Skip to content
BY 4.0 license Open Access Published by De Gruyter (O) August 30, 2022

Crystal structure of N′,N‴-((1E,2E)-1,2-diphenylethane-1,2-diylidene)bis(4-methylbenzohydrazide) – water – methanol (1/1/1), C31H32N4O4

  • Zhijian Zhang ORCID logo EMAIL logo , Wujiu Jiang ORCID logo , Fuxing Zhang and Aodian Li

Abstract

C31H32N4O4, monoclinic, P2/c (no. 13), a = 23.938(2) Å, b = 9.1931(8) Å, c = 12.6327(10) Å, β = 91.828(7)°, V = 2778.6(4) Å3, Z = 4, Rgt (F) = 0.0544, wRref (F 2) = 0.1388, T = 296(2) K.

CCDC no.: 2171861

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless block
Size: 0.14 × 0.13 × 0.12 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.08 mm−1
Diffractometer, scan mode: SuperNova, φ and ω
θ max, completeness: 25.1°, >99%
N(hkl)measured, N(hkl)unique, R int: 12635, 4956, 0.035
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 3371
N(param)refined: 373
Programs: CrysAlisPRO [1], SHELX [2, 3], WinGX/ORTEP [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
C1 0.74432 (7) 0.7393 (2) 0.42355 (14) 0.0319 (5)
C2 0.78656 (8) 0.8224 (2) 0.36580 (15) 0.0360 (5)
C3 0.83091 (9) 0.8909 (3) 0.41865 (18) 0.0498 (6)
H3 0.834733 0.882492 0.491887 0.060*
C4 0.86948 (10) 0.9713 (3) 0.3646 (2) 0.0660 (7)
H4A 0.898989 1.016375 0.401246 0.079*
C5 0.86417 (11) 0.9844 (3) 0.2566 (2) 0.0759 (8)
H5 0.890024 1.038425 0.219705 0.091*
C6 0.82037 (12) 0.9173 (3) 0.2033 (2) 0.0745 (8)
H6 0.816647 0.926780 0.130118 0.089*
C7 0.78226 (10) 0.8370 (3) 0.25613 (17) 0.0561 (7)
H7 0.753129 0.791584 0.218543 0.067*
C8 0.62583 (8) 0.5277 (2) 0.36624 (15) 0.0365 (5)
C9 0.58608 (8) 0.4353 (2) 0.42391 (14) 0.0342 (5)
C10 0.57737 (8) 0.4465 (2) 0.53167 (15) 0.0368 (5)
H10 0.598034 0.512902 0.572295 0.044*
C11 0.53834 (8) 0.3599 (2) 0.57893 (16) 0.0420 (5)
H11 0.533149 0.368921 0.651284 0.050*
C12 0.50661 (8) 0.2597 (2) 0.52106 (17) 0.0441 (5)
C13 0.51507 (9) 0.2501 (2) 0.41298 (18) 0.0491 (6)
H13 0.494090 0.184349 0.372329 0.059*
C14 0.55399 (8) 0.3363 (2) 0.36489 (16) 0.0431 (5)
H14 0.558862 0.328142 0.292383 0.052*
C15 0.46370 (10) 0.1669 (3) 0.5731 (2) 0.0682 (7)
H15A 0.481843 0.085862 0.607607 0.102*
H15B 0.437201 0.131823 0.520457 0.102*
H15C 0.444626 0.223724 0.624489 0.102*
C16 0.74538 (7) 0.7481 (2) 0.54284 (14) 0.0313 (5)
C17 0.70449 (8) 0.8471 (2) 0.58996 (15) 0.0352 (5)
C18 0.68577 (9) 0.9689 (2) 0.53431 (17) 0.0473 (6)
H18 0.697555 0.984259 0.465769 0.057*
C19 0.64998 (10) 1.0674 (3) 0.5789 (2) 0.0613 (7)
H19 0.638591 1.149530 0.541035 0.074*
C20 0.63121 (10) 1.0449 (3) 0.6787 (2) 0.0650 (7)
H20 0.607223 1.111545 0.708971 0.078*
C21 0.64816 (10) 0.9222 (3) 0.73434 (19) 0.0610 (7)
H21 0.634931 0.905760 0.801722 0.073*
C22 0.68445 (9) 0.8240 (3) 0.69099 (16) 0.0486 (6)
H22 0.695616 0.742040 0.729284 0.058*
C23 0.85852 (8) 0.5276 (2) 0.62120 (15) 0.0414 (5)
C24 0.90105 (8) 0.4410 (2) 0.56546 (15) 0.0392 (5)
C25 0.93227 (9) 0.3398 (3) 0.62359 (17) 0.0514 (6)
H25 0.925920 0.326614 0.695191 0.062*
C26 0.97268 (10) 0.2590 (3) 0.57514 (19) 0.0582 (7)
H26 0.993094 0.191112 0.614889 0.070*
C27 0.98368 (9) 0.2760 (3) 0.46932 (18) 0.0509 (6)
C28 0.95258 (9) 0.3780 (3) 0.41252 (17) 0.0502 (6)
H28 0.959201 0.391369 0.341035 0.060*
C29 0.91213 (8) 0.4601 (3) 0.45911 (16) 0.0453 (6)
H29 0.892108 0.528686 0.419274 0.054*
C30 1.02798 (10) 0.1879 (3) 0.4167 (2) 0.0748 (8)
H30A 1.055343 0.156412 0.468985 0.112*
H30B 1.045741 0.246632 0.364681 0.112*
H30C 1.011105 0.104594 0.382897 0.112*
C31 0.77931 (14) 0.7276 (3) 0.9140 (2) 0.0845 (9)
H31A 0.750633 0.730511 0.965370 0.127*
H31B 0.769878 0.793245 0.857047 0.127*
H31C 0.814320 0.756206 0.946846 0.127*
H4 0.8113 (8) 0.552 (2) 0.4972 (17) 0.049 (7)*
H4B 0.7312 (16) 0.540 (5) 0.152 (3) 0.152 (18)*
H4C 0.6772 (12) 0.579 (3) 0.170 (2) 0.089 (11)*
N1 0.70647 (6) 0.67069 (18) 0.36962 (11) 0.0346 (4)
N2 0.66836 (7) 0.59019 (19) 0.42412 (13) 0.0351 (4)
H2 0.6762 (8) 0.557 (2) 0.4857 (17) 0.046 (6)*
N3 0.78002 (6) 0.68008 (19) 0.60525 (12) 0.0358 (4)
N4 0.81760 (7) 0.5887 (2) 0.55857 (13) 0.0370 (4)
O1 0.61953 (6) 0.5495 (2) 0.27115 (10) 0.0604 (5)
O2 0.86159 (7) 0.5467 (2) 0.71686 (11) 0.0682 (6)
O3 0.78378 (7) 0.58687 (18) 0.87436 (12) 0.0566 (5)
H3A 0.805138 0.586638 0.824882 0.085*
O4 0.70195 (9) 0.5666 (2) 0.12220 (14) 0.0627 (5)

