Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access March 23, 2019

Multiplicative topological indices of honeycomb derived networks

  • Jiang-Hua Tang , Mustafa Habib , Muhammad Younas , Muhammad Yousaf and Waqas Nazeer EMAIL logo
From the journal Open Physics

Abstract

Topological indices are the numerical values associated with chemical structures that correlate physico-chemical properties with structural properties. There are various classes of topological indices such as degree based topological indices, distance based topological indices and counting related topological indices. Among these classes, degree based topological indices are of great importance and play a vital role in chemical graph theory, particularly in chemistry. In this report, we have computed the multiplicative degree based topological indices of honeycomb derived networks of dimensions I, 2, 3 and 4.

1 Introduction

Mathematical modeling of chemical reaction networks consists of a variety of methods for approaching questions about the dynamical behavior of chemical reactions arising in realworld applications. After the invention of the law of mass action, dynamical properties of reaction networks have been extensively studied in both chemistry and physics. The essential steps for this study were the introduction of the detailed equilibrium of complex chemical reactions by Rudolf Wegscheider [1], the development of the quantitative theory of chemical chain reactions by Nikolay Semyonov [2], the development of catalytic reactions by Cyril Norman Hinshelwood [3] and many other results.

Three epochs of chemical dynamics can be observed in the flow of research and publications [4]. These times can be associated with leaders: the first is the Van’t Hoff era, the second is the Semenov Hinshelwood era and the third is definitely the Aris era. The "times" can be distinguished on the basis of the priorities of scientific leaders:

  • Van’t Hoff looked for general laws of chemical reaction related to specific chemical properties. The term "chemical dynamics" belongs to van’t Hoff.

  • The goal of Hinshelwood Semenov, was to explore the critical phenomena observed in many chemical systems, especially in flames. The concept of chain reaction explored by these researchers influenced many sciences, particularly nuclear physics and engineering.

  • Aris’ activity was concentrated on the detailed systematization of mathematical ideas and approaches.

Rutherford Aris initiated the mathematical discipline called chemical reaction network theory. The work of R. Aris in the journal Archive for Rational Mechanics and Analysis has opened a series of works by other authors (informed by R. Aris). The most famous works of this series are the works of Frederick J. Krambeck [6], Roy Jackson, Friedrich Josef Maria Horn [7], Martin Feinberg [8] and others [9], which were published in the 1970s. In continuation of his early work in this area, R. Aris mentions the work of N.Z. Shapiro, L. S. Shapley [10], where a significant part of his scientific program was endorsed. Since then, a large number of researchers internationally [11, 12, 13, 14, 15, 16, 17, 18, 19, 20] have further developed the chemical reaction network theory.

The honeycomb and hexagonal networks have been known as crucial for evolutionary biology, in particular, for the evolution of cooperation, where overlapping triangles are vital for the propagation of cooperation in social dilemmas. For relevant research, see [21, 22]. In the hexagonal network HX (n), the parameter n is the number of vertices on each side of the network [23], whereas for the honeycomb network HC(n), n is the number of hexagons between a boundary and central hexagon [23]. Due to the significance of topological indices in chemistry, a lot of research has been done in this area. For further studies of topological indices of various graph families, see [24, 25, 26, 27, 28].

Let us consider a graph as shown in Figure 3.

Figure 1 Hexagonal network
Figure 1

Hexagonal network

Figure 2 Honeycomb network
Figure 2

Honeycomb network

Figure 3 Graph G
Figure 3

Graph G

The stellation of G is denoted by St(G) and can be obtained by adding a vertex in each face of G and then by join these vertices to all vertices of the respective face (see Figure 4).

Figure 4 Stellation of G (dotted)
Figure 4

Stellation of G (dotted)

The dual Du(G) of a graph G is a graph that has a vertex for each face of G. The graph has an edge whenever two faces of G are separated from each other by an edge, and a self-loop when the same face appears on both sides of an

edge, see Figure 5. Hence the number of faces of a graph is equal to the number of edges of its dual.

Figure 5 Dual of graph G (dotted)
Figure 5

Dual of graph G (dotted)

In the dual graph, if we delete the vertex corresponding to the bounded face of the planar graph, which is unique, we get the bounded dual Bdu(G) (see Figure 6).

Figure 6 Bounded dual of graph G (dotted)
Figure 6

Bounded dual of graph G (dotted)

Given a connected plane graph G, its medial graph M(G) has a vertex for each edge of G and an edge between two vertices for each face of G in which their corresponding edges occur consecutively (see Figure 7).

Figure 7 Medial of G (dotted)
Figure 7

Medial of G (dotted)

In this report, we aim to compute multiplicative degree-based topological indices of networks derived from honeycomb networks by taking stellation, dual, bounded dual, and medial graphs of the honeycomb network.

2 Topological indices

Amolecular graph is a simple graph in chemical graph theory in which atoms are represented by vertices and chemical bonds are represented by edges. A graph is connected if there is a connection between any pair of vertices. A network is a connected graph which has no multiple edge and no loop. The number of vertices which are connected to a fixed v vertex is called the degree of v and is denoted by dv . The distance between two vertices is the length of shortest path between them. The concept of valence in chemistry and concept of degree are somewhat closely related. For details on the basics of graph theory, refer to the book [29]. Quantitative structure-activity and structure-property relationships predict the properties and biological activities of materials. In these studies, topological indices and some physicochemical properties are used to predict bioactivity of chemical compounds [30, 31, 32, 33].

Throughout this paper, G denotes a connected graph, V and E denote the vertex set and the edge set and dv denotes the degree of a vertex. The topological index of the graph of a chemical compound is a number which can be used to characterize the represented chemical compound and help to predict its physicochemical properties.Wiener laid the foundation of topological index in 1947 .He approximated the boiling points of alkanes and introduced the Wiener index [34]. Up to now more than 140 topological indices have been defined but no single index is enough to determine all physicochemical properties; but these topological indices together can do this to some extent. Later, in 1975, Milan Randić introduced the Randić index, [35]. In 1998, Bollobas and Erdos [36] and Amic et al. [37] proposed the generalized Randić index which has been studied by both chemists and mathematicians [38]. The Randić index is one of the most popular, most studied and most applied topological indices. Many reviews, papers and books [39, 40, 41, 42, 43, 44] are written on this simple graph invariant. Some indices related to Wiener’s work are the first and second multiplicative Zagreb indices [45], respectively:

I I 1 G = u V G d u 2 I I 2 G = u v E G d u d v

and the Narumi-Katayama index [46]:

N K G = u V G d u

Like the Wiener index, these types of indices are the focus of considerable research in computational chemistry [47, 48, 49, 50]. For example, in 2011 I. Gutman [47] characterized the multiplicative Zagreb indices for trees and determined the unique trees that obtained maximum and minimum values for M1(G) and M2(G), respectively. S. Wang and the last author [50] then extended Gutman’s result to the following index for k-trees:

W 1 s G = u V G d u s .

Notice that s = 1, 2 correspond to the Narumi-Katayama and Zagreb index, respectively. Based on the successful consideration of multiplicative Zagreb indices, M. Eliasi et al. [51] continued to define a new multiplicative version of the first Zagreb index as

I I 1 G = u v E G d u + d v .

Furthering the concept of indexing with the edge set, the first author introduced the first and second hyper-Zagreb indices of a graph [52]. They are defined as

H I I 1 G = u v E G d u + d v 2
H I I 2 G = u v E G d u d v 2

In [53], Kulli et al. defined the first and second generalized Zagreb indices:

M Z 1 a G = u v E G d u + d v a
M Z 2 a G = u v E G d u d v a

Multiplicative sum connectivity and multiplicative product connectivity indices [54] are define as

S C I I G = u v E G 1 d u + d v
P C I I G = u v E G 1 d u d v

Multiplicative atomic bond connectivity index and multiplicative Geometric arithmetic index are defined as

A B C I I G = u v E G d u + d v 2 d u d v
G A I I G = u v E G 2 d u d v d u + d v
G A a I I G = u v E G 2 d u d v d u + d v a

3 Computational results

In this section we give our computational results.

