel M, Krukonis VJ. Non-conventional approaches to food processing in CELSS. I-algal proteins; characterization and process optimization. Adv Sp Res. 1987;7:29–38.10.1016/0273-1177(87)90029-9Search in Google Scholar

[28] Stahl W, Sies H. Bioactivity and protective effects of natural carotenoids. Biochim Biophys Acta - Mol Basis Dis. 2005;1740:101–7.10.1016/j.bbadis.2004.12.006Search in Google Scholar

[29] Gouveia L, Oliveira AC. Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol. 2009;36:269–74.10.1007/s10295-008-0495-6Search in Google Scholar

[30] Brennan L, Owende P. Biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev. 2010;14:557–77.10.1016/j.rser.2009.10.009Search in Google Scholar

[31] Choi KJ, Nakhost Z, Krukonis VJ, Karel M. Supercritical fluid extraction and characterization of lipids from Algae Scenedesmus obliquus. Food Biotechnol. 1987;1:263–81.10.1080/08905438709549669Search in Google Scholar

[32] Subra P, Boissinot P. Supercritical fluid extraction from a brown alga by stagewise pressure increase. J Chromatogr A. 1991;543:413–24.10.1016/S0021-9673(01)95793-0Search in Google Scholar

[33] Viani M, Erazo S, Muller K, Proust P. Estudio de la biomasa y de los pigmentos carotenoides contenidos en una especie nativa de la microalga dunaliella salina sp. Rev agroquímica y Tecnol Aliment. 1989;29:539–47.Search in Google Scholar

[34] Balaban M, O’Keefe S, Polak J. Supercritical fluid extraction of algae. In: King J, List G, editors. Supercritical fluid technology and lipid chemistry. Illinois: AOCS Press, 1995:247–66.Search in Google Scholar

[35] Wisniak J, Korin E. Supercritical fluid extraction of lipids and other materials from algae. In: Cohen Z, Ratledge C, editors. Single cell oils. Champaign, Illinois: AOCS Press, 2005:220–38.Search in Google Scholar

[36] Herrero M, Cifuentes A, Ibañez E. Sub- and supercritical fluid extraction of functional ingredients from different natural sources: plants, food-by-products, algae and microalgae - A review. Food Chem. 2006;98:136–48.10.1016/j.foodchem.2005.05.058Search in Google Scholar

[37] Mendes R. Supercritical fluid extraction of active compounds from algae. In: Martinez J, editor. Supercritical fluid extraction of nutraceuticals and bioactive compounds. Boca Raton: CRC Press, 2007:189–213.10.1201/9781420006513.ch6Search in Google Scholar

[38] Yen HW, Yang SC, Chen CH, Jesisca CJ. Supercritical fluid extraction of valuable compounds from microalgal biomass. Bioresour Technol. 2015;184:291–6.10.1016/j.biortech.2014.10.030Search in Google Scholar PubMed

[39] Harris J, Viner K, Champagne P, Jessop PG. Advances in microalgal lipid extraction for biofuel production: a review. Biofuels, Bioprod Biorefining. 2018;12:1–18.10.1002/bbb.1923Search in Google Scholar

[40] Rammuni MN, Ariyadasa TU, Nimarshana PH, Attalage RA. Comparative assessment on the extraction of carotenoids from microalgal sources: Astaxanthin from H. pluvialis and β-carotene from D. salina. Food Chem. 2019;277:128–34.10.1016/j.foodchem.2018.10.066Search in Google Scholar PubMed

[41] Ruen-Ngam D, Shotipruk A, Pavasant P, Machmudah S, Goto M. Selective extraction of lutein from alcohol treated Chlorella vulgaris by supercritical CO2. Chem Eng Technol. 2012;35:255–60.10.1002/ceat.201100251Search in Google Scholar