Source of material

All chemicals were purchased from commercial sources and used as received without further purification. The 4-methylbenzohydrazide (5 mmol, 0.751 g) and benzaldehyde (2.5 mmol, 0.526 g) were dissolved in MeOH (20 mL). The mixture was refluxed for 8 h, and then the precipitate was collected by filtration. The solid was filtered out and the title product was obtained by recrystallization from methanol and water (9:1).

Experimental details

All H-atoms bonded to C atoms were placed geometrically and refined using a riding model with common isotropic displacement factors U iso(H) = 1.2 or 1.5 U eq (parent C-atom). The H-atom of the hydroxyl group in the methanol molecule is refined with U iso(H) = 1.5 U eq (O). The H-atoms at the N-atoms and in the water molecule are refined using isotropic approximation.

Comment

Generally, Schiff bases are synthesized through the condensation reaction of aldehydes or ketones with primary amines [5], [6], [7]. Schiff base compounds and their metal complexes have been studied for many years and successfully applied in many fields [8, 9]. Bisaroyl hydrazones are known to be a class of versatile Schiff bases ligands, capable of generating different molecular architectures and coordination polyhedra [10]. So, the synthesis and crystal structure of bisaroyl hydrazone derivatives are of great significance to studying the application.

Single-crystal structure analysis revealed that the title compound crystallized in the monoclinic space group P2/c. The ORTEP diagram is presented in Figure 1. Bond lengths and angles are all in the expected ranges. The title molecule exhibits an E configuration. The bond length of C1=N1, C16=N3, C8–N2 and C23–N4 are 1.282(2), 1.288(2), 1.361(2), and 1.361(2) Å, respectively, which are similar to those reported in the literature [11, 12]. The bond length of C8=O1 and C23=O2 are 1.222(2) and 1.221(2) Å, respectively, they are similar to those reported in the literature [13, 14].

The methanol and water in the structure participates in the construction of hydrogen bonds. The oxygen atom O3 of methanol provides one hydrogen bond to O2 of the acylhydrazone molecule (O3···O2 = 2.793(2) Å), the oxygen atom O4 of water provides three hydrogen bonds to O1 of the acylhydrazone molecule (O4···O1 = 2.774(2) Å), N3″ and N4″ of another acylhydrazone molecule (O4···N3″ = 2.951(3) Å; O4···N4″ = 3.239(3) Å; ″ = x, −y, z − 1/2), the nitrogen atom N2 of acylhydrazone provides one hydrogen bond to O4 of the water molecule (N2···O4′ = 2.976(2) Å; ′ = x, −y, z + 1/2), the nitrogen atom N4 of acylhydrazone provides one hydrogen bond to O3 of the methanol molecule (N2···O3′ = 2.925(2) Å; ′ = x, −y, z + 1/2).


