Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 7, 2022

Assembled hybrid films based on sepiolite, phytic acid, polyaspartic acid and Fe3+ for flame-retardant cotton fabric

  • Tong Xu , Di Qian , Yelei Hu , Yuanzhao Zhu , Yi Zhong , Linping Zhang , Hong Xu EMAIL logo and Zhiping Mao EMAIL logo

Abstract

To impart durable flame retardant property to cotton fabric, a kind of multilayered hybrid film based on environmentally friendly phytic acid, sepiolite, polyaspartic acid, and Fe3+ were deposited on the surface of cotton fabric by layer-by-layer and spraying method to form a dense protective layer. Compared with cotton fabric, hybrid film coated cotton showed excellent flame retardant property and low fire hazard, which can be demonstrated by vertical flame test, limiting oxygen index (LOI) and cone calorimeter test. After-flame time and after-glow time of hybrid film coated cotton is 1 s and 1 s, respectively. LOI value of hybrid film coated cotton increased by 44.4% compared with control sample. Cone calorimeter test revealed a total heat release rate reduction of 52.6% and peak heat release rate reduction of 73.6% for hybrid film coated cotton fabric. This work demonstrates that the hybrid film composed of phytic acid, sepiolite, polyaspartic acid, and Fe3+ could improve the durable flame retardant property of cotton fabric.


Corresponding authors: Hong Xu, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai, 201620, P. R. China, E-mail: ; and Zhiping Mao, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai, 201620, P. R. China; National Dyeing and Finishing Engineering Technology Research Center, Donghua University, No. 2999, North Renmin Road, Songjiang District, Shanghai 201620, P. R. China; and National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Taian, Shandong Province, 271000, P. R. China, E-mail:

Funding source: the National Key R & D Program of China

Award Identifier / Grant number: 2018YFC1801500

Funding source: the Fundamental Research Funds for the Central Universities

Award Identifier / Grant number: 2232020G-04

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The present work is supported financially by the National Key R & D Program of China (no. 2018YFC1801500) and the Fundamental Research Funds for the Central Universities (no. 2232020G-04).

  3. Conflict of interest statement: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

1. Zhu, F. L., Xin, Q., Feng, Q. Q., Liu, R. T., Li, K. J. Influence of nano-silica on flame resistance behavior of intumescent flame retardant cellulosic textiles: remarkable synergistic effect? Surf. Coating. Technol. 2016, 294, 90–94.10.1016/j.surfcoat.2016.03.059Search in Google Scholar

2. Alongi, J., Cuttica, F., Carosio, F., Bourbigot, S. How much the fabric grammage may affect cotton combustion? Cellulose 2015, 22, 3477–3489; https://doi.org/10.1007/s10570-015-0717-9.Search in Google Scholar

3. Chen, S. S., Li, X., Li, Y., Sun, J. Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric. ACS Nano 2015, 1, 1–7; https://doi.org/10.1021/acsnano.5b00121.Search in Google Scholar PubMed

4. Abdelrahman, M. S., Khattab, T. A. Development of one‐step water‐repellent and flame‐retardant finishes for cotton. Chemistry Select 2019, 4, 3811–3816; https://doi.org/10.1002/slct.201900048.Search in Google Scholar

5. Atakan, R., Bical, A., Celebi, E., Ozcan, G., Soydan, N., Sarac, A. S. Development of a flame retardant chemical for finishing of cotton, polyester, and CO/PET blends. J. Ind. Textil. 2018, 49, 141–161; https://doi.org/10.1177/1528083718772303.Search in Google Scholar

6. Chen, T., Hong, J., Peng, C. H., Chen, G., Yuan, C., Xu, Y., Zeng, B., Dai, L. Superhydrophobic and flame retardant cotton modified with DOPO and fluorine-silicon-containing crosslinked polymer. Carbohydr. Polym. 2019, 208, 14–21; https://doi.org/10.1016/j.carbpol.2018.12.023.Search in Google Scholar PubMed

7. Battegazzore, D., Frache, A., Carosio, F. Sustainable and high performing biocomposites with chitosan/sepiolite layer-by-layer nanoengineered interphases. ACS Sustain 2018, 6, 9601–9605; https://doi.org/10.1021/acssuschemeng.8b02907.Search in Google Scholar