Theorem 1

Let HcDN1 (n) be the honeycomb derived network of dimension 1. Then

  1. I I 2 H c D N 1 n = 6 42 5 30 18 6 × 15 12 × 30 18 × 36 27 n 3 57 n

  2. I I 1 H c D N 1 n = 2 30 × 3 36 11 18 9 6 × 8 12 × 11 18 × 12 27 n 12 57 n

  3. H I I 1 H c D N 1 n = 2 60 × 3 72 11 36 81 6 × 64 12 × 121 8 × 144 27 n 144 57 n

  4. H I I 2 H c D N 1 n = 6 84 5 60 5 60 × 6 108 n 2 180 × 3 144 n

  5. M Z 1 a H c D N 1 n = 2 30 a × 3 36 a 11 18 a 2 36 a × 3 12 a × 11 18 a × 12 27 a n 12 57 a n

  6. M Z 2 a H c D N 1 n = 6 42 a 5 30 a 3 42 a × 5 30 a × 2 24 a × 36 27 a n 36 57 a n

  7. X I I H c D N 1 n = 11 9 2 15 × 3 18 6 57 × 3 27 2 n 6 27 n × 2 18 × 3 93 2 × 11 9 n

  8. χ I I H c D N 1 n = 5 15 6 21 2 45 × 3 36 5 15 × 6 27 n n

  9. A B C I I H c D N 1 n = 5 30 2 6 × 3 45 2 45 2 × 3 60 × 7 3 × 10 27 2 n 5 87 2 × 6 27 n n

  10. G A I I H c D N 1 n = 11 18 2 3 × 6 15 2 12 × 3 9 × 5 15 11 18 n

  11. G A a I I H c D N 1 n = 11 18 a 3 15 a × 5 15 a × 2 3 a 3 9 a × 5 15 a × 2 12 a 11 18 a n

Proof:

The honeycomb derived network of dimension one HcDN1 (n) is obtained by taking the union of the honeycomb network and its stellation, which is a planar graph. In the honeycomb derived network HcDN1 (n),

V H c D N 1 n = 9 n 2 3 n + 1
E H c D N 1 n = 27 n 2 21 n + 6

There are five types of edges in E (HcDN1 (n)) based on the degree of end vertices, i.e.,

E 1 H c D N 1 n = u v E H c D N 1 n : d u = 3 , d v = 3 E 2 H c D N 1 n = u v E H c D N 1 n : d u = 3 , d v = 5 E 3 H c D N 1 n = u v E H c D N 1 n : d u = 3 , d v = 6 E 4 H c D N 1 n = u v E H c D N 1 n : d u = 5 , d v = 6 E 5 H c D N 1 n = u v E H c D N 1 n : d u = 6 , d v = 6

It can be observed from Figure 1 that

E 1 H c D N 1 n = 6 E 2 H c D N 1 n = 12 n 1 E 3 H c D N 1 n = 6 n E 4 H c D N 1 n = 18 n 1 E 5 H c D N 1 n = 27 n 2 57 n + 30

Now,

I I 2 H c D N 1 n = u v E H c D N 1 n d u d v = 3 × 3 6 × 3 × 5 12 n 1 × 3 × 6 6 n × 5 × 6 18 n 1 × 6 × 6 27 n 2 57 n + 30 = 6 42 5 30 18 6 × 15 12 × 30 18 × 36 27 n 3 57 n .
I I 1 H c D N 1 n = u v E H c D N 1 n d u + d v = 3 + 3 6 × 3 + 5 12 n 1 × 3 + 6 6 n × 5 + 6 18 n 1 × 6 + 6 27 n 2 57 n + 30 = 2 30 × 3 36 11 18 9 6 × 8 12 × 11 18 × 12 27 n 12 57 n .
H I I 1 H c D N 1 n = u v E H c D N 1 n d u + d v 2 = 3 + 3 2 6 × 3 + 5 2 12 n 1 × 3 + 6 2 6 n × 5 + 6 2 18 n 1 × 6 + 6 2 27 n 2 57 n + 30 = 2 60 × 3 72 11 36 81 6 × 64 12 × 121 8 × 144 27 n 144 57 n .
H I I 2 H c D N 1 n = u v E H c D N 1 n d u d v 2 = 3 × 3 2 6 × 3 × 5 2 12 n 1 × 3 × 6 2 6 n × 5 × 6 2 18 n 1 × 6 × 6 2 27 n 2 57 n + 30 = 6 84 5 60 5 60 × 6 108 n 2 180 × 3 144 n .
M Z 1 a H c D N 1 n = u v E H c D N 1 n d u + d v a = 3 + 3 a 6 × 3 + 5 a 12 n 1 × 3 + 6 a 6 n × 5 + 6 a 18 n 1 × 6 + 6 a 27 n 2 57 n + 30 = 2 30 a × 3 36 a 11 18 a 2 36 a × 3 12 a × 11 18 a × 12 27 a n 12 57 a n .

M Z 2 a H c D N 1 n = u v E H c D N 1 n d u d v a = 3 × 3 a 6 × 3 × 5 a 12 n 1 × 3 × 6 a 6 n × 5 × 6 a 18 n 1 × 6 × 6 a 27 n 2 57 n + 30 = 6 42 a 5 30 a 3 42 a × 5 30 a × 2 24 a × 36 27 a n 36 57 a n .
X I I H c D N 1 n = u v E H c D N 1 n 1 d u + d v = 1 3 + 3 6
× 1 3 + 5 12 n 1 × 1 3 + 6 6 n × 1 5 + 6 18 n 1 × 1 6 + 6 27 n 2 57 n + 30 = 11 9 2 15 × 3 18 6 57 × 3 27 2 n 6 27 n × 2 18 × 3 93 2 × 11 9 n .
χ I I H c D N 1 n = u v E H c D N 1 n 1 d u d v = 1 3 3 6 × 1 3 5 12 n 1 × 1 3 6 6 n × 1 5 6 18 n 1 × 1 6 6 27 n 2 57 n + 30 = 5 15 6 21 2 45 × 3 36 5 15 × 6 27 n n .
A B C I I H c D N 1 n = u v E H c D N 1 n d u + d v 2 d u d v = 3 + 3 2 3 3 6 × 3 + 5 2 3 5 12 n 1 × 3 + 6 2 3 6 6 n × 5 + 6 2 5 6 18 n 1 × 6 + 6 2 6 6 27 n 2 57 n + 30 = 5 30 2 6 × 3 45 2 45 2 × 3 60 × 7 3 × 10 27 2 n 5 87 2 × 6 27 n n .
G A I I H c D N 1 n = u v E H c D N 1 n 2 d u d v d u + d v = 2 3 3 3 + 3 6 × 2 3 5 3 + 5 12 n 1 × 2 3 6 3 + 6 6 n × 2 5 6 5 + 6 12 n 1 × 2 6 6 6 + 6 27 n 2 57 n + 30 = 11 18 2 3 × 6 15 2 12 × 3 9 × 5 15 11 18 n .
G A a I I H c D N 1 n = u v E H c D N 1 n 2 d u d v d u + d v a = 2 3 3 3 + 3 a 6 × 2 3 5 3 + 5 a 12 n 1 × 2 3 6 3 + 6 a 6 n × 2 5 6 5 + 6 a 18 n 1 × 2 6 6 6 + 6 a 27 n 2 57 n + 30 = 11 18 a 3 15 a × 5 15 a × 2 3 a 3 9 a × 5 15 a × 2 12 a 11 18 a n .

Theorem 2

Let HcDN 2 (n) be the honeycomb derived network of dimension 2. Then

  1. I I 2 H c D N 2 n = 2 84 × 3 228 5 150 2 108 n × 3 72 n × 5 90 2 428 × 3 162 n

  2. I I 1 H c D N 2 n = 3 138 × 7 18 × 19 12 2 42 × 5 30 × 11 30 × 13 12 2 63 n × 5 18 × 11 18 × 3 54 n × 13 6 2 87 × 3 18 n

  3. H I I 1 H c D N 2 n = 3 276 × 7 36 × 19 24 2 84 × 5 60 × 11 60 × 13 24 2 126 n × 11 36 × 3 108 n × 13 12 × 5 36 2 126 × 3 300 n

  4. H I I 2 H c D N 2 n = 2 168 × 3 456 5 300 2 216 n × 3 144 n × 5 180 2 456 × 3 324 n

  5. M Z 1 a H c D N 2 n = 3 97 × 7 18 × 11 30 × 19 12 2 188 × 5 30 × 13 2 a 2 63 n × 3 54 n × 5 18 × 11 18 2 63 × 3 150 a n

  6. M Z 2 a H c D N 2 n = 2 89 × 3 233 5 145 a 2 72 n × 3 72 n × 5 85 2 197 × 3 167 a n

  7. X I I H c D N 2 n = 2 21 × 5 15 × 11 15 × 13 6 3 69 × 7 9 × 19 6 2 32 × 3 151 2 5 9 × 11 9 × 13 3 × 2 31 n × 3 53 2 × 6 n n + 1 n