[42] Nobre BP, Villalobos F, Barragán BE, Oliveira AC, Batista AP, Marques PAS, et al. A biorefinery from Nannochloropsis sp. microalga - Extraction of oils and pigments. Production of biohydrogen from the leftover biomass. Bioresour Technol. 2013;135:128–36.10.1016/j.biortech.2012.11.084Search in Google Scholar PubMed

[43] Ferreira AF, Ribeiro LA, Batista AP, Marques PAS, Nobre BP, Palavra AMF, et al. A biorefinery from Nannochloropsis sp. microalga - Energy and CO2emission and economic analyses. Bioresour Technol. 2013;138:235–44.10.1016/j.biortech.2013.03.168Search in Google Scholar PubMed

[44] Crampon C, Mouahid A, Toudji SA, Leṕine O, Badens E. Influence of pretreatment on supercritical CO2 extraction from Nannochloropsis oculata. J Supercrit Fluids. 2013;79:337–44.10.1016/j.supflu.2012.12.022Search in Google Scholar

[45] Viner KJ, Champagne P, Jessop PG. Comparison of cell disruption techniques prior to lipid extraction from Scenedesmus sp. slurries for biodiesel production using liquid CO2. Green Chem. 2018;20:4330–8.10.1039/C8GC01695JSearch in Google Scholar

[46] Sánchez-Camargo AP, Pleite N, Mendiola JA, Cifuentes A, Herrero M, Gilbert-López B, et al. Development of green extraction processes for Nannochloropsis gaditana biomass valorization. Electrophoresis. 2018;39:1875–83.10.1002/elps.201800122Search in Google Scholar PubMed

[47] Sovová H. Mathematical model for supercritical fluid extraction of natural products and extraction curve evaluation. J Supercrit Fluids. 2005;33:35–52.10.1016/j.supflu.2004.03.005Search in Google Scholar

[48] Fan XD, Hou Y, Huang XX, Qiu TQ, Jiang JG. Ultrasound-enhanced subcritical CO2 extraction of lutein from Chlorellapyrenoidosa. J Agric Food Chem. 2015;63:4597–05.10.1021/acs.jafc.5b00461Search in Google Scholar

[49] Qv XY, Zhou QF, Jiang JG. Ultrasound-enhanced and microwave-assisted extraction of lipid from Dunaliella tertiolecta and fatty acid profile analysis. J Sep Sci. 2014;37:2991–9.10.1002/jssc.201400458Search in Google Scholar

[50] Parniakov O, Apicella E, Koubaa M, Barba FJ, Grimi N, Lebovka N, et al. Ultrasound-assisted green solvent extraction of high-added value compounds from microalgae Nannochloropsis spp. Bioresour Technol. 2015;198:262–7.10.1016/j.biortech.2015.09.020Search in Google Scholar

[51] Araujo GS, Matos LJ, Fernandes JO, Cartaxo SJM, Gonçalves LRB, Fernandes FAN, et al. Extraction of lipids from microalgae by ultrasound application: prospection of the optimal extraction method. Ultrason Sonochem. 2013;20:95–8.10.1016/j.ultsonch.2012.07.027Search in Google Scholar

[52] Deenu A, Naruenartwongsakul S, Kim SM. Optimization and economic evaluation of ultrasound extraction of lutein from Chlorella vulgaris. Biotechnol Bioprocess Eng. 2013;18:1151–62.10.1007/s12257-013-0213-8Search in Google Scholar

[53] Bermúdez JM, Arenillas A, Menéndez JA, Boffa L, Mantegna S, Binnelo A, et al. Optimization of microalgae oil extraction under ultrasound and microwave irradiation. J Chem Technol Biotechnol. 2014;89:1779–84.10.1002/jctb.4272Search in Google Scholar

[54] Fishman D, Majumdar R, Morello J, Pate R, Yang J. US DOE National Algal Biofuels Technology Roadmap [Internet]. US Dep. Energy, Off. Energy Effic. Renew. Energy, Biomass Program, Coll. Park. Maryl. 2010:1–124. Available at: http://biomass.energy.gov. Accessed: 20 Dec 2018.Search in Google Scholar