8. Ghanadpour, M., Wicklein, B., Carosio, F., Wågberg, L. All-natural and highly flame-resistant freeze-cast foams based on phosphorylated cellulose nanofibrils. Nanoscale 2018, 10, 4085–4095; https://doi.org/10.1039/c7nr09243a.Search in Google Scholar PubMed

9. Pana, Y., Liu, L. X., Cai, W., Hu, Y., Jiang, S., Zhao, H. Effect of layer-by-layer self-assembled sepiolite-based nanocoating on flame retardant and smoke suppressant properties of flexible polyurethane foam. Appl. Clay Sci. 2019, 168, 230–236; https://doi.org/10.1016/j.clay.2018.11.014.Search in Google Scholar

10. Vahabi, H., Michely, L., Moradkhani, G., Akbari, V., Cochez, M., Vagner, C., Renard, E., Saeb, M. R., Langlois, V. Thermal stability and flammability behavior of poly(3-hydroxybutyrate) (PHB) based. Composites. Mater 2019, 12, 1–11; https://doi.org/10.3390/ma12142239.Search in Google Scholar PubMed PubMed Central

11. Castellano, A., Colleoni, C., Iacono, G., Mezzi, A., Plutino, M. R., Malucelli, G., Rosace, G. Synthesis and characterization of a phosphorous/ nitrogen based sol-gel coating as a novel halogen- and formaldehyde-free flame retardant finishing for cotton fabric. Polym. Degrad. Stab. 2019, 162, 148–159; https://doi.org/10.1016/j.polymdegradstab.2019.02.006.Search in Google Scholar

12. Barbalini, M., Bertolla, L., Toušek, J., Malucelli, G. Hybrid silica-phytic acid coatings: effect on the thermal stability and flame retardancy of cotton. Polymers 2019, 11, 1664–1685; https://doi.org/10.3390/polym11101664.Search in Google Scholar PubMed PubMed Central

13. Rehana, M., El-Naggara, M. E., Mashaly, H. M., Wilken, R. Nanocomposites based on chitosan/silver/clay for durable multi-functional properties of cotton fabrics. Carbohydr. Polym. 2018, 182, 29–41; https://doi.org/10.1016/j.carbpol.2017.11.007.Search in Google Scholar PubMed

14. Li, Y. C., Schulz, J., Grunlan, J. C. Polyelectrolyte/nanosilicate thin-film assemblies: influence of pH on growth, mechanical behavior, and flammability. ACS Appl. Mater. Inter. 2009, 1, 2338–2347; https://doi.org/10.1021/am900484q.Search in Google Scholar PubMed

15. Nie, S., Jin, D., Yang, J., Dai, G., Luo, Y. Fabrication of environmentally-benign flame retardant cotton fabrics with hydrophobicity by a facile chemical modification. Cellulose 2019, 26, 5147–5158; https://doi.org/10.1007/s10570-019-02431-y.Search in Google Scholar

16. Li, S. S., Ding, F., Lin, X., Li, Z., Ren, X. Layer-by-Layer self-assembly of organic-inorganic hybrid intumescent flame retardant on cotton fabrics. Fibers Polym. 2019, 20, 538–544; https://doi.org/10.1007/s12221-019-8914-z.Search in Google Scholar

17. Guo, W., Wang, Xin., Huang, J. L., Zhou, Y., Cai, W., Wang, J., Song, L., Hu, Y. Construction of durable flame-retardant and robust superhydrophobic coatings on cotton fabrics for water-oil separation application. Chem. Eng. J. 2020, 398, 125661–125675; https://doi.org/10.1016/j.cej.2020.125661.Search in Google Scholar

18. Ma, Z. Y., Zhang, Z. H., Wang, Y. H. A novel efficient nonflammable coating containing g-C3N4 and intumescent flame retardant fabricated via layer-by-layer assembly on cotton fiber. J. Mater. Sci. 2021, 56, 9678–9691; https://doi.org/10.1007/s10853-021-05877-3.Search in Google Scholar

19. Shukla, A., Sharma, V., Basak, S., Ali, S. W. Sodium lignin sulfonate: a bio-macromolecule for making fire retardant cotton fabric. Cellulose 2019, 26, 8191–8208.10.1007/s10570-019-02668-7Search in Google Scholar

20. Basak, S., Raja, A. S. M., Saxena, S., Patil, P. G. Tannin based polyphenolic bio-macromolecules: creating a new era towards sustainable flame retardancy of polymers. Polym. Degrad. Stab. 2021, 189, 109603–109620; https://doi.org/10.1016/j.polymdegradstab.2021.109603.Search in Google Scholar