  8. χ I I H c D N 2 n = 5 75 12 54 × 3 114 2 114 × 3 81 5 45 × 2 54 n × 3 36 n n

  9. A B C I I H c D N 2 n = 2 30 × 3 102 × 5 75 × 11 9 × 17 6 × 19 3 13 6 × 7 18 2 18 × 3 99 × 7 9 × 13 6 × 2 18 n × 5 9 2 n × 11 9 2 n 5 99 2 × 11 27 2 × 3 36 n n

  10. G A I I H c D N 2 n = 2 96 × 11 30 × 13 12 3 24 × 5 45 × 7 18 × 19 12 2 12 × 3 69 × 5 27 11 18 × 13 6 × 2 72 n × 3 18 n n

  11. G A a I I H c D N 2 n = 2 96 × 11 30 × 13 12 3 24 × 5 45 × 7 18 × 19 12 a 2 12 × 3 69 × 5 27 11 18 × 13 6 × 2 72 n × 3 18 n a n

3.1 Proof:

The honeycomb derived network of dimension 2 HcDN 2 (n) is obtained by taking the union of the honeycomb network, its stellation and its bounded dual, which is a non-planar graph. In the honeycomb derived network HcDN2 (n),

V H c D N 2 n = 9 n 2 3 n + 1 E H c D N 2 n = 27 n 2 21 n + 6

There are sixteen types of edges in E (HcDN2 (n)) based on the degree of end vertices, i.e,

E 1 H c D N 2 n = u v E H c D N 2 n : d u = 3 , d v = 3 E 2 H c D N 2 n = u v E H c D N 2 n : d u = 3 , d v = 5 E 3 H c D N 2 n = u v E H c D N 2 n : d u = 3 , d v = 9 E 4 H c D N 2 n = u v E H c D N 2 n : d u = 3 , d v = 10 E 5 H c D N 2 n = u v E H c D N 2 n : d u = 5 , d v = 6 E 6 H c D N 2 n = u v E H c D N 2 n : d u = 5 , d v = 9 E 7 H c D N 2 n = u v E H c D N 2 n : d u = 5 , d v = 10 E 8 H c D N 2 n = u v E H c D N 2 n : d u = 6 , d v = 6 E 9 H c D N 2 n = u v E H c D N 2 n : d u = 6 , d v = 9 E 10 H c D N 2 n = u v E H c D N 2 n : d u = 6 , d v = 10 E 11 H c D N 2 n = u v E H c D N 2 n : d u = 6 , d v = 12 E 12 H c D N 2 n = u v E H c D N 2 n : d u = 9 , d v = 10 E 13 H c D N 2 n = u v E H c D N 2 n : d u = 9 , d v = 12 E 14 H c D N 2 n = u v E H c D N 2 n : d u = 10 , d v = 10 E 15 H c D N 2 n = u v E H c D N 2 n : d u = 10 , d v = 12 E 16 H c D N 2 n = u v E H c D N 2 n : d u = 12 , d v = 12

It can be observed from Figure 2 that

E 1 H c D N 2 n = 6 E 2 H c D N 2 n = 12 n 1 E 3 H c D N 2 n = 12 E 4 H c D N 2 n = 6 n 2 E 5 H c D N 2 n = 6 n 1 E 6 H c D N 2 n = 12 E 7 H c D N 2 n = 12 n 2 E 8 H c D N 2 n = 9 n 2 21 n + 12 E 9 H c D N 2 n = 12 E 10 H c D N 2 n = 18 n 2 E 11 H c D N 2 n = 18 n 2 54 n + 42 E 12 H c D N 2 n = 12 E 13 H c D N 2 n = 6 E 14 H c D N 2 n = 6 n 3 E 15 H c D N 2 n = 12 n 2 E 16 H c D N 2 n = 9 n 2 33 n + 30

Now,

I I 2 H c D N 2 n = u v E H c D N 2 n d u d v = 3 × 3 6 × 3 × 5 12 n 1 × 3 × 9 12 × 3 × 10 6 n 2 × 5 × 6 6 n 1 × 5 × 9 12 × 5 × 10 12 n 2 × 6 × 6 9 n 2 21 n + 12 × 6 × 9 12 × 6 × 10 18 n 2 × 6 × 12 18 n 2 54 n + 42 × 9 × 10 12 × 9 × 12 6 × 10 × 10 6 n 3 × 10 × 12 12 n 2 × 12 × 12 9 n 2 33 n + 30 = 2 84 × 3 228 5 150 2 108 n × 3 72 n × 5 90 2 428 × 3 162 n .
I I 1 H c D N 2 n = u v E H c D N 2 n d u + d v = 3 + 3 6 × 3 + 5 12 n 1 × 3 + 9 12 × 3 + 10 6 n 2 × 5 + 6 6 n 1 × 5 + 9 12 × 5 + 10 12 n 2 × 6 + 6 9 n 2 21 n + 12 × 6 + 9 12 × 6 + 10 18 n 2 × 6 + 12 18 n 2 54 n + 42 × 9 + 10 12 × 9 + 12 6 × 10 + 10 6 n 3 × 10 + 12 12 n 2 × 12 + 12 9 n 2 33 n + 30 = 3 138 × 7 18 × 19 12 2 42 × 5 30 × 11 30 × 13 12 2 63 n × 5 18 × 11 18 × 3 54 n × 13 6 2 87 × 3 18 n .
H I I 1 H c D N 2 n = u v E H c D N 2 n d u + d v 2 = 3 + 3 2 6 × 3 + 5 2 12 n 1 × 3 + 9 2 12 × 3 + 10 2 6 n 2 × 5 + 6 2 6 n 1 × 5 + 9 2 12 × 5 + 10 2 12 n 2 × 6 + 6 2 9 n 2 21 n + 12 × 6 + 9 2 12 × 6 + 10 2 18 n 2 × 6 + 12 2 18 n 2 54 n + 42 × 9 + 10 2 12 × 9 + 12 2 6 × 10 + 10 2 6 n 3 × 10 + 12 2 12 n 2 × 10 + 12 2 9 n 2 33 n + 30 = 3 276 × 7 36 × 19 24 2 84 × 5 60 × 11 60 × 13 24 2 126 n × 11 36 × 3 108 n × 13 12 × 5 36 2 126 × 3 300 n .
H I I 2 H c D N 2 n = u v E H c D N 2 n d u d v 2 = 3 × 3 2 6 × 3 × 5 2 12 n 1 × 3 × 9 2 12 × 3 × 10 2 6 n 2 × 5 × 6 2 6 n 1 × 5 × 9 2 12 × 5 × 10 2 12 n 2 × 6 × 6 2 9 n 2 21 n + 12 × 6 × 9 2 12 × 6 × 10 2 18 n 2 × 6 × 12 2 18 n 2 54 n + 42 × 9 × 10 2 12 × 9 × 12 2 6 × 10 × 10 2 6 n 3 × 10 × 12 2 12 n 2 × 12 × 12 2 9 n 2 33 n + 30 = 2 168 × 3 456 5 300 2 216 n × 3 144 n × 5 180 2 456 × 3 324 n .
M Z 1 a H c D N 2 n = u v E H c D N 2 n d u + d v a = 3 + 3 a 6 × 3 + 5 a 12 n 1 × 3 + 9 a 12 × 3 + 10 a 6 n 2 × 5 + 6 a 6 n 1 × 5 + 9 a 12 × 5 + 10 a 12 n 2 × 6 + 6 a 9 n 2 21 n + 12 × 6 + 9 a 12 × 6 + 10 a 18 n 2 × 6 + 12 a 18 n 2 54 n + 42 × 9 + 10 a 12 × 9 + 12 a 6 × 10 + 10 a 6 n 3 × 10 + 12 a 12 n 2 × 10 + 12 a 9 n 2 33 n + 30 = 3 97 × 7 18 × 11 30 × 19 12 2 188 × 5 30 × 13 2 a 2 63 n × 3 54 n × 5 18 × 11 18 2 63 × 3 150 a n .
M Z 2 a H c D N 2 n = u v E H c D N 2 n d u d v a = 3 × 3 a 6 × 3 × 5 a 12 n 1 × 3 × 9 a 12 × 3 × 10 a 6 n 2 × 5 × 6 a 6 n 1 × 5 × 9 a 12 × 5 × 10 a 12 n 2 × 6 × 6 a 9 n 2 21 n + 12 × 6 × 9 a 12 × 6 × 10 a 18 n 2 × 6 × 12 a 18 n 2 54 n + 42 × 9 × 10 a 12 × 9 × 12 a 6 × 10 × 10 a 6 n 3 × 10 × 12 a 12 n 2 × 12 × 12 a 9 n 2 33 n + 30 = 2 89 × 3 233 5 145 a 2 72 n × 3 72 n × 5 85 2 197 × 3 167 a n .
X I I H c D N 2 n = u v E H c D N 2 n 1 d u + d v = 1 3 + 3 6 × 1 3 + 5 12 n 1 × 1 3 + 9 12 × 1 3 + 10 6 n 2 × 1 5 + 6 6 n 1 × 1 5 + 9 12 × 1 5 + 10 12 n 2 × 1 6 + 6 9 n 2 21 n + 12 × 1 6 + 9 12 × 1 6 + 10 18 n 2 × 1 6 + 12 18 n 2 54 n + 42 × 1 9 + 10 12 × 1 9 + 12 6 × 1 10 + 10 6 n 3 × 1 10 + 12 12 n 2 × 1 12 + 12 9 n 2 33 n + 30 = 2 21 × 5 15 × 11 15 × 13 6 3 69 × 7 9 × 19 6 2 32 × 3 151 2 5 9 × 11 9 × 13 3 × 2 31 n × 3 53 2 × 6 n n + 1 n .
χ I I H c D N 2 n = u v E H c D N 2 n 1 d u . d v = 1 3.3 6 × 1 3.5 12 n 1 × 1 3.9 12 × 1 3.10 6 n 2 × 1 5.6 6 n 1 × 1 5.9 12 × 1 5.10 12 n 2 × 1 6.6 9 n 2 21 n + 12 × 1 6 + 9 12 × 1 6 + 10 18 n 2 × 1 6 + 12 18 n 2 54 n + 42 × 1 9 + 10 12 × 1 9 + 12 6 × 1 10 + 10 6 n 3 × 1 10 + 12 12 n 2 × 1 12 + 12 9 n 2 33 n + 30 = 5 75 12 54 × 3 114 2 114 × 3 81 5 45 × 2 54 n × 3 36 n n .
A B C I I H c D N 2 n = u v E H c D N 2 n d u + d v 2 d u d v = 3 + 3 2 3 3 6 × 3 + 5 2 3 5 12 n 1 × 3 + 9 2 3 9 12 × 3 + 10 2 3 10 6 n 2 × 5 + 6 2 5 6 6 n 1 × 5 + 9 2 5 9 12 × 5 + 10 2 5 10 12 n 2 × 6 + 6 2 6 6 9 n 2 21 n + 12 × 6 + 9 2 6 9 12 × 6 + 10 2 6 10 18 n 2 × 6 + 12 2 6 12 18 n 2 54 n + 42 × 9 + 10 2 9 10 12 × 9 + 12 2 9 12 6 × 10 + 10 2 10 10 6 n 3 × 10 + 12 2 10 12 12 n 2 × 12 + 12 2 12 12 9 n 2 33 n + 30 = 2 30 × 3 102 × 5 75 × 11 9 × 17 6 × 19 3 13 6 × 7 18 2 18 × 3 99 × 7 9 × 13 6 × 2 18 n × 5 9 2 n × 11 9 2 n 5 99 2 × 11 27 2 × 3 36 n n .
G A I I H c D N 2 n = u v E H c D N 2 n 2 d u d v d u + d v = 2 3 3 3 + 3 6 × 2 3 5 3 + 5 12 n 1 × 2 3 9 3 + 9 12 × 2 3 10 3 + 10 6 n 2 × 2 5 6 5 + 6 6 n 1 × 2 5 9 5 + 9 12 × 2 5 10 5 + 10 12 n 2 × 2 6 6 6 + 6 9 n 2 21 n + 12 × 2 6 9 6 + 9 12 × 2 6 10 6 + 10 18 n 2 × 2 6 12 6 + 12 18 n 2 54 n + 42 × 2 9 10 9 + 10 12 × 2 9 12 9 + 12 6 × 2 10 10 10 + 10 6 n 3 × 2 10 12 10 + 12 12 n 2 × 2 12 12 12 + 12 9 n 2 33 n + 30 = 2 96 × 11 30 × 13 12 3 24 × 5 45 × 7 18 × 19 12 2 12 × 3 69 × 5 27 11 18 × 13 6 × 2 72 n × 3 18 n n .
G A α I I H c D N 2 n = u v E H c D N 2 n 2 d u d v d u + d v α = 2 3 3 3 + 3 a 6 × 2 3 5 3 + 5 a 12 n 1 × 2 3 9 3 + 9 a 12 × 2 3 10 3 + 10 a 6 n 2 × 2 5 6 5 + 6 a 6 n 1 × 2 5 9 5 + 9 a 12 × 2 5 10 5 + 10 a 12 n 2 × 2 6 6 6 + 6 a 9 n 2 21 n + 12 × 2 6 9 6 + 9 a 12 × 2 6 10 6 + 10 a 18 n 2 × 2 6 12 6 + 12 a 18 n 2 54 n + 42 × 2 9 10 9 + 10 a 12 × 2 9 12 9 + 12 a 6 × 2 10 10 10 + 10 a 6 n 3 × 2 10 12 10 + 12 a 12 n 2 × 2 12 12 12 + 12 a 9 n 2 33 n + 30 = 2 96 × 11 30 × 13 12 3 24 × 5 45 × 7 18 × 19 12 a 2 12 × 3 69 × 5 27 11 18 × 13 6 × 2 72 n × 3 18 n a n .