[55] Benthin B, Danz H, Hamburger M. Pressurized liquid extraction of medicinal plants. J Chromatogr A. 1999;837:211–19.10.1016/S0021-9673(99)00071-0Search in Google Scholar

[56] Mustafa A, Turner C. Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review. Anal Chim Acta. 2011;703:8–18.10.1016/j.aca.2011.07.018Search in Google Scholar PubMed

[57] Herrero M, Martín-Álvarez PJ, Señoráns FJ, Cifuentes A, Ibáñez E. Optimization of accelerated solvent extraction of antioxidants from Spirulina platensis microalga. Food Chem. 2005;93:417–23.10.1016/j.foodchem.2004.09.037Search in Google Scholar

[58] Herrero M, Sánchez-Camargo AD, Cifuentes A, Ibáñez E. Plants, seaweeds, microalgae and food by-products as natural sources of functional ingredients obtained using pressurized liquid extraction and supercritical fluid extraction. TrAC - Trends Anal Chem. 2015;71:26–38.10.1016/j.trac.2015.01.018Search in Google Scholar

[59] Carabias-Martínez R, Rodríguez-Gonzalo E, Revilla-Ruiz P, Hernández-Méndez J. Pressurized liquid extraction in the analysis of food and biological samples. J Chromatogr A. 2005;1089:1–17.10.1016/j.chroma.2005.06.072Search in Google Scholar

[60] Alonso-Salces RM, Korta E, Barranco A, Berrueta LA, Gallo B, Vicente F. Pressurized liquid extraction for the determination of polyphenols in apple. J Chromatogr A. 2001;933:37–43.10.1016/S0021-9673(01)01212-2Search in Google Scholar

[61] Ramos L, Kristenson EM, Brinkman UA. Current use of pressurised liquid extraction and subcritical water extraction in environmental analysis. J Chromatogr A. 2002;975:3–29.10.1016/S0021-9673(02)01336-5Search in Google Scholar

[62] Santos DT, Albuquerque CL, Meireles MA. Antioxidant dye and pigment extraction using a homemade pressurized solvent extraction system. Procedia Food Sci. 2011;1:1581–8.10.1016/j.profoo.2011.09.234Search in Google Scholar

[63] Mendiola JA, Herrero M, Cifuentes A, Ibañez E. Use of compressed fluids for sample preparation: Food applications. J Chromatogr A. 2007;1152:234–46.10.1016/j.chroma.2007.02.046Search in Google Scholar PubMed

[64] Wu H, Chen M, Fan Y, Elsebaei F, Zhu Y. Determination of rutin and quercetin in Chinese herbal medicine by ionic liquid-based pressurized liquid extraction-liquid chromatography- chemiluminescence detection. Talanta. 2012;88:222–9.10.1016/j.talanta.2011.10.036Search in Google Scholar PubMed

[65] Chang YQ, Tan SN, Yong JW, Ge L. Surfactant-assisted pressurized liquid extraction for determination of flavonoids from Costus speciosus by micellar electrokinetic chromatography. J Sep Sci. 2011;34:462–8.10.1002/jssc.201000766Search in Google Scholar PubMed

[66] Bermejo DV, Luna P, Manic MS, Najdanovic-Visak V, Reglero G, Fornari T. Extraction of caffeine from natural matter using a bio-renewable agrochemical solvent. Food Bioprod Process. 2013;91:303–9.10.1016/j.fbp.2012.11.007Search in Google Scholar

[67] Pena-Pereira F, Namieśnik J. Ionic liquids and deep eutectic mixtures: Sustainable solvents for extraction processes. ChemSusChem. 2014;7:1784–800.10.1002/cssc.201301192Search in Google Scholar PubMed