21. Basak, S., Ali, S. W. Sodium tri-polyphosphate in combination with pomegranate rind extracts as a novel fire-retardant composition for cellulosic polymer. J. Therm. Anal. Calorim. 2019, 137, 1233–1247; https://doi.org/10.1007/s10973-019-08034-w.Search in Google Scholar

22. Paul, S., Basak, S., Ali, W. Zinc stannate nanostructure: is it a new class of material for multifunctional cotton textiles? ACS Omega 2019, 4, 21827–21838; https://doi.org/10.1021/acsomega.9b02719.Search in Google Scholar PubMed PubMed Central

23. SharmaBasak, V. S., Rishabh, K., Rishabh, K., Umaria, H., Ali, S. W. Synthesis of zinc carbonate nanoneedles, a potential flame retardant for cotton textiles. Cellulose 2018, 25, 6191–6205; https://doi.org/10.1007/s10570-018-1962-5.Search in Google Scholar

24. Durrani, H., Sharma, V., Bamboria, D., Shukla, A., Basak, S., Ali, W. Exploration of flame retardant efficacy of cellulosic fabric using in-situ synthesized zinc borate particles. Cellulose 2020, 27, 9061–9073; https://doi.org/10.1007/s10570-020-03383-4.Search in Google Scholar

25. Xu, T., Xu, H., Zhong, Y., Zhu, Y., Zhong, Y., Zhang, L., Xu, H., Peng, H., Mao, Z. Preparation and characteristic of Sepiolite-waterborne polyurethane composites. J. Polym. Eng. 2021, 1, 1–9; https://doi.org/10.1155/2021/3596591.Search in Google Scholar

26. Batistella, M. A., Sonnier, R., Otazaghine, B., Petter, C. O., Lopez-Cuesta, J.-M. Interactions between kaolinite and phosphinate-based flame retardant in Polyamide 6. Appl. Clay Sci. 2018, 157, 248–256; https://doi.org/10.1016/j.clay.2018.02.021.Search in Google Scholar

27. Dumazert, L., Rasselet, D., Pang, B., Gallard, B., Kennouche, S., Lopez-Cuesta, J.-M. Thermal stability and fire reaction of poly (butylene succinate) nanocomposites using natural clays and FR additives. Polym. Adv. Technol. 2018, 29, 69–83; https://doi.org/10.1002/pat.4090.Search in Google Scholar

28. Li, W. X., Li, S. X., Cheng, Z., Hu, X., Yang, W., Yao, Y. The effect of flame retardant-modified sepiolite nanofibers on thermal degradation and fire retardancy of low-density polyethylene. J. Therm. Anal. Calorim. 2019, 138, 1011–1019; https://doi.org/10.1007/s10973-019-08162-3.Search in Google Scholar

29. Yu, Z. R., Mao, M., Li, S. N., Xia, Q.-Q., Cao, C.-F., Zhao, L., Zhang, G.-D., Zheng, Z.-J., Gao, J.-F., Tang, L.-C. Facile and green synthesis of mechanically flexible and flame-retardant clay/graphene oxide nanoribbon interconnected networks for fire safety and prevention. Chem. Eng. J. 2021, 405, 126620–126631; https://doi.org/10.1016/j.cej.2020.126620.Search in Google Scholar

30. Rehman, Z. U., Huh, S. H., Ullah, Z., Pan, Y.-T., Churchill, D. G., Koo, B. H. LBL generated fire retardant nanocomposites on cotton fabric using cationized starch-clay-nanoparticles matrix. Carbohydr. Polym. 2021, 274, 118626–118636; https://doi.org/10.1016/j.carbpol.2021.118626.Search in Google Scholar PubMed

31. Lazar, S. T., Kolibaba, T. J., Grunlan, J. C. Flame-retardant surface treatments. Nat. Rev. 2020, 5, 259–275; https://doi.org/10.1038/s41578-019-0164-6.Search in Google Scholar

32. Prathapana, R., Thapaa, R., Garnierb, G., Tabor, R. F. Modulating the zeta potential of cellulose nanocrystals using salts and surfactants. Colloid. Surface. 2016, 509, 11–18; https://doi.org/10.1016/j.colsurfa.2016.08.075.Search in Google Scholar