Theorem 3

Let HcDN3 (n) be the honeycomb derived network of dimension 3. Then

  1. I I 2 H c D N 3 n = 2 30 × 3 78 5 30 2 108 n × 3 108 n × 5 30 3 84 × 3 162 n

  2. I I 1 H c D N 3 n = 2 96 × 3 30 5 12 × 11 18 2 108 n × 3 54 n × 5 12 × 7 12 × 11 18 2 186 × 3 72 n

  3. H I I 1 H c D N 3 n = 2 192 × 3 60 5 24 × 11 36 2 216 n × 3 108 n × 5 24 × 7 24 × 11 36 2 372 × 2 144 n

  4. H I I 2 H c D N 3 n = 2 60 × 3 156 5 60 2 216 n × 3 216 n × 5 60 2 168 × 3 324 n

  5. M Z 1 a H c D N 3 n = 2 96 a × 3 30 a 5 12 a × 11 18 a 2 108 n × 3 54 n × 5 12 × 7 12 × 11 18 2 186 × 3 72 a n

  6. M Z 2 a H c D N 3 n = 2 30 a × 3 78 a 5 30 a 2 108 n × 3 108 n × 5 30 3 84 × 3 162 a n

  7. X I I H c D N 3 n = 5 6 × 11 9 2 48 × 3 15 2 93 × 3 36 2 54 n × 3 27 n × 5 6 × 7 6 × 11 9 n

  8. χ I I H c D N 3 n = 5 15 2 15 × 3 39 2 42 × 3 81 2 54 n × 3 54 n × 5 15 n

  9. A B C I I H c D N 3 n = 5 42 2 6 × 3 57 × 7 6 2 27 n × 2 12 × 3 105 × 7 6 2 27 n × 3 54 n × 5 63 n

  10. G A I I H c D N 3 n = 3 9 × 11 18 2 69 × 5 3 2 102 × 5 3 3 9 × 7 12 × 11 18 n

  11. G A a I I H c D N 3 n = 3 9 a × 11 18 a 2 69 a × 5 3 a 2 102 × 5 3 3 9 × 7 12 × 11 18 a n

Proof

The honeycomb derived network of dimension 3 HcDN 3 (n) is obtained by taking the union of the honeycomb network, its stellation and its medial, which is a non-planar graph.

In the honeycomb derived network HcDN3 (n),

V H c D N 3 n = 18 n 2 6 n + 1 E H c D N 3 n = 54 n 2 42 n + 12

There are seven types of edges in E (HcDN3 (n)) based on the degree of end vertices, i.e.,

E 1 H c D N 3 n = u v E H c D N 3 n : d u = 3 , d v = 4 E 2 H c D N 3 n = u v E H c D N 3 n : d u = 3 , d v = 6 E 3 H c D N 3 n = u v E H c D N 3 n : d u = 4 , d v = 4 E 4 H c D N 3 n = u v E H c D N 3 n : d u = 4 , d v = 5 E 5 H c D N 3 n = u v E H c D N 3 n : d u = 4 , d v = 6 E 6 H c D N 3 n = u v E H c D N 3 n : d u = 5 , d v = 6 E 7 H c D N 3 n = u v E H c D N 3 n : d u = 6 , d v = 6
E 1 H c D N 3 n = 12 n E 2 H c D N 3 n = 6 n E 3 H c D N 3 n = 6 n E 4 H c D N 3 n = 12 n 1 E 5 H c D N 3 n = 12 n 1 E 6 H c D N 3 n = 18 n 1 E 7 H c D N 3 n = 54 n 2 108 n + 54

