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Abstract
We are presenting the development contributions of the last two years to our Python open-

source Quality Estimation tool, a tool that can function in both experiment-mode and online
web-service mode. The latest version provides a new MT interface, which communicates with
SMT and rule-based translation engines and supports on-the-fly sentence selection. Addition-
ally, we present an improved Machine Learning interface allowing more efficient communica-
tion with several state-of-the-art toolkits. Additions also include a more informative training
process, a Python re-implementation of QuEst baseline features, a new LM toolkit integration,
an additional PCFG parser and alignments of syntactic nodes.

1. Introduction
After almost a decade of research, evaluating Machine Translation (MT) remains

an active topic. Through the years, a multitude of methods have been researched, in
a continuous effort to assess whether the MT output adheres to the users expecta-
tions. For a significant amount of time, ranking has been the dominant approach for
MT equality, since it seems a relatively robust way to circumvent the subjectivity of
perceiving quality (Callison-Burch et al., 2007, 2008; Bojar et al., 2015, etc.).

Many automatic metrics have been developed in order to measure MT quality by
comparing it to the reference translations (e.g. Papineni et al., 2002), facing the limi-
tation that the reference represents usually only one of the possible translations. As
a more recent development, Quality Estimation (QE) has shifted the focus from the
reference translations towards the translations themselves, by identifying qualitative
features that can be indications of a good translation.
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The work presented here is a programming effort to ease research in both aspects
sketched above. We present the latest version of Qualitative (Avramidis et al., 2014),
a QE tool that processes translations as a ranking, in an attempt to learn better the
human preferences. At the same time, extensive engineering takes place to devise
new features by enabling various natural language processing (NLP) methods.

The version of the toolkit presented here is a result of more than two years of devel-
opment and offers a data processing unit, a powerful feature generation engine with
feature selection, a machine learning interface and a collection of evaluation metrics.
Additionally, it can perform hybrid machine translation by communicating with sev-
eral MT engines and combining their output on a sentence level. The development
takes place in GitHub 1 and further contributions are welcome.

2. Related work

Few pieces of software on QE have been released with an open source. QuEst (Spe-
cia et al., 2013), previously also known as Harvest, is the most established one, as it has
been used as a baseline for the yearly WMT Shared Tasks on QE (e.g. Callison-Burch
et al., 2012). The main difference with our approach is that it uses two different pieces
of software for feature generation and machine learning, where the former is written
in Java and the latter in Python. Additionally, many parts of it operate only in batch
mode. For these two reasons, in contrast to our software, operating in a real-usage sce-
nario (e.g. server mode) with sentence-level requests is non-trivial. Its latest version,
QuEst++ (Specia et al., 2015), additionally supports word-level and document-level
QE.

Some most recent software focuses on an another level of granularity, namely
word-level QE. WceLig (Servan et al., 2015) is a tool which introduces support for
various target languages, handles glass-box, lexical, syntactic and semantic features
for estimating confidence at word-level. Marmot (Logacheva et al., 2016), focuses
on word-level and phrase-level QE and is written in Python. It offers a modular ar-
chitecture, users can easily add or implement new parsers, data representations and
features that fit their particular use cases, whereas it can be easily plugged into a stan-
dard experiment workflow.

In contrast to most of the above software, the approach of the software presented
here focuses on a double-usage scenario for both scientific experimentation and real-
usage. Feature generators and machine learning support both batch mode and sentence-
level mode, whereas the functionality can be easily plugged into web-services and
other software that requires QE functionality. Furthermore, it offers a dynamic pipeline
architecture, including wrappers for NLP tools written in several programming lan-
guages.

1The source code, along with basic documentation for installation, execution and further development
can be found at https://github.com/lefterav/qualitative
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3. Design

The software has been developed based on a multilateral design that serves the
operational requirements sketched above. This section includes the main architecture
of the pipeline and the interoperability features with embedded software.

3.1. Architecture

The software consists of:
• a data processing unit able to read XML and text-based input,
• a pre-processing stage that performs the necessary string normalisation process

for the languages at hand,
• a machine translation module, which communicates with external MT systems

and handles sentence-level system combination,
• a feature generation engine that produces hundreds of dynamic black-box and

glass-box features, by harvesting the output of embedded open-source NLP
tools,

• a machine learning interface that embeds widely-used ML libraries, includ-
ing data conversion to their internal structures. Additionally there are pairwise
wrappers that allow the usage of binary classifiers for ranking and

• an evaluation package that includes several metrics for measuring ranking and
translation performance.

