Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 21, 2014

Parameters characterizing the kinetics of the non-isothermal crystallization of polyamide 5,6 determined by differential scanning calorimetry

  • Yassir A. Eltahir , Haroon A.M. Saeed , Chen Yuejun , Yumin Xia and Wang Yimin EMAIL logo

Abstract

The non-isothermal crystallization behavior of polyamide 5,6 (PA56) was investigated by differential scanning calorimeter (DSC), and the non-isothermal crystallization kinetics were analyzed using the modified Avrami equation, the Ozawa model, and the method combining the Avrami and Ozawa equations. It was found that the Avrami method modified by Jeziorny could only describe the primary stage of non-isothermal crystallization kinetics of PA56, the Ozawa model failed to describe the non-isothermal crystallization of PA56, while the combined approach could successfully describe the non-isothermal crystallization process much more effectively. Kinetic parameters, such as the Avrami exponent, kinetic crystallization rate constant, relative degree of crystallinity, the crystallization enthalpy, and activation energy, were also determined for PA56.


Corresponding author: Wang Yimin, College of Materials Science and Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 2999 North Renmin Road, Songjiang, Shanghai 201620, P.R. China, e-mail:

References

[1] Carothers WH. U.S. Pat. 2, 130,948; 1938.10.1136/bmj.2.4061.948Search in Google Scholar

[2] Carothers WH, Graves G. U.S. Pat. 2 163 584; 1939.10.1136/bmj.2.4105.584Search in Google Scholar

[3] Kohan MI, Nylon Plastics Handbook, Carl Hanser Verlag: Munich, Germany, 1995.Search in Google Scholar

[4] Morgan PW. Condensation Polymers, Wiley-Interscience Publishers: New York, 1965.Search in Google Scholar

[5] Samanta S, He J, Selvakumar S, Lattimer J, Ulven C, Sibi M, Bahr J, Chisholm BJ. Polymer 2013, 54, 1141–1149.10.1016/j.polymer.2012.12.034Search in Google Scholar

[6] Won JC, Fulchiron R, Douillard A, Chabert B, Varlet J, Chomier D. Polym. Eng. Sci. 2000, 40, 2058–2071.Search in Google Scholar

[7] Cui XW, Qing SB, Yan DY. Eur. Polym. J. 2005, 41, 3060–3068.Search in Google Scholar

[8] Wang Y, Liu M, Wang Z, Li X, Zhao Q, Fu PF. J. Appl. Polym. Sci. 2007, 104, 1415–1422.Search in Google Scholar

[9] Li YJ, Zhu XY, Yan DY. Polym. Eng. Sci. 2000, 40, 1989–1995.Search in Google Scholar

[10] Liu S, Yu Y, Cui Y, Zhang H, Mo Z. J. Appl. Polym. Sci. 1998, 70, 2371–2380.Search in Google Scholar

[11] Hafsaoui SL, Mahmoud R, Farzaneh S, Tcharkhtchi A. Iran. Polym. J. 2013, 22, 187–197.Search in Google Scholar

[12] Puiggalí J, Franco L, Alemán C, Subirana JA. Macromolecules 1998, 31, 8540–8548.10.1021/ma971895bSearch in Google Scholar

[13] Morales-Gámez L, Soto D, Franco L, Puiggalí J. Polymer 2010, 51, 5788–5798.10.1016/j.polymer.2010.09.074Search in Google Scholar

[14] Wittbecker EL, Morgan PW. J. Appl. Polym. Sci. 1959, 40, 289–297.Search in Google Scholar

[15] Navarro E, Franco L, Subirana JA, Puiggali J. Macromolecules 1995, 28, 8742–8750.10.1021/ma00130a006Search in Google Scholar

[16] Liu Y, Yang G. Thermochim. Acta 2010, 500, 13–20.10.1016/j.tca.2009.12.003Search in Google Scholar

[17] Mya KY, Pramoda KP, He CB. Polymer 2006, 47, 5035–5043.10.1016/j.polymer.2006.04.068Search in Google Scholar

[18] Zhang Q, Zhang Z, Zhang H, Mo Z. J. Polym. Sci. Part B: Polym. Phys. 2002, 40, 1784–1793.Search in Google Scholar

[19] Zhang J, Chen S, Su J, Shi X, Jin J, Wang X, Xu Z. J. Therm. Anal. Calorim. 2009, 97, 959–967.Search in Google Scholar

[20] An YX, Dong LS, Mo ZS, Liu TX, Feng ZL. J. Polym. Sci. Part B: Polym. Phys. 1998, 36, 1305–1312.Search in Google Scholar

[21] Fara RA. Methods of Experimental Physics. Polymer Part B. Crystal structure and Morphology, Vol. 16B, Academic Press: New York, 1980, pp. 339–397.Search in Google Scholar

[22] Avrami M. J. Chem. Phys. 1940, 8, 212.Search in Google Scholar

[23] Avrami M. J. Chem. Phys. 1941, 9, 177.Search in Google Scholar

[24] Jeziorny A. Polymer 1978, 19, 1142–1144.10.1016/0032-3861(78)90060-5Search in Google Scholar

[25] Wunderlich B. Macromolecular Physics, Crystal Nucleation, Growth, Annealing, Vol. 2, Academic Publishers: New York, 1976, pp. 69–106.Search in Google Scholar

[26] Ozawa T. Polymer 1971, 12, 150–158.10.1016/0032-3861(71)90041-3Search in Google Scholar

[27] Dhanvijay PU, Shertukde VV, Kalkar AK. J. Appl. Polym. Sci. 2012, 124, 1333–1343.Search in Google Scholar

[28] McFerran NL A, Armstrong CG, McNally T. J. Appl. Polym. Sci. 2008, 110, 1043–1058.Search in Google Scholar

[29] Liu MY, Zhao QX, Wang Y, Zhang CG, Mo ZS, Cao SK. Polymer 2003, 44, 2537–2545.10.1016/S0032-3861(03)00101-0Search in Google Scholar

[30] Zhang QX, Mo ZS. Chin. J. Polym. Sci. 2001, 19, 237–246.Search in Google Scholar

[31] Liu SY, Yu YN, Cui Y, Zhang HF, Mo ZS. J. Appl. Polym. Sci. 1998, 70, 2371–2380.Search in Google Scholar

[32] Kissinger HE. Anal. chem. 1957, 29, 1702–1706.Search in Google Scholar

Received: 2013-10-2
Accepted: 2014-1-14
Published Online: 2014-2-21
Published in Print: 2014-6-1

©2014 by Walter de Gruyter Berlin/Boston

Downloaded on 7.5.2024 from https://www.degruyter.com/document/doi/10.1515/polyeng-2013-0250/html
Scroll to top button