Now,

I I 2 H c D N 3 n = u v E H c D N 3 n d u d v = 3 × 4 12 n × 3 × 6 6 n × 4 × 4 6 n × 4 × 5 12 n 1 × 4 × 6 12 n 1 × 5 × 6 18 n 1 × 6 × 6 54 n 2 108 n + 54 = 2 30 × 3 78 5 30 2 108 n × 3 108 n × 5 30 3 84 × 3 162 n .
I I 1 H c D N 3 n = u v E H c D N 3 n d u + d v = 3 + 4 12 n × 3 + 6 6 n × 4 + 4 6 n × 4 + 5 12 n 1 × 4 + 6 12 n 1 × 5 + 6 18 n 1 × 6 + 6 54 n 2 108 n + 54 = 2 96 × 3 30 5 12 × 11 18 2 108 n × 3 54 n × 5 12 × 7 12 × 11 18 2 186 × 3 72 n .
H I I 1 H c D N 3 n = u v E H c D N 3 n d u + d v 2 = 3 + 4 2 12 n × 3 + 6 2 6 n × 4 + 4 2 6 n × 4 + 5 2 12 n 1 × 4 + 6 2 12 n 1 × 5 + 6 2 18 n 1 × 6 + 6 2 54 n 2 108 n + 54 = 2 192 × 3 60 5 24 × 11 36 2 216 n × 3 108 n × 5 24 × 7 24 × 11 36 2 372 × 2 144 n .
H I I 2 H c D N 3 n = u v E H c D N 3 n d u d v 2 = 3 × 4 2 12 n × 3 × 6 2 6 n × 4 × 4 2 6 n × 4 × 5 2 12 n 1 × 4 × 6 2 12 n 1 × 5 × 6 2 18 n 1 × 6 × 6 2 54 n 2 108 n + 54 = 2 60 × 3 156 5 60 2 216 n × 3 216 n × 5 60 2 168 × 3 324 n .
M Z 1 a H c D N 3 n = u v E H c D N 3 n d u + d v a = 3 + 4 a 12 n × 3 + 6 a 6 n × 4 + 4 a 6 n × 4 + 5 a 12 n 1 × 4 + 6 a 12 n 1 × 5 + 6 a 18 n 1 × 6 + 6 a 54 n 2 108 n + 54 = 2 96 a × 3 30 a 5 12 a × 11 18 a 2 108 n × 3 54 n × 5 12 × 7 12 × 11 18 2 186 × 3 72 a n .
X I I H c D N 3 n = u v E H c D N 3 n 1 d u + d v = 1 3 + 4 12 n × 1 3 + 6 6 n × 1 4 + 4 6 n × 1 4 + 5 12 n 1 × 1 4 + 6 12 n 1 × 1 5 + 6 18 n 1 × 1 6 + 6 54 n 2 108 n + 54 = 5 6 × 11 9 2 48 × 3 15 2 93 × 3 36 2 54 n × 3 27 n × 5 6 × 7 6 × 11 9 n .
χ I I H c D N 3 n = u v E H c D N 3 n 1 d u d v = 1 3 4 12 n × 1 3 6 6 n × 1 4 4 6 n × 1 4 5 12 n 1 × 1 4 6 12 n 1 × 1 5 6 18 n 1 × 1 6 6 54 n 2 108 n + 54 = 5 15 2 15 × 3 39 2 42 × 3 81 2 54 n × 3 54 n × 5 15 n .
A B C I I H c D N 3 n = u v E H c D N 3 n d u + d v 2 d u d v = 3 + 4 2 3 4 12 n × 3 + 6 2 3 6 6 n × 4 + 4 2 4 4 6 n × 4 + 5 2 4 5 12 n 1 × 4 + 6 2 4 6 12 n 1 × 5 + 6 2 5 6 18 n 1 × 6 + 6 2 6 6 54 n 2 108 n + 54 = 5 42 2 6 × 3 57 × 7 6 2 27 n × 2 12 × 3 105 × 7 6 2 27 n × 3 54 n × 5 63 n .
G A I I H c D N 3 n = u v E H c D N 3 n 2 d u d v d u + d v = 2 3 4 3 + 4 12 n × 2 3 6 3 + 6 6 n × 2 4 4 4 + 4 6 n × 2 4 5 4 + 5 12 n 1 × 2 4 6 4 + 6 12 n 1 × 2 5 6 5 + 6 18 n 1 × 2 6 6 6 + 6 54 n 2 108 n + 54 = 3 9 × 11 18 2 69 × 5 3 2 102 × 5 3 3 9 × 7 12 × 11 18 n .
G A a I I H c D N 3 n = u v E H c D N 3 n 2 d u d v d u + d v a = 2 3 4 3 + 4 a 12 n × 2 3 6 3 + 6 a 6 n × 2 4 4 4 + 4 a 6 n × 2 4 5 4 + 5 a 12 n 1 × 2 4 6 4 + 6 a 12 n 1 × 2 5 6 5 + 6 a 18 n 1 × 2 6 6 6 + 6 a 54 n 2 108 n + 54 = 3 9 a × 11 18 a 2 69 a × 5 3 a 2 102 × 5 3 3 9 × 7 12 × 11 18 a n .

Theorem 4

Let HcDN4 (n) be the honeycomb derived network of dimension 4. Then

  1. I I 1 H c D N 4 n = 3 156 × 19 12 2 276 × 5 18 × 7 282 × 11 30 × 13 12 2 99 n × 3 45 n × 5 18 × 7 156 × 11 18 × 13 6 2 9 × 3 153 n

  2. H I I 1 H c D N 4 n = 3 312 × 19 24 2 552 × 5 36 × 7 564 × 11 60 × 13 24 2 198 n × 3 90 n × 5 36 × 7 312 × 11 36 × 13 12 2 18 × 3 306 n

  3. H I I 2 H c D N 4 n = 2 192 3 672 × 5 804 2 324 n × 3 252 n × 3 72 × 5 420 2 468 n

  4. M Z 2 a H c D N 4 n = 2 96 3 336 × 5 402 a 2 162 n × 3 162 n × 3 36 × 5 210 2 234 a n

  5. X I I H c D N 4 n = 2 138 × 5 9 × 7 141 × 11 15 × 13 6 3 78 × 19 6 2 9 2 × 3 153 2 2 99 2 n × 3 45 2 n × 5 9 × 7 78 × 11 9 × 13 3 n

  6. χ I I H c D N 4 n = 3 168 × 5 201 2 48 2 117 2 81 n × 3 63 n × 3 18 × 5 105 n

  7. A B C I I H c D N 4 n = 5 213 × 11 9 × 13 6 × 17 6 × 19 3 2 282 × 7 24 2 483 2 n × 3 57 n × 5 36 n × 2 399 2 × 3 273 × 5 123 × 7 15 × 11 15 2 11 33 2 n

  8. G A I I H c D N 4 n = 2 30 × 11 30 × 13 12 5 33 × 7 18 × 19 12 2 27 n × 2 3 × 3 51 × 5 15 3 18 n × 7 12 × 11 18 × 13 6 n

  9. G A a I I H c D N 4 n = 2 30 × 11 30 × 13 12 5 33 × 7 18 × 19 12 a 2 27 n × 2 3 × 3 51 × 5 15 3 18 n × 7 12 × 11 18 × 13 6 a n

Proof

The honeycomb derived network of dimension 4 HcDN 4 (n) is obtained by taking the union of the honeycomb network, its stellation, its bounded dual and its medial, which is a non-planar graph.