Corresponding author: Zhijian Zhang, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, Hunan 421008, China, E-mail:

Funding source: Science Foundation of Hengyang Normal University of China

Award Identifier / Grant number: 2021QD04

Funding source: Hunan Provincial Natural Science Foundation of China

Award Identifier / Grant number: 2022JJ30096

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the Science Foundation of Hengyang Normal University of China (2021QD04) and Hunan Provincial Natural Science Foundation of China (No: 2022JJ30096).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Rigaku OD. CrysAlisPRO; Rigaku Oxford Diffraction Ltd: Yarnton, Oxfordshire, England, 2017.Search in Google Scholar

2. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar PubMed PubMed Central

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Farrugia, L. J. WinGX and ORTEP for windows: an update. J. Appl. Crystallogr. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Search in Google Scholar

5. Qiao, H.-T., Zhao, S.-H., Xi, F.-G. N′,N‴-(((ethane-1,2-diylbis(oxy))bis(2,1- phenylene))bis(methaneylylidene))bis(2-hydroxybenzohydrazide)nickel(II), C30H24N4NiO6. Z. Kristallogr. N. Cryst. Struct. 2020, 235, 1171–1173; https://doi.org/10.1515/ncrs-2020-0232.Search in Google Scholar

6. Meenatchi, V., Siva, S., Niu, Q., Cheng, L. Synthesis, spectroscopic characterization, optical, second harmonic generation and DFT analysis of 4-isopropylbenzaldehyde derived hydrazone. J. Mol. Struct. 2022, 1251, 132068; https://doi.org/10.1016/j.molstruc.2021.132068.Search in Google Scholar

7. El, M. R., Aly, S., El, H. H. A., Fodah, R., Saleh, S. Y. (E)- 1-(3-((E)-2–Hydroxybenzylideneamino)phenyl)-3-(4-methoxyphenyl)prop -2-en-1-one. Eur. J. Med. Chem. 2014, 76, 517–530.10.1016/j.ejmech.2014.02.021Search in Google Scholar

8. Shen, D., Martell, A. E., Sun, U. New synthesis cobalt Schiff base complexes as oxygen carriers. Inorg. Chem. 1989, 28, 2647–2662.10.1021/ic00312a029Search in Google Scholar

9. Ahabadi, N., Kashanian, S., Darabi, F. DNA binding and DNA cleavage studies of a water soluble cobalt(II) complex containing dinitrogen Schiff base ligand: the effect of metal on the mode of binding. Eur. J. Med. Chem. 2010, 45, 4239–4245.10.1016/j.ejmech.2010.06.020Search in Google Scholar PubMed

10. Vigato, P. A., Tamburini, S. Advances in acyclic compartmental ligands and related complexes. Coord. Chem. Rev. 2008, 252, 1871–1995; https://doi.org/10.1016/j.ccr.2007.10.030.Search in Google Scholar

11. López-Torres, E., Mendiola, M. A. Structural diversity of benzil bis(benzoylhydrazone): mononuclear, binuclear and trinuclear complexes. Dalton Trans. 2009, 7639–7647; https://doi.org/10.1039/B908662E.Search in Google Scholar PubMed

12. Ianelli, S., Carcelli, M. Syntheses and structural characterization of two novel α-diketone bisacylhydrazones. J. Chem. Crystallogr. 2001, 31, 123–127; https://doi.org/10.1023/a:1014362502709.10.1023/A:1014362502709Search in Google Scholar

13. Bariz OmarAli, A.-A., Jasim, M., Al-Karawi, A., Dege, N., Kansız, S., Abdulkareem, D., Ithawi, H. Synthesis and X-ray crystal structures of two different zinc (II) complexes of N,N′-cyclohexane-1,2-diylidene-bis(4-fluorobenzoylhydrazide) based on zinc salt effect. J. Mol. Struct. 2020, 1217, 128387; https://doi.org/10.1016/j.molstruc.2020.128387.Search in Google Scholar

14. Luo, F.-H., Shi, S.-M., Cao, M.-N., Cheng, C.-X., Hu, Z.-Q. 2′,2′-(ethane-1,2-diylidene)bis(2-hydroxybenzhydrazide) dimethyl sulfoxide disolvate. Acta Crystallogr. 2007, E63, o2696; https://doi.org/10.1107/s1600536807019393.Search in Google Scholar

Received: 2022-07-24
Accepted: 2022-08-19
Published Online: 2022-08-30
Published in Print: 2022-12-16

© 2022 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 15.5.2024 from https://www.degruyter.com/document/doi/10.1515/ncrs-2022-0375/html
Scroll to top button