Skip to content
BY 4.0 license Open Access Published by De Gruyter (O) July 14, 2022

Crystal structure of N-((Z)-amino(((E)-amino(phenylamino)methylene) amino)methylene)benzenaminium chloride – benzo[f]isoquinolino[3,4-b][1,8]naphthyridine – tetrahydrofurane (1/2/2), C60H54ClN11O2

  • Ruixue Zhou , Tianhao Yan , Hongbo Wang , Haifei Zhang , Lifeng Ding and Ruiyao Wang ORCID logo EMAIL logo

Abstract

C60H54ClN11O2, P 1 (no. 2), a = 9.6795(10) Å, b = 14.8391(12) Å, c = 18.0298(14) Å, α = 90.710(3)°, β = 92.506(3)°, γ = 96.274(3)°, V = 2571.4(4) Å3, Z = 2, R gt(F) = 0.0856, wR ref(F 2) = 0.2386, T = 296(2) K.

CCDC no.: 2183722

The molecular structure is shown in the figure (symmetry code i) x−1, y, z; ii) −x+1, −y+1, −z+2; iii) −x+1, −y+1, −z+1). The disordered THF molecule is not shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Orange prism
Size: 0.20 × 0.20 × 0.10 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.13 mm−1
Diffractometer, scan mode: Bruker APEX3, φ and ω
θ max, completeness: 30.6°, 99%
N(hkl) measured , N(hkl) unique, R int: 41,142, 15,536, 0.081
Criterion for I obs, N(hkl) gt: I obs > 2 σ(I obs), 6655
N(param) refined: 683
Programs: Bruker [1], SHELX [2, 3]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
Cl1 0.84264 (7) 0.62811 (5) 0.75706 (4) 0.0460 (2)
N1 0.1298 (3) 0.76108 (17) 0.78522 (13) 0.0400 (6)
H1N 0.048 (3) 0.733 (2) 0.7809 (16) 0.053 (10)*
N2 0.1876 (3) 0.62834 (18) 0.73783 (14) 0.0429 (6)
H2B 0.233 (3) 0.605 (2) 0.7084 (17) 0.049 (9)*
H2C 0.105 (4) 0.610 (2) 0.7382 (17) 0.051 (10)*
N3 0.3582 (2) 0.75290 (15) 0.75626 (12) 0.0402 (5)
N4 0.4797 (3) 0.63091 (18) 0.79316 (15) 0.0460 (6)
H4B 0.552 (4) 0.606 (2) 0.7967 (17) 0.055 (10)*
H4C 0.422 (3) 0.6104 (19) 0.8224 (16) 0.043 (9)*
N5 0.5854 (3) 0.74384 (17) 0.72597 (13) 0.0408 (6)
H5N 0.648 (3) 0.7145 (19) 0.7293 (16) 0.042 (9)*
N6 0.2106 (3) 0.67792 (19) 0.94614 (15) 0.0663 (8)
N7 0.3222 (3) 0.55316 (19) 0.92495 (13) 0.0539 (7)
N8 0.4441 (3) 0.4353 (2) 0.89442 (15) 0.0663 (8)
N9 0.4405 (3) 0.63848 (18) 0.56850 (14) 0.0546 (7)
N10 0.2579 (3) 0.53717 (16) 0.59974 (12) 0.0445 (6)
N11 0.0755 (3) 0.44527 (19) 0.64271 (13) 0.0549 (7)
C1 0.1418 (3) 0.84160 (19) 0.82797 (15) 0.0413 (7)
C2 0.2646 (4) 0.8851 (2) 0.8580 (2) 0.0628 (9)
H2A 0.348626 0.863166 0.848669 0.075*
C3 0.2625 (5) 0.9617 (3) 0.9023 (2) 0.0803 (12)
H3A 0.346038 0.991167 0.922008 0.096*
C4 0.1413 (5) 0.9952 (3) 0.9176 (2) 0.0843 (13)
H4A 0.141712 1.046815 0.947412 0.101*
C5 0.0190 (5) 0.9515 (3) 0.8886 (2) 0.0840 (13)
H5A −0.064676 0.973114 0.899206 0.101*
C6 0.0186 (4) 0.8756 (2) 0.8435 (2) 0.0638 (9)
H6A −0.065328 0.847079 0.823433 0.077*
C7 0.2301 (3) 0.71271 (18) 0.76098 (13) 0.0362 (6)
C8 0.4691 (3) 0.70751 (18) 0.75753 (14) 0.0369 (6)
C9 0.6074 (3) 0.81463 (19) 0.67556 (15) 0.0419 (7)
C10 0.5054 (4) 0.8643 (2) 0.64642 (19) 0.0603 (9)
H10A 0.414133 0.852538 0.660677 0.072*
C11 0.5404 (5) 0.9313 (3) 0.5960 (2) 0.0830 (12)
H11A 0.472070 0.965192 0.577067 0.100*
C12 0.6738 (5) 0.9488 (3) 0.5735 (3) 0.0934 (14)
H12A 0.695621 0.993874 0.539194 0.112*
C13 0.7744 (5) 0.8995 (3) 0.6017 (2) 0.0877 (13)
H13A 0.865082 0.910694 0.586336 0.105*
C14 0.7417 (4) 0.8332 (2) 0.65279 (19) 0.0616 (9)
H14A 0.811115 0.800426 0.672229 0.074*
C15 0.1286 (4) 0.7193 (2) 0.9854 (2) 0.0704 (11)
H15A 0.112513 0.777245 0.970685 0.084*