33. Akar, T., Kurs, G., Celik, S., Akar, S. T. Immobilized Mucor plumbeus on sepiolite support: a potential decolorization agent suitable for batch and continuous mode water treatment. J. Clean. Prod. 2021, 294, 126283–126298; https://doi.org/10.1016/j.jclepro.2021.126283.Search in Google Scholar

34. Pan, H. F., Song, L., Ma, L. Y., Pan, Y., Liew, K. M., Hu, Y. Layer-by-layer assembled thin films based on fully biobased polysaccharides: chitosan and phosphorylated cellulose for flame-retardant cotton fabric. Cellulose 2014, 21, 2995–3006; https://doi.org/10.1007/s10570-014-0276-5.Search in Google Scholar

35. Chung, C. K., Lee, M., Choe, E. K. Characterization of cotton fabric scouring by FT-IR ATR spectroscopy. Carbohydr. Polym. 2004, 58, 417–420; https://doi.org/10.1016/j.carbpol.2004.08.005.Search in Google Scholar

36. Gamov, G. A., Zavalishin, M. N., Sharnin, V. A. Comment on the frequently used method of the metal complex-DNA binding constant determination from UV-Vis data. Spectrochim. Acta 2019, 206, 160–164; https://doi.org/10.1016/j.saa.2018.08.009.Search in Google Scholar PubMed

37. Lopez-Martínez, L. M., Santacruz-Ortega, H., Navarro, R. E., Caro-León, F. J., Ochoa-Terán, A. Studies by 1H NMR and UV-Vis spectroscopy of the molecular recognition of histamine by copper and zinc complexes of polyazamacrocyclic ligands. J. Mol. Struct. 2020, 1204, 127545–127549.10.1016/j.molstruc.2019.127545Search in Google Scholar

38. El-Shamy, H., Shaban, Y., El-Mehasseb, I., El-Kemary, M., van Eldik, R. Probing the interaction of iron complex containing N3S2 macrocyclic ligand with bovine serum albumin using spectroscopic techniques. Spectrochim. Acta 2020, 228, 117811–117815; https://doi.org/10.1016/j.saa.2019.117811.Search in Google Scholar PubMed

39. Vua, T. H., Serradji, N., Seydoua, M., Brémonda, É., Ha-Duong, N. T. Electronic spectroscopic characterization of the formation of iron (III) metal complexes: the 8-HydroxyQuinoline as ligand case study. J. Inorg. Biochem. 2020, 203, 110864–110874.10.1016/j.jinorgbio.2019.110864Search in Google Scholar PubMed

40. Barbalini, M., Bartoli, M., Tagliaferro, A., Malucelli, G. Phytic acid and biochar: an effective all bio-sourced flame retardant formulation for cotton fabrics. Polymers 2020, 12, 1–15; https://doi.org/10.3390/polym12040811.Search in Google Scholar PubMed PubMed Central

41. Jiang, P., Zhang, S., Bourbigot, S., Chen, Z., Duquesne, S., Casetta, M. Surface grafting of sepiolite with a phosphaphenanthrene derivative and its flame-retardant mechanism on PLA nanocomposites. Polym. Degrad. Stab. 2019, 165, 68–79; https://doi.org/10.1016/j.polymdegradstab.2019.04.012.Search in Google Scholar

42. Ren, Y. L., Zhang, Y., Gub, Y. T., Zeng, Q. Flame retardant polyacrylonitrile fabrics prepared by organic-inorganic hybrid silica coating via sol-gel technique. Prog. Org. Coating 2017, 112, 225–233; https://doi.org/10.1016/j.porgcoat.2017.07.022.Search in Google Scholar

43. Köklükaya, O., Carosio, F., Durán, V. L., Wågberg, L. Layer-by-layer modified low density cellulose fiber networks: a sustainable and fireproof alternative to petroleum based foams. Carbohydr. Polym. 2020, 230, 115616–115626.10.1016/j.carbpol.2019.115616Search in Google Scholar PubMed

44. Xu, Z. S., Zhou, H., Yan, L., Jia, H. Comparative study of the fire protection performance and thermal stability of intumescent fire-retardant coatings filled with three types of clay nano-fillers. Fire Mater. 2020, 44, 112–120; https://doi.org/10.1002/fam.2780.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/polyeng-2022-0009).


Received: 2022-01-29
Accepted: 2022-04-04
Published Online: 2022-06-07
Published in Print: 2022-09-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.6.2024 from https://www.degruyter.com/document/doi/10.1515/polyeng-2022-0009/html
Scroll to top button