[68] Seabra IJ, Braga ME, Batista MT, De Sousa HC. Effect of solvent (CO2/ethanol/H2O) on the fractionated enhanced solvent extraction of anthocyanins from elderberry pomace. J Supercrit Fluids. 2010;54:145–52.10.1016/j.supflu.2010.05.001Search in Google Scholar

[69] Tang Y, Zhang Y, Rosenberg JN, Sharif N, Betenbaugh NJ, Wang F. Efficient lipid extraction and quantification of fatty acids from algal biomass using accelerated solvent extraction. RSC Advances. 2016;6:29127–37.10.1039/C5RA23519GSearch in Google Scholar

[70] Golmakani MT, Mendiola JA, Rezaei K, Ibáñez E. Pressurized limonene as an alternative bio-solvent for the extraction of lipids from marine microorganisms. J Supercrit Fluids. 2014;92:1–7.10.1016/j.supflu.2014.05.001Search in Google Scholar

[71] Zheng G, Guo L, Wang S, Li C, Ruo W. Purification of extracted fatty acids from the microalgae Spirulina. J Am Oil Chem Soc. 2012;89:561–66.10.1007/s11746-011-1956-zSearch in Google Scholar

[72] Plaza M, Santoyo S, Jaime L, Avalo B, Cifuentes A, Reglero G, et al. Comprehensive characterization of the functional activities of pressurized liquid and ultrasound-assisted extracts from Chlorella vulgaris. LWT - Food Science and Technology. 2012;46:245–53.10.1016/j.lwt.2011.09.024Search in Google Scholar

[73] Cha KH, Lee HJ, Koo SY, Song D, Pan C. Optimization of Pressurized Liquid Extraction of Carotenoids and Chlorophylls from Chlorella vulgaris. J Agric Food Chem. 2010;58:793–7.10.1021/jf902628jSearch in Google Scholar PubMed

[74] Goto M, Kanda H, Wahyudiono, Machmudah S. Extraction of carotenoids and lipids from algae by supercritical CO2 and subcritical dimethyl ether. J Supercrit Fluids. 2015;96:245–51.10.1016/j.supflu.2014.10.003Search in Google Scholar

[75] Guedes AC, Gião MS, Matias AA, Nunes AVM, Pintado ME, Duarte CMM, et al. Supercritical fluid extraction of carotenoids and chlorophylls a, b and c, from a wild strain of Scenedesmus obliquus for use in food processing. J Food Eng. 2013;116:478–82.10.1016/j.jfoodeng.2012.12.015Search in Google Scholar

[76] Pan J, Muppaneni T, Sun Y, Reddy HK, Fu J, Lu X, et al. Microwave-assisted extraction of lipids from microalgae using an ionic liquid solvent [BMIM][HSO4]. Fuel. 178:49–55.10.1016/j.fuel.2016.03.037Search in Google Scholar

[77] Bangham AD. Liposomes: Realizing their promise. Hosp Pract (Off Ed). 1992;27:51–62.10.1080/21548331.1992.11705537Search in Google Scholar PubMed

[78] Bangham AD. Liposomes: the Babraham connection. Chem Phys Lipids. 1993;64:275–85.10.1016/0009-3084(93)90071-ASearch in Google Scholar

[79] Bangham AD. Surrogate cells or trojan horses. The discovery of liposomes. BioEssays. 1995;17:1081–8.10.1002/bies.950171213Search in Google Scholar PubMed

[80] Li R, Deng L, Cai Z, Zhang S, Wang K, Li L, et al. Liposomes coated with thiolated chitosan as drug carriers of curcumin. Mater Sci Eng C. 2017;80:156–64.10.1016/j.msec.2017.05.136Search in Google Scholar PubMed

[81] Hussain A, Singh S, Sharma D, Webster TJ, Shafaat K, Faruk A. Elastic liposomes as novel carriers: Recent advances in drug delivery. Int J Nanomedicine. 2017;12:5087–108.10.2147/IJN.S138267Search in Google Scholar PubMed PubMed Central

