Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 18, 2019

Effect of heat treatment on the thermophysical properties of copper-powder-filled polycarbonate and polycarbonate containing paraffin

  • Fairouz Zouaoui , Farid Rouabah , Yacine Nouar EMAIL logo and Magali Fois

Abstract

In this study, the effect of paraffin (PR) and copper (Cu) incorporation in polycarbonate (PC) was investigated using differential scanning calorimetry (DSC). The effect of PR incorporation in PC was investigated using thermogravimetric analysis (TGA). The effect of thermal treatments on thermophysical properties was studied in PC/PR and PC/Cu composites by using the hot-disk method and a periodic method (DICO). Specimens were heated at 160°C (Tg + 15°C), then two different cooling methods were employed: furnace cooling (annealing) and water cooling (quenching) at 0°C and 35°C. The DSC results showed that a solid-liquid transition occurred in all PR formulations, as well as showed the plasticizing role of the PR additive. Thermal stability decreased with the addition of PR. Thermal conductivities (λ) increased with increasing Cu content and decreased with PR additive content, and the annealed samples showed a higher thermal conductivity (λ) than quenched ones. Meanwhile, a small difference between the thermal conductivity of the DICO samples and the hot-disk samples was noticed.

References

[1] Alva G, Lin Y, Liu L, Fang G. Energy Build 2017, 144, 276–294.10.1016/j.enbuild.2017.03.063Search in Google Scholar

[2] Fan YF, Zhang XX, Wang XC, Li J, Zhu QB. Thermochim. Acta 2004, 413, 1–6.10.1016/j.tca.2003.11.006Search in Google Scholar

[3] Chen F, Wolcott M. Sol. Energy Mater. Sol. Cells 2015, 137, 79–85.10.1016/j.solmat.2015.01.010Search in Google Scholar

[4] Chen P, Gao X, Wang Y, Xu T, Fang Y, Zhang Z. Sol. Energy Mater. Sol. Cells 2016, 149, 60–65.10.1016/j.solmat.2015.12.041Search in Google Scholar

[5] Mu M, Basheer PAM, Sha W, Bai Y, McNally T. Appl. Energy 2016, 162, 68–82.10.1016/j.apenergy.2015.10.030Search in Google Scholar

[6] Konuklu Y, Ostry M, Paksoy HO, Charvat P. Energy Build 2015, 106, 134–155.10.1016/j.enbuild.2015.07.019Search in Google Scholar

[7] Kuznik F, David D, Johannes K, Roux JJ. Renew. Sustainable Energy Rev. 2011, 15, 379–391.10.1016/j.rser.2010.08.019Search in Google Scholar

[8] Huang X, Alva G, Jia Y, Fang G. Renew. Sustainable Energy Rev. 2017, 72, 128–145.10.1016/j.rser.2017.01.048Search in Google Scholar

[9] Colla L, Fedele L, Mancin S, Danza L, Manca O. Appl. Therm. Eng. 2017, 110, 584–589.10.1016/j.applthermaleng.2016.03.161Search in Google Scholar

[10] Li M, Wu Z. Renew. Sustainable Energy Rev. 2012, 16, 2094–2101.10.1016/j.rser.2012.01.016Search in Google Scholar

[11] Şahan N, Fois M, Paksoy H. Int. J. Energy Res. 2016, 40, 198–206.10.1002/er.3449Search in Google Scholar

[12] Elias CN, Stathopoulos VN. Energy Proc. 2019, 161, 385–394.10.1016/j.egypro.2019.02.101Search in Google Scholar

[13] Giro-Paloma J, Martínez M, Cabeza LF, Fernández AI. Renewable Sustainable Energy Rev. 2016, 53, 1059–1075.10.1016/j.rser.2015.09.040Search in Google Scholar

[14] Sundstrom DW, Lee YD. J. Appl. Polym. Sci. 1972, 16, 3159–3167.10.1002/app.1972.070161210Search in Google Scholar

[15] Ngo IL, Jeon S, Byon C. Int. J. Heat Mass Transfer 2016, 98, 219–226.10.1016/j.ijheatmasstransfer.2016.02.082Search in Google Scholar

[16] Luyt AS, Molefi JA, Krump H. Polym. Degrad. Stab. 2006, 91, 1629–1636.10.1016/j.polymdegradstab.2005.09.014Search in Google Scholar

[17] Lin SC, Al-Kayiem HH. Sol. Energy 2016, 132, 267–278.10.1016/j.solener.2016.03.004Search in Google Scholar

[18] Boudenne A, Ibos L, Fois M, Gehin E, Majeste JC. J. Polym. Sci., Part B Polym. Phys. 2004, 42, 722–732.10.1002/polb.10713Search in Google Scholar

[19] Chen H, Ginzburg VV, Yang J, Yang Y, Liu W, Huang Y, Libo D, Bin C. Prog. Polym. Sci. 2016, 59, 41–85.10.1016/j.progpolymsci.2016.03.001Search in Google Scholar

[20] He Y. Thermochim. Acta 2005, 436, 122–129.10.1016/j.tca.2005.06.026Search in Google Scholar

[21] Nagai H, Rossignol F, Nakata Y, Tsurue T, Suzuki M, Okutani T. Mater. Sci. Eng. A 2000, 276, 117–123.10.1016/S0921-5093(99)00519-5Search in Google Scholar

[22] Rouabah F, Fois M, Ibos L, Boudenne A, Picard C, Dadache D, Haddaoui N. J. Appl. Polym. Sci. 2008, 109, 1505–1514.10.1002/app.28218Search in Google Scholar

[23] Braiek A, Karkri M, Adili A, Ibos L, Ben Nasrallah S. Energy Build 2017, 140, 268–279.10.1016/j.enbuild.2017.02.001Search in Google Scholar

[24] Marchetti M, Fois M, Ibos L, Dumoulin J, Bourson P, Piau JM. Appl. Therm. Eng. 2018, 130, 49–61.10.1016/j.applthermaleng.2017.11.002Search in Google Scholar

[25] Gallagher PK, Cheng SZD, Eds. Applications to Polymers and Plastics, 1st ed., Elsevier Science B.V: Amsterdam, 2002.Search in Google Scholar

[26] Rezvanpour M, Hasanzadeh M, Azizi D, Rezvanpour A, Alizadeh M. Mater. Chem. Phys. 2018, 215, 299–304.10.1016/j.matchemphys.2018.05.044Search in Google Scholar

[27] Sobolciak P, Karkri M, Al-Maadeed MA, Krupa I. Renew. Energy 2016, 88, 372–382.10.1016/j.renene.2015.11.056Search in Google Scholar

[28] Jaguemont J, Omar N, Van Den Bossche P, Van Mierlo J. Appl. Therm. Eng. 2018, 132, 308–320.10.1016/j.applthermaleng.2017.12.097Search in Google Scholar

Received: 2019-02-28
Accepted: 2019-06-17
Published Online: 2019-07-18
Published in Print: 2019-08-27

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.6.2024 from https://www.degruyter.com/document/doi/10.1515/polyeng-2019-0055/html
Scroll to top button