3.2. Interoperability

A detailed diagram of the architecture can be seen in Figure 1. Additionally to the
core architecture which is seen in the horizontal axis, the system integrates external
components developed in various programming languages. These 25 components are
integrated using 9 different approaches, including native Python libraries, sockets to
the Java Virtual Machine (JVM), wrappers, system pipes and remote service APIs (e.g.
JSON, REST).

The majority of these tools are seemlessly integrated and available as callable Python
objects throughout the entire pipeline. For instance, Truecasing (Wang, Wei and Knight,
Kevin and Marcu, 2006) is done with the original Moses scripts via Perl pipes, fea-
tures from PCFG parsing are collected through a JVM socket from Berkeley Parser
(Petrov et al., 2006), whereas Machine Translation is fetched from Moses (Koehn et al.,
2006) via XML-RPC. More details on the interoperability interfaces can be found in
Avramidis (2016).
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Figure 1. Full diagram of the components that have been integrated into the application.
Source: (Avramidis, 2016)
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<?xml version="1.0" encoding="utf-8"?> <jcml>
<judgedsentence langsrc="en" id="11" langtgt="de">
<src>Go to System Preferences</src>
<tgt system="pilot_0" berkley-loglikelihood="-84.9089431054"

berkeley-n="19" rank="2">Gehen Sie zu Systemeinstellungen</tgt>
<tgt system="pilot_2" berkley-loglikelihood="-74.6569913407"

berkeley-n="5" rank="3">Sprung zu Systemeinstellungen</tgt>
<ref berkley-loglikelihood="-83.3551531463"

berkeley-n="18" >Gehen Sie zu Systemeinstellungen</ref>
</judgedsentence>

</jcml>

Figure 2. Sample JCML file, containing a source sentence, the reference and two
translations with Berkeley Parser scores and human ranks

4. New functionality

For the generic functionality, including instructions on how to run the tool, the
reader is referred to (Avramidis et al., 2014) and for the underlying methodology
to Avramidis (2012a). Here, we outline the functionality introduced in the latest ver-
sion.

4.1. Data Processing

The majority for the read/write processing of the software is done in a special
XML format, the JCML format, which stands for Judged Corpus Markup Language. It is
a simple XML format that has been devised so that it allows dynamic feature lists but
at the same time it can be inspected manually. The latest improvements include in-
cremental reading and writing, a feature which solved many memory-related issues,
given the big volume of some data sets. There are also several scripts that allow the
conversion from and to other common formats. A sample of such a file can be seen in
Figure 2.

4.2. Machine translation

One of the basic applications of the automatic ranking is the possibility to com-
bine differen systems on the sentence level. Such a method is often referred to as a
case of hybrid MT when it combines different types of systems (e.g. statistical and
rule-based). This version offers a new package that handles the communication with
translation engines by connecting to remote APIs. It currently supports Moses (Koehn
et al., 2006), Lucy (Alonso and Thurmair, 2003), as well as MT-Monkey (Tamchyna et
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al., 2013) for accessing deployed server installations. The communication with the
engines allows fetching translations and glass-box features (translation probability,
unknown words etc.), when these are made available by the engine.

Additionally, some techniques of hybridisation are included, such as serial post-
editing of a rule-based system with a statistical system (SMT) (as implemented for
Avramidis et al., 2015), partial translation of terminology from the rule-based system
with SMT, and SMT including an alternative decoding path from WSD disambigua-
tion (Avramidis et al., 2016).

The machine translation interface, apart from being a step of the QE pipeline, it
can also act as a standalone application, or as a web-service pluggable via XML-RPC.

4.3. Feature Generation

The modular interface of the feature generation pipeline allows easy plugging of
new Feature Generators. These are classes which process the text of the sentences and
return numerical values that describe some aspects of quality. The existing function-
ality, presented in the past, includes usage of language models, PCFG parsing, cross-
target BLEU and METEOR (Banerjee and Lavie, 2005), language correction, IBM-1
probabilities, as well as token counts.