[82] Meissner JM, Toporkiewicz M, Matusewicz L, Machnicka B. Liposomes as non-viral carriers for genetic drugs. Postep Hig Med Dosw. 2016;70:200–9.10.5604/17322693.1197371Search in Google Scholar PubMed

[83] Xu X, Burgess DJ. Liposomes as carriers for controlled drug delivery. In: Wright JC, Burgess DJ, editors. Long acting injections and implants. Advances in delivery science and technology. Boston, MA: Springer, Boston, MA, 2012:195–220.Search in Google Scholar

[84] Tamm LK. Special issue on liposomes, exosomes, and virosomes. Biophys J. 2017;113:E01–E01.10.1016/j.bpj.2017.08.002Search in Google Scholar PubMed PubMed Central

[85] Antimisiaris S, Mourtas S, Papadia K. Targeted si-RNA with liposomes and exosomes (extracellular vesicles): how to unlock the potential. Int J Pharm. 2017;525:293–312.10.1016/j.ijpharm.2017.01.056Search in Google Scholar PubMed

[86] Sato YT, Umezaki K, Sawada S, Mukai SA, Sasaki Y, Harada N, et al. Engineering hybrid exosomes by membrane fusion with liposomes. Sci Rep. 2016;6:1–11.10.1038/srep21933Search in Google Scholar PubMed PubMed Central

[87] Du B, Han S, Li H, Zhao F, Su X, Cao X, et al. Multi-functional liposomes showing radiofrequency-triggered release and magnetic resonance imaging for tumor multi-mechanism therapy. Nanoscale. 2015;7:5411–26.10.1039/C4NR04257CSearch in Google Scholar

[88] Oerlemans C, Deckers R, Storm G, Hennink WE, Nijsen JF. Evidence for a new mechanism behind HIFU-triggered release from liposomes. J Control Release. 2013;168:327–33.10.1016/j.jconrel.2013.03.019Search in Google Scholar PubMed

[89] Evjen TJ, Hupfeld S, Barnert S, Fossheim S, Schubert R, Brandl M. Physicochemical characterization of liposomes after ultrasound exposure - Mechanisms of drug release. J Pharm Biomed Anal. 2013;78–79C:118–22.10.1016/j.jpba.2013.01.043Search in Google Scholar

[90] Paasonen L, Sipilä T, Subrizi A, Laurinmäki P, Butcher SJ, Rappolt M, et al. Gold-embedded photosensitive liposomes for drug delivery: triggering mechanism and intracellular release. J Control Release. 2010;147:136–43.10.1016/j.jconrel.2010.07.095Search in Google Scholar

[91] Xia Y, Fang M, Dong J, Xu C, Liao Z, Ning P, et al. pH sensitive liposomes delivering tariquidar and doxorubicin to overcome multidrug resistance of resistant ovarian cancer cells. Colloids Surfaces B Biointerfaces. 2018;B 570:514–20.10.1016/j.colsurfb.2018.06.055Search in Google Scholar

[92] Gouveia VM, Lopes-De-Araújo J, Costa Lima SA, Nunes C, Reis S. Hyaluronic acid-conjugated pH-sensitive liposomes for targeted delivery of prednisolone on rheumatoid arthritis therapy. Nanomedicine. 2018;13:1037–49.10.2217/nnm-2017-0377Search in Google Scholar

[93] Yurdakul PA, EÜ T, Bölümü M, EÜ T, Bölümü M. Structure and classification of liposomes. Tekst Ve Konfeksiyon. 2007;17:243–7.Search in Google Scholar

[94] Araki R, Matsuzaki T, Nakamura A, Nakatani D, Sanada S, Fu HY, et al. Development of a novel one-step production system for injectable liposomes under GMP. Pharm Dev Technol. 2018;23:602–7.10.1080/10837450.2017.1290106Search in Google Scholar

[95] Zizzari A, Bianco M, Carbone L, Perrone E, Amato F, Maruccio G, et al. Continuous-flow production of injectable liposomes via a microfluidic approach. Materials (Basel). 2017;10:1–13.10.3390/ma10121411Search in Google Scholar