In the honeycomb derived network HcDN4 (n),

V H c D N 4 n = 18 n 2 6 n + 1 E H c D N 4 n = 63 n 2 57 n + 18

There are sixteen types of edges in E (HcDN4 (n)) based on the degree of end vertices, i.e.,

E 1 H c D N 4 n = u v E H c D N 4 n : d u = 3 , d v = 4 E 2 H c D N 4 n = u v E H c D N 4 n : d u = 3 , d v = 9 E 3 H c D N 4 n = u v E H c D N 4 n : d u = 3 , d v = 10 E 4 H c D N 4 n = u v E H c D N 4 n : d u = 4 , d v = 4 E 5 H c D N 4 n = u v E H c D N 4 n : d u = 4 , d v = 5 E 6 H c D N 4 n = u v E H c D N 4 n : d u = 4 , d v = 6 E 7 H c D N 4 n = u v E H c D N 4 n : d u = 5 , d v = 6 E 8 H c D N 4 n = u v E H c D N 4 n : d u = 5 , d v = 9 E 9 H c D N 4 n = u v E H c D N 4 n : d u = 5 , d v = 10 E 10 H c D N 4 n = u v E H c D N 4 n : d u = 6 , d v = 6 E 11 H c D N 4 n = u v E H c D N 4 n : d u = 6 , d v = 9 E 12 H c D N 4 n = u v E H c D N 4 n : d u = 6 , d v = 10 E 13 H c D N 4 n = u v E H c D N 4 n : d u = 6 , d v = 12 E 14 H c D N 4 n = u v E H c D N 4 n : d u = 9 , d v = 10 E 15 H c D N 4 n = u v E H c D N 4 n : d u = 9 , d v = 12 E 16 H c D N 4 n = u v E H c D N 4 n : d u = 10 , d v = 10 E 17 H c D N 4 n = u v E H c D N 4 n : d u = 10 , d v = 12 E 18 H c D N 4 n = u v E H c D N 4 n : d u = 12 , d v = 12
E 1 H c D N 4 n = 12 n E 2 H c D N 4 n = 12 E 3 H c D N 4 n = 6 n 2 E 4 H c D N 4 n = 6 n E 5 H c D N 4 n = 12 n 1 E 6 H c D N 4 n = 12 n 1 E 7 H c D N 4 n = 6 n 1 E 8 H c D N 4 n = 12 E 9 H c D N 4 n = 12 n 2 E 10 H c D N 4 n = 36 n 2 72 n + 36 E 11 H c D N 4 n = 12 E 12 H c D N 4 n = 18 n 2 E 13 H c D N 4 n = 18 n 2 54 n + 42 E 14 H c D N 4 n = 12 E 15 H c D N 4 n = 6 E 16 H c D N 4 n = 6 n 3 E 17 H c D N 4 n = 12 n 2 E 18 H c D N 4 n = 9 n 2 33 n + 30

Now,

I I 2 H c D N 4 n = u v E H c D N 4 n d u d v = 3 × 4 12 n × 3 × 9 12 × 3 × 10 6 n 2 × 4 × 4 6 n × 4 × 5 12 n 1 × 4 × 6 12 n 1 × 5 × 6 6 n 1 × 5 × 9 12 × 5 × 10 12 n 2 × 6 × 6 36 n 2 72 n + 36 × 6 × 9 12 × 6 × 10 18 n 2 × 6 × 12 18 n 2 54 n + 42 × 9 × 10 12 × 9 × 12 6 × 10 × 10 6 n 3 × 10 × 12 12 n 2 × 12 × 12 9 n 2 33 n + 30 = 2 96 3 336 × 5 402 2 162 n × 3 162 n × 3 36 × 5 210 2 234 n .
I I 1 H c D N 4 n = u v E H c D N 4 n d u + d v = 3 + 4 12 n × 3 + 9 12 × 3 + 10 6 n 2 × 4 + 4 6 n × 4 + 5 12 n 1 × 4 + 6 12 n 1 × 5 + 6 6 n 1 × 5 + 9 12 × 5 + 10 12 n 2 × 6 + 6 36 n 2 72 n + 36 × 6 + 9 12 × 6 + 10 18 n 2 × 6 + 12 18 n 2 54 n + 42 × 9 + 10 12 × 9 + 12 6 × 10 + 10 6 n 3 × 10 + 12 12 n 2 × 12 + 12 9 n 2 33 n + 30 = 3 156 × 19 12 2 276 × 5 18 × 7 282 × 11 30 × 13 12 2 99 n × 3 45 n × 5 18 × 7 156 × 11 18 × 13 6 2 9 × 3 153 n .
H I I 1 H c D N 4 n = u v E H c D N 4 n d u + d v 2 = 3 + 4 2 12 n × 3 + 9 2 12 × 3 + 10 2 6 n 2 × 4 + 4 2 6 n × 4 + 5 2 12 n 1 × 4 + 6 2 12 n 1 × 5 + 6 2 6 n 1 × 5 + 9 2 12 × 5 + 10 2 12 n 2 × 6 + 6 2 36 n 2 72 n + 36 × 6 + 9 2 12 × 6 + 10 2 18 n 2 × 6 + 12 2 18 n 2 54 n + 42 × 9 + 10 2 12 × 9 + 12 2 6 × 10 + 10 2 6 n 3 × 10 + 12 2 12 n 2 × 10 + 12 2 9 n 2 33 n + 30 = 3 312 × 19 24 2 552 × 5 36 × 7 564 × 11 60 × 13 24 2 198 n × 3 90 n × 5 36 × 7 312 × 11 36 × 13 12 2 18 × 3 306 n .
H I I 2 H c D N 4 n = u v E H c D N 4 n d u d v 2 = 3 × 4 2 12 n × 3 × 9 2 12 × 3 × 10 2 6 n 2 × 4 × 4 2 6 n × 4 × 5 2 12 n 1 × 4 × 6 2 12 n 1 × 5 × 6 2 6 n 1 × 5 × 9 2 12 × 5 × 10 2 12 n 2 × 6 × 6 2 36 n 2 72 n + 36 × 6 × 9 2 12 × 6 × 10 2 18 n 2 × 6 × 12 2 18 n 2 54 n + 42 × 9 × 10 2 12 × 9 × 12 2 6 × 10 × 10 2 6 n 3 × 10 × 12 2 12 n 2 × 12 × 12 2 9 n 2 33 n + 30 = 2 192 3 672 × 5 804 2 324 n × 3 252 n × 3 72 × 5 420 2 468 n .
M Z 1 a H c D N 4 n = u v E H c D N 4 n d u + d v a = 3 + 4 a 12 n × 3 + 9 a 12 × 3 + 10 a 6 n 2 × 4 + 4 a 6 n × 4 + 5 a 12 n 1 × 4 + 6 a 12 n 1 × 5 + 6 a 6 n 1 × 5 + 9 a 12 × 5 + 10 a 12 n 2 × 6 + 6 a 36 n 2 72 n + 36 × 6 + 9 a 12 × 6 + 10 a 18 n 2 × 6 + 12 a 18 n 2 54 n + 42 × 9 + 10 a 12 × 9 + 12 a 6 × 10 + 10 a 6 n 3 × 10 + 12 a 12 n 2 × 10 + 12 a 9 n 2 33 n + 30 = 3 156 × 19 12 2 276 × 5 18 × 7 282 × 11 30 × 13 12 a 2 99 n × 3 45 n × 5 18 × 7 156 × 11 18 × 13 6 2 9 × 3 153 a n .
M Z 2 a H c D N 4 n = u v E H c D N 4 n d u d v a = 3 × 3 a 6 × 3 × 5 a 12 n 1 × 3 × 9 a 12 × 3 × 10 a 6 n 2 × 5 × 6 a 6 n 1 × 5 × 9 a 12 × 5 × 10 a 12 n 2 × 6 × 6 a 9 n 2 21 n + 12 × 6 × 9 a 12 × 6 × 10 a 18 n 2 × 6 × 12 a 18 n 2 54 n + 42 × 9 × 10 a 12 × 9 × 12 a 6 × 10 × 10 a 6 n 3 × 10 × 12 a 12 n 2 × 12 × 12 a 9 n 2 33 n + 30 = 2 96 3 336 × 5 402 a 2 162 n × 3 162 n × 3 36 × 5 210 2 234 a n .
X I I H c D N 4 n = u v E H c D N 4 n 1 d u + d v = 1 3 + 4 12 n × 1 3 + 9 12 × 1 3 + 10 6 n 2 × 1 4 + 4 6 n × 1 4 + 5 12 n 1 × 1 4 + 6 12 n 1 × 1 5 + 6 6 n 1 × 1 5 + 9 12 × 1 5 + 10 12 n 2 × 1 6 + 6 36 n 2 72 n + 36 × 1 6 + 9 12 × 1 6 + 10 18 n 2 × 1 6 + 12 18 n 2 54 n + 42 × 1 9 + 10 12 × 1 9 + 12 6 × 1 10 + 10 6 n 3 × 1 10 + 12 12 n 2 × 1 12 + 12 9 n 2 33 n + 30 = 2 138 × 5 9 × 7 141 × 11 15 × 13 6 3 78 × 19 6 2 9 2 × 3 153 2 2 99 2 n × 3 45 2 n × 5 9 × 7 78 × 11 9 × 13 3 n .
χ I I H c D N 4 n = u v E H c D N 4 n 1 d u . d v 1 3.4 12 n × 1 3.9 12 1 3.10 6 ( n 2 ) × 1 4.4 6 n × 1 4.5 12 ( n 1 ) × 1 4.6 12 ( n 1 ) × 1 5.6 6 ( n 1 ) × 1 5.9 12 × 1 5.10 12 ( n 2 ) × 1 6.6 36 n 2 72 n + 36 × 1 6.9 12 × 1 6.10 18 ( n 2 ) × 1 6.12 18 n 2 54 n + 42 × 1 9.10 12 × 1 9.12 6 × 1 10.10 6 ( n 3 ) × 1 10.12 12 ( n 2 ) × 1 12.12 9 n 2 33 n + 30 = 3 168 × 5 201 2 48 2 117 2 81 n × 3 63 n × 3 18 × 5 105
A B C I I ( H c D N 4 ( n ) ) = u v E H c D N 4 n d u + d v 2 d u d v = 3 + 4 2 3 4 12 n × 3 + 9 2 3 9 12 × 3 + 10 2 3 10 6 n 2 × 4 + 4 2 4 4 6 n × 4 + 5 2 4 5 12 n 1 × 4 + 4 2 4 6 12 n 1 × 5 + 6 2 5 6 6 n 1 × 5 + 9 2 5 9 12 × 5 + 10 2 5 10 12 n 2 × 6 + 6 2 6 6 36 n 2 72 n + 36 × 6 + 9 2 6 9 12 × 6 + 10 2 6 10 18 n 2 × 6 + 12 2 6 12 18 n 2 54 n + 42 × 9 + 10 2 9 10 12 × 9 + 12 2 9 12 6 × 10 + 10 2 10 10 6 n 3 × 10 + 12 2 10 12 12 n 2 × 12 + 12 2 12 12 9 n 2 33 n + 30 = 5 213 × 11 9 × 13 6 × 17 6 × 19 3 2 282 × 7 24 2 483 2 n × 3 57 n × 5 36 n × 2 399 2 × 3 273 × 5 123 × 7 15 × 11 15 2 11 33 2 n .
G A I I H c D N 4 n = u v E H c D N 4 n 2 d u d v d u + d v = 2 3 4 3 + 4 12 n × 2 3 9 3 + 9 12 × 2 3 10 3 + 10 6 n 2 × 2 4 4 4 + 4 6 n × 2 4 5 4 + 5 12 n 1 × 2 4 6 4 + 6 12 n 1 × 2 5 6 5 + 6 6 n 1 × 2 5 9 5 + 9 12 × 2 5 10 5 + 10 12 n 2 × 2 6 6 6 + 6 36 n 2 72 n + 36 × 2 6 9 6 + 9 12 × 2 6 10 6 + 10 18 n 2 × 2 6 12 6 + 12 18 n 2 54 n + 42 × 2 9 10 9 + 10 12 × 2 9 12 9 + 12 6 × 2 10 10 10 + 10 6 n 3 × 2 10 12 10 + 12 12 n 2 × 2 12 12 12 + 12 9 n 2 33 n + 30 = 2 30 × 11 30 × 13 12 5 33 × 7 18 × 19 12 2 27 n × 2 3 × 3 51 × 5 15 3 18 n × 7 12 × 11 18 × 13 6 n .
G A a I I H c D N 4 n = u v E H c D N 4 n 2 d u d v d u + d v a = 2 3 4 3 + 4 a 12 n × 2 3 9 3 + 9 a 12 × 2 3 10 3 + 10 a 6 n 2 × 2 4 4 4 + 4 a 6 n × 2 4 5 4 + 5 a 12 n 1 × 2 4 6 4 + 6 a 12 n 1 × 2 5 6 5 + 6 a 6 n 1 × 2 5 9 5 + 9 a 12 × 2 5 10 5 + 10 a 12 n 2 × 2 6 6 6 + 6 a 36 n 2 72 n + 36 × 2 6 9 6 + 9 a 12 × 2 6 10 6 + 10 a 18 n 2 × 2 6 12 6 + 12 a 18 n 2 54 n + 42 × 2 9 10 9 + 10 a 12 × 2 9 12 9 + 12 a 6 × 2 10 10 10 + 10 a 6 n 3 × 2 10 12 10 + 12 a 12 n 2 × 2 12 12 12 + 12 a 9 n 2 33 n + 30 = 2 30 × 11 30 × 13 12 5 33 × 7 18 × 19 12 a 2 27 n × 2 3 × 3 51 × 5 15 3 18 n × 7 12 × 11 18 × 13 6 a n .