The new version offers additionally:
• word alignment based on the IBM-1 model (Brown et al., 1993), allowing to de-

rive the count of aligned PCFG tree spans, nodes and leaves between the source
and the target sentence. Whereas this generates hundreds of sparse features, the
most prominent of them are expected to help isolate systems that fail to translate
grammatically important chunks of the source,

• relative and absolute position of every PCFG tag within the sentence, with the
goal to capture wrong positioning of grammatical chunks in languages where
this is important (e.g. German),

• a re-implementation of the WMT baseline features (Callison-Burch et al., 2012)
in Python, including the average number of translations per source word in the
segment as given by IBM-1 model with probabilities thresholded in different
ways, and the average number of occurrences of the target word within the tar-
get segment,

• integration of KenLM (Heafield, 2011) via its Python library, which allows effi-
cient of loading compiled language models, removing the previous requirement
for an external LM server,

• a wrapper for the PCFG parser BitPar (Schmid, 2004), as an alternative for Berke-
ley Parser (integration based on van Cranenburgh, 2010; van Cranenburgh et al.,
2010),

• a wrapper for the TreeTagger (Schmid, 1994), which acquires the necessary POS
tags for Hjerson (Popović, 2011)
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• a connector to the XML-RPC of MoodWSD (Weissenborn et al., 2015), an exter-
nal word sense disambiguator

4.4. Machine Learning

A new more transparent and modular internal interface allows for integration of
several external machine learning (ML) toolkits. The integration of every ML toolkit
should extend an abstract class named Ranker. This should implement some basic
functions, such as training on a batch of sentences, or producing the ranking given
one source sentence and its translations. The implementation of every ML toolkit
is also responsible of converting the given sentence data and its features to the data
structures understood by the toolkit. Binary classifiers, where available, are wrapped
to provide a ranker’s functionality.

Currently the following toolkits and learning methods are supported:
• Orange (Demšar et al., 2004) with k-Nearest Neighbours, Logistic Regression

with Stepwise Feature Set Selection or L2-regularisation and C45 trees,
• SciKit Learn (Pedregosa et al., 2011) with Support Vector Machines with Grid

parameter optimisation over cross-validation, Decision Trees, Gaussian Naïve
Bayes, Linear and Quadratic Discriminant Analysis, Bagging, Adaptive Boost-
ing and Gradient Boosting and feature selection methods such as Recursive Fea-
ture Elimination with Cross-Validation

• MLpython2 with listwise ranking methods, such as ListNet (Cao et al., 2007).

4.5. Evaluation

The evaluation phase is the last part of the experiment process, as the trained mod-
els are tested against gold-sets and need to be evaluated accordingly. The evalua-
tion phase offers a wide range of ranking metrics, with latest additions the inverse-
weighed Kendall’s τ and its theoretical p-values and confidence intervals. Finally,
the evaluation phase includes automatic metric scores (BLEU, METEOR, TER, WER,
Hjerson) for the performance of the system combination and its components against
the reference translation.

4.6. Experimental management

Similarly to the previous version, experimenting over the training of new models is
organised by using the ExpSuite (Rückstieß and Schmidhuber, 2011). This allows the
exhaustive exploration of several experimental settings in parallel. We have extended
the functionality to provide out-of-the-box parellelised cross-validation for any given
dataset. Additionally, the split training and test-sets of the cross-validation are cached

2MLpython is described at http://www.dmi.usherb.ca/~larocheh/mlpython/
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in a common directory, so that they can be re-used for different experimental settings
which require the same original dataset. The experiments can be resumed from the
step they were left, in case of any unexpected interruption.

The experiment pipeline keeps a structured log of every step of the experiment,
which may include the results of the evaluation, but also details about the machine
learning process (e.g. the beta coefficients of a log-linear model, or weights of a lin-
ear model). The trained models are also dumped in external files, so that they can
be re-used later. After all iterations and cross-validation folds of the experiment are
concluded, a script allows for creating a comma-separated table that compares all ex-
perimental settings against a desired set of metrics.

5. Further work

There are often upgrades to the integrated external software that fix issues or pro-
vide additional functionality. Although sticking to older tested versions usually suf-
fices, further work may include adaptations for newer versions of this software. In
this direction, adjusting the current Python 2.7 code to support Python 3 would be
useful.

Whereas the interface for machine learning over ranking has been re-developed as
outlined above, most parts of the pipeline have been used for other types of quality
estimation, such as quality score prediction for single outputs (Avramidis, 2012b) and
error prediction (Avramidis and Popovic, 2014). Small extensions to provide abstract
classification and regression interfaces for all ML toolkits would be desirable.

We are also aware that the glass-box feature integration requires extensions to sup-
port most MT-engines, although this faces the barrier that not all glass-box features
are easily available.

Finally, big-amounts of data, despite the huge potential for machine learning, cre-
ate bottlenecks in case they must be analyzed or processed selectively. We plan to
support more effective data types (e.g. JSON). A possible solution would include the
implementation of smart databases and other data-effective techniques.
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