[96] Laouini A, Charcosset C, Fessi H, Holdich RG, Vladisavljevic GT. Preparation of liposomes: a novel application of microengineered membranes–from laboratory scale to large scale. Colloids Surf B Biointerfaces. 2013;112:272–8.10.1016/j.colsurfb.2013.07.066Search in Google Scholar

[97] Balbino TA, Aoki NT, Gasperini AA, Oliveira CLP, Azzoni AR, Cavalcanti LP, et al. Continuous flow production of cationic liposomes at high lipid concentration in microfluidic devices for gene delivery applications. Chem Eng J. 2013;226:423–33.10.1016/j.cej.2013.04.053Search in Google Scholar

[98] Yu B, Lee RJ, Lee LJ. Microfluidic methods for production of liposomes. Methods Enzymol. 2009;465:129–41.10.1016/S0076-6879(09)65007-2Search in Google Scholar

[99] Wagner A, Platzgummer M, Kreismayr G, Quendler H, Stiegler G, Ferko B, et al. GMP production of liposomes - A new industrial approach. J Liposome Res. 2006;16:311–19.10.1080/08982100600851086Search in Google Scholar PubMed

[100] Kukuchi H, Yamauchi H, Hirota S. A spray-drying method for mass production of liposomes. Chem Pharm Bull (Tokyo). 1991;39:1522–7.10.1248/cpb.39.1522Search in Google Scholar

[101] Vemuri S, Yu CD, Wangsatorntanakun V, Roosdorp N. Large-scale production of liposomes by a microfluidizer. Drug Dev Ind Pharm. 1990;16:2243–56.10.3109/03639049009043797Search in Google Scholar

[102] Maherani B, Arab-Tehrany E, Mozafari MR, Gaiani C, Linder M. Liposomes: a review of manufacturing techniques and targeting strategies. Curr Nanosci. 2011;7:436–52.10.2174/157341311795542453Search in Google Scholar

[103] Campardelli R, Espirito Santo I, Albuquerque EC, De Melo SV, Della Porta G, Reverchon E. Efficient encapsulation of proteins in submicro liposomes using a supercritical fluid assisted continuous process. J Supercrit Fluids. 2016;107:163–9.10.1016/j.supflu.2015.09.007Search in Google Scholar

[104] Santo IE, Campardelli R, Albuquerque EC, Vieira De Melo SA, Reverchon E, Della PG. Liposomes size engineering by combination of ethanol injection and supercritical processing. J Pharm Sci. 2015;104:3842–50.10.1002/jps.24595Search in Google Scholar PubMed

[105] Santo IE, Campardelli R, Albuquerque EC, de Melo SV, Della Porta G, Reverchon E. Liposomes preparation using a supercritical fluid assisted continuous process. Chem Eng J. 2014;249:153–9.10.1016/j.cej.2014.03.099Search in Google Scholar

[106] Campardelli R, Trucillo P, Reverchon E. Supercritical assisted process for the efficient production of liposomes containing antibiotics for ocular delivery. J CO2 Util. 2018;25:235–41.10.1016/j.jcou.2018.04.006Search in Google Scholar

[107] Trucillo P, Campardelli R, Reverchon E. Supercritical CO2assisted liposomes formation: optimization of the lipidic layer for an efficient hydrophilic drug loading. J CO2 Util. 2017;18:181–8.10.1016/j.jcou.2017.02.001Search in Google Scholar

[108] Campardelli R, Trucillo P, Reverchon E. A supercritical fluid-based process for the production of fluorescein-loaded liposomes. Ind Eng Chem Res. 2016;55:5359–65.10.1021/acs.iecr.5b04885Search in Google Scholar

Published Online: 2020-04-22

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 9.6.2024 from https://www.degruyter.com/document/doi/10.1515/psr-2018-0069/html
Scroll to top button