4 Conclusions

In recent years, the computational physics problem on special molecular network structures has gained attention in theoretical physics. From the standpoint of graph theory, one learns a real-valued function that assigns scores to molecular graphs. What is important is the relative physicochemical characters of the corresponding compounds induced by those scores. This topic is distinct from both classical graph theory and physical computing problems, and it is natural to ask what kinds topological index and molecular structure generalizations hold for this problem. Although there have been several recent advances in developing results for various settings of the molecular calculation problem, the study of topological indices of special molecular networks has been largely limited to the special mathematical setting. In this manuscript, the authors study the multiplicative degree based topological indices of honeycomb derived networks of dimension 1, 2, 3 and 4, and their specific expressions are obtained. These results can also play a vital part in the determination of the significance of honeycomb derived networks. For example, it has been experimentally verified that the first Zagreb index is directly related to total π-electron energy. The Randić index is useful for determining physicochemical properties of alkanes as noticed by the chemist Melan Randić in 1975. He noticed the correlation between the Randic index R and several physicochemical properties of alkanes like enthalpies of formation, boiling points, chromatographic retention times, vapor pressure and surface areas. Calculations of distance-based and surface-based topological indices of these networks are an open problem in this area of research. Also, the construction of new networks by taking line graphs and para-line graphs of honeycomb networks is an interesting problem.

Acknowledgement

Many thanks to both reviewers for their valuable comments that helped us to improve the quality of this paper. This research is supported by Project Supported by the Natural Science Fund Project of Anhui Xinhua University (Grant Nos.2017zr011).

References

[1] Wegscheider R., Über simultane Gleichgewichte und die Beziehungen zwischen Thermodynamik und Reactionskinetik homogener Systeme, Monatshefte für Chemie und verwandte Teile anderer Wissenschaften, 1911, 32, 849-906.10.1007/BF01517735Search in Google Scholar

[2] Semenov N.N., Some problems relating to chain reactions and to the theory of combustion, Nobel Lecture, 1956, 487-514.Search in Google Scholar

[3] Hinshelwood C., Chemical kinetics in the past few decades, Science, 1957, 125(3250), 679-682.10.1126/science.125.3250.679Search in Google Scholar

[4] Gorban A.N., Yablonsky G.S., Three waves of chemical dynamics, Math. Model. Natur. Phenom., 2015, 10(5), 1-5.10.1051/mmnp/201510501Search in Google Scholar

[5] Aris R., Prolegomena to the rational analysis of systems of chemical reactions, Archive Ration, Mech. Anal., 1965, 19(2), pp.81-99.10.1007/BF00282276Search in Google Scholar

[6] Krambeck F.J., The mathematical structure of chemical kinet ics in homogeneous single-phase systems, Archive Ration, Mech. Anal., 1970, 38(5), 317-347.10.1007/BF00251527Search in Google Scholar

[7] Horn F., Jackson R., Generalmass action kinetics. Archive for rational mechanics and analysis, 1972, 47(2), 81-116.10.1007/BF00251225Search in Google Scholar

[8] Feinberg M., Complex balancing in general kinetic systems, Archive Ration, Mech. Anal., 1972, 49(3), 187-194.10.1007/BF00255665Search in Google Scholar

[9] Aris R., Prolegomena to the rational analysis of systems of chemical reactions II. Some addenda, Archive Ration, Mech. Anal., 1968, 27(5), 356-364.10.1016/S1874-5970(99)80014-9Search in Google Scholar

[10] Shapiro N.Z., Shapley L.S.,Mass action laws and the Gibbs free energy function, J. Soc. Industr. Appl. Math., 1965, 13(2), 353-375.10.1137/0113020Search in Google Scholar

[11] Érdi P., Tóth J.,Mathematical models of chemical reactions: theory and applications of deterministic and stochastic models, Manchester University Press, 1989.Search in Google Scholar

[12] Kunze H., Siegel D., Monotonicity properties of chemical reactions with a single initial bimolecular step, J. Math. Chem., 2002, 31(4), 339-344.10.1023/A:1021064420348Search in Google Scholar

[13] Mincheva M., Siegel D., Nonnegativity and positiveness of so lutions to mass action reaction–diffusion systems, J. Math. Chem., 2007, 42(4), 1135-1145.10.1007/s10910-007-9292-0Search in Google Scholar

[14] De Leenheer P., Angeli D., Sontag E.D., Monotone chemical reaction networks, J. Math. Chem., 2007, 41(3), pp.295-314.10.1007/s10910-006-9075-zSearch in Google Scholar

[15] Banaji M., Donnell P., Baigent S., Pmatrix properties, injectivity, and stability in chemical reaction systems, SIAM J. Appl. Math., 2007, 67(6), 1523-1547.10.1137/060673412Search in Google Scholar

[16] Craciun G., Pantea C., Identifiability of chemical reaction networks, J. Math. Chem., 2008, 44(1), 244-259.10.1007/s10910-007-9307-xSearch in Google Scholar

[17] Domijan M., Kirkilionis M., Bistability and oscillations in chemical reaction networks, J. Math. Biol., 2009, 59(4), 467-501.10.1007/s00285-008-0234-7Search in Google Scholar PubMed

[18] Gorban A.N., Yablonsky G.S., Extended detailed balance for systems with irreversible reactions, Chem. Eng. Sci., 2011, 66(21), 5388-5399.10.1016/j.ces.2011.07.054Search in Google Scholar

[19] Feliu E., Knudsen M., Wiuf C., Signaling cascades: consequences of varying substrate and phosphatase levels, Adv. Syst. Biol., 2012, 81-94.10.1007/978-1-4419-7210-1_4Search in Google Scholar PubMed

[20] Otero-Muras I., Banga J.R., Alonso A.A., Characterizing multistationarity regimes in biochemical reaction networks, PLoS One, 2012, 7(7), e39194.10.1371/journal.pone.0039194Search in Google Scholar PubMed PubMed Central

[21] Imran M., Baig A.Q., Ali H. Rehman S.U., On topological properties of poly honeycomb networks, Period. Math. Hungarica, 2016, 73(1), 100-119.10.1007/s10998-016-0132-5Search in Google Scholar

[22] Hayat S.,Malik M.A. Imran M., Computing topological indices of honey-comb derived networks, Romanian J. Inf. Sci. Techn., 2015, 18, 144-165.Search in Google Scholar

[23] Ahmad M.S., Nazeer W., Kang S.M., Imran M., Gao W., Calculating degree-based topological indices of dominating David derived networks, Open Phys., 15(1), 1015-1021.10.1515/phys-2017-0126Search in Google Scholar

[24] Abdo H., Dimitrov D., GaoW., On the irregularity of some molecular structures, Canadian J. Chem., 2016, 95(2), 174- 183.10.1139/cjc-2016-0539Search in Google Scholar

[25] Ahmadi M.B., Dimitrov D., Gutman I., Hosseini S.A., Disproving a conjecture on trees with minimal atom-bond connectivity index, MATCH Commun. Math. Comput. Chem, 2014, 72(3), 685-698.Search in Google Scholar

[26] Dimitrov D.,Onstructural properties of treeswith minimal atom-bond connectivity index II: Bounds on B1-and B2-branches, Discr. Appl. Math., 2016,204, 90-116.10.1016/j.dam.2015.10.010Search in Google Scholar

[27] Dimitrov D., Du, Z., da Fonseca, C.M., On structural properties of trees with minimal atom-bond connectivity index III: Trees with pendent paths of length three, Appl. Math. Comput., 2016, 282, 276-290.10.1016/j.amc.2016.02.019Search in Google Scholar

[28] Guirao J.L.G., de Bustos M.T., Dynamics of pseudo-radioactive chemical products via sampling theory, J. Math. Chem., 2012, 50(2), 374-378.10.1007/s10910-010-9788-xSearch in Google Scholar

[29] West D.B., Introduction to graph theory (Vol. 2), Upper Saddle River: Prentice hall, 2001.Search in Google Scholar

[30] Gao W., Wang Y., Wang W., Shi L., The first multiplication atom-bond connectivity index of molecular structures in drugs, Saudi Pharm. J., 2017, 25(4), 548-555.10.1016/j.jsps.2017.04.021Search in Google Scholar

[31] Gao W., Wang Y., Basavanagoud B., Jamil M.K., Characteristics studies ofmolecular structures in drugs, Saudi Pharmaceu- tical Journal, 2017, 25(4), pp.580-586.10.1016/j.jsps.2017.04.027Search in Google Scholar

[32] Gao W., Wang W., Dimitrov D., Wang, Y., Nano Properties Analysis via Fourth Multiplicative ABC Indicator Calculating, Arabian J. Chem., 2018, 11(6), 793-801.10.1016/j.arabjc.2017.12.024Search in Google Scholar

[33] Deutsch E., Klavzar S., M-Polynomial and degree-based topological indices, Iranian J. Math. Chem., 2015, 6, 93-102Search in Google Scholar

[34] Wiener H., Structural determination of parafln boiling points, J. Amer. Chem. Soc., 1947, 69(1), 17-20.10.1021/ja01193a005Search in Google Scholar

[35] Randić M., Characterization of molecular branching, J. Amer. Chem. Soc., 1975, 97(23), 6609-6615.10.1021/ja00856a001Search in Google Scholar

[36] Bollobás B., Erdös P., Graphs of extremal weights, Ars Combinatoria, 1998, 50, 225-233.10.1016/S0012-365X(98)00320-3Search in Google Scholar

[37] Amić D., Bešlo D., Lucˇić, B., Nikolić S., Trinajstić, N., The vertex connectivity index revisited, J. Chem. Inf. Comp. Sci., 1998, 38(5), 819-822.10.1021/ci980039bSearch in Google Scholar

[38] Hu Y., Li X., Shi Y., Xu T., Gutman I., On molecular graphs with smallest and greatest zeroth-order general Randic index, MATCH Commun. Math. Comput. Chem, 2005, 54(2), 425-434.Search in Google Scholar

[39] Li X., Gutman, I., Randić M., Mathematical aspects of Randićtype molecular structure descriptors, University, Faculty of Science, 2006.Search in Google Scholar

[40] Randić M.,Onhistory of the Randić index and emerging hostility toward chemical graph theory, MATCH Commun. Math. Comput. Chem, 2008, 59, 5-124.Search in Google Scholar

[41] Randić M., The connectivity index 25 years after, J. Mol. Graph. Model., 2001, 20(1), 19-35.10.1016/S1093-3263(01)00098-5Search in Google Scholar

[42] Gutman I., Furtula, B. eds., Recent results in the theory of Randić index. University, Faculty of Science.Search in Google Scholar

[43] Li X., Shi Y., A survey on the Randic index, MATCH Commun. Math. Comput. Chem, 2008, 59(1), 127-156.Search in Google Scholar

[44] Gutman I., Recent Results in the Theory of Randić Index, 2008, Kragujevac University.Search in Google Scholar

[45] Gutman I., Ruscić B., Trinajstić N., Wilcox Jr C.F., Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys., 1975, 62(9), 3399-3405.10.1063/1.430994Search in Google Scholar

[46] Narumi H., Katayama M., Simple topological index: A newly devised index characterizing the topological nature of structural isomers of saturated hydrocarbons, Memoirs of the Faculty of Engineering, Hokkaido University, 1984, 16(3), 209-214.Search in Google Scholar

[47] Gutman I., Multiplicative Zagreb indices of trees, Bull. Soc. Math. Banja Luka, 2011, 18, 17-23.Search in Google Scholar

[48] Todeschini R., Ballabio D., Consonni V., Novel molecular descriptors based on functions of new vertex degrees, Math. Chem. Monographs, 2010, 73-100.Search in Google Scholar

[49] Todeschini, R., Consonni V., New local vertex invariants and molecular descriptors based on functions of the vertex degrees, MATCH Commun. Math. Comput. Chem, 2010, 64(2), 359-372.Search in Google Scholar

[50] Wang S., Wei B., Multiplicative Zagreb indices of k-trees, Discrete Applied Mathematics, 2015, 180,168-175.10.1016/j.dam.2014.08.017Search in Google Scholar

[51] Eliasi M., Iranmanesh A., Gutman I., Multiplicative versions of first Zagreb index, MATCH Commun. Math. Comp. Chem., 2012, 68(1), 217.Search in Google Scholar

[52] Kulli, V.R., Multiplicative hyper-Zagreb indices and coindices of graphs: computing these indices of some nanostructures, International Res. J. Pure Algebra, 2016, 6(7), 342-347.Search in Google Scholar

[53] Kulli V.R., Stone B.,Wang S., Wei, B., Generalised multiplicative indices of polycyclic aromatic hydrocarbons and benzenoid systems, Zeitschrift für Naturforschung A, 2017, 72(6), 573-576.10.1515/zna-2017-0104Search in Google Scholar

[54] Kulli V.R., Multiplicative connectivity indices of TUC4C8 [m, n] and TUC4 [m, n] nanotubes, J.Comp.Math. Sci., 2016, 7(11), 599-605.10.22457/ijfma.v11n1a6Search in Google Scholar

Received: 2018-02-24
Accepted: 2019-01-08
Published Online: 2019-03-23

© 2019 J.-H. Tang et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.1515/phys-2019-0003/html
Scroll to top button