C16 0.2365 (3) 0.5924 (2) 0.96797 (15) 0.0497 (8)
C17 0.3535 (3) 0.4703 (2) 0.94175 (16) 0.0505 (8)
C18 0.4764 (4) 0.3553 (3) 0.90744 (19) 0.0694 (10)
H18A 0.537603 0.332514 0.875533 0.083*
C19 0.4278 (3) 0.2969 (2) 0.96631 (17) 0.0564 (8)
C20 0.4686 (4) 0.2103 (3) 0.9752 (2) 0.0723 (11)
H20A 0.529989 0.189016 0.942648 0.087*
C21 0.4193 (4) 0.1563 (3) 1.0313 (2) 0.0705 (10)
H21A 0.444861 0.097978 1.036312 0.085*
C22 0.3304 (4) 0.1899 (2) 1.08065 (19) 0.0633 (9)
H22A 0.298405 0.154107 1.119668 0.076*
C23 0.2891 (4) 0.2745 (2) 1.07293 (17) 0.0541 (8)
H23A 0.228147 0.295068 1.106115 0.065*
C24 0.3373 (3) 0.3303 (2) 1.01572 (15) 0.0457 (7)
C25 0.2988 (3) 0.4208 (2) 1.00322 (14) 0.0422 (7)
C26 0.2112 (3) 0.4637 (2) 1.04717 (14) 0.0435 (7)
H26A 0.174330 0.434025 1.088214 0.052*
C27 0.1774 (3) 0.54951 (19) 1.03123 (14) 0.0414 (7)
C28 0.0851 (3) 0.59818 (19) 1.07370 (15) 0.0433 (7)
C29 0.0166 (3) 0.5638 (2) 1.13616 (16) 0.0523 (8)
H29A 0.032053 0.506809 1.153408 0.063*
C30 −0.0727 (4) 0.6133 (2) 1.17203 (18) 0.0608 (9)
H30A −0.117802 0.589495 1.213102 0.073*
C31 −0.0961 (4) 0.6992 (2) 1.14713 (19) 0.0663 (10)
H31A −0.156808 0.732387 1.171691 0.080*
C32 −0.0311 (4) 0.7343 (2) 1.08754 (19) 0.0657 (10)
H32A −0.046795 0.791824 1.071629 0.079*
C33 0.0597 (4) 0.6848 (2) 1.04940 (16) 0.0519 (8)
C34 0.5200 (4) 0.6734 (2) 0.51832 (18) 0.0568 (8)
H34A 0.587601 0.720183 0.533328 0.068*
C35 0.3393 (3) 0.56916 (19) 0.54623 (15) 0.0421 (7)
C36 0.1572 (3) 0.4708 (2) 0.58368 (14) 0.0420 (7)
C37 −0.0231 (4) 0.3810 (2) 0.63096 (17) 0.0590 (9)
H37A −0.078014 0.364880 0.670781 0.071*
C38 −0.0575 (3) 0.3312 (2) 0.56224 (16) 0.0488 (7)
C39 −0.1662 (4) 0.2616 (2) 0.5546 (2) 0.0642 (9)
H39A −0.219080 0.245937 0.595268 0.077*
C40 −0.1966 (4) 0.2161 (2) 0.4889 (2) 0.0717 (11)
H40A −0.269932 0.170013 0.484523 0.086*
C41 −0.1161 (4) 0.2395 (2) 0.4279 (2) 0.0657 (10)
H41A −0.134883 0.207744 0.383177 0.079*
C42 −0.0104 (4) 0.3083 (2) 0.43350 (17) 0.0528 (8)
H42A 0.040473 0.323802 0.392076 0.063*
C43 0.0230 (3) 0.35629 (18) 0.50097 (15) 0.0413 (7)
C44 0.1328 (3) 0.42902 (18) 0.51176 (14) 0.0370 (6)
C45 0.2181 (3) 0.46372 (18) 0.45685 (14) 0.0394 (6)
H45A 0.205377 0.439093 0.409036 0.047*
C46 0.3216 (3) 0.53412 (18) 0.47161 (14) 0.0392 (6)
C47 0.4129 (3) 0.57585 (19) 0.41702 (15) 0.0439 (7)
C48 0.4064 (4) 0.5487 (2) 0.34172 (16) 0.0570 (9)
H48A 0.340018 0.502365 0.324331 0.068*
C49 0.4984 (4) 0.5910 (2) 0.29414 (19) 0.0712 (11)
H49A 0.493804 0.572582 0.244525 0.085*
C50 0.5984 (4) 0.6609 (3) 0.3184 (2) 0.0740 (11)
H50A 0.660367 0.688632 0.285456 0.089*
C51 0.6046 (4) 0.6883 (2) 0.3911 (2) 0.0680 (10)
H51A 0.670467 0.735485 0.407478 0.082*
C52 0.5133 (3) 0.6463 (2) 0.44113 (17) 0.0499 (7)
O1a 0.8600 (8) 0.9901 (5) 0.4013 (4) 0.121 (3)*
C53a 0.776 (2) 0.9786 (12) 0.3276 (8) 0.203 (7)*
H53Aa 0.677453 0.969956 0.337297 0.243*
H53Ba 0.792830 1.033435 0.299177 0.243*
C54a 0.8103 (16) 0.9037 (8) 0.2852 (6) 0.149 (4)*
H54Aa 0.725995 0.865788 0.269080 0.179*
H54Ba 0.857483 0.925262 0.241376 0.179*
C55a 0.8978 (13) 0.8523 (7) 0.3286 (5) 0.111 (3)*
H55Aa 0.985218 0.848284 0.305096 0.133*
H55Ba 0.853049 0.791455 0.335726 0.133*
C56a 0.920 (2) 0.9004 (10) 0.3974 (8) 0.162 (7)*
H56Aa 1.019465 0.911270 0.408520 0.195*
H56Ba 0.880392 0.861948 0.435987 0.195*
O1Ab 0.8489 (16) 1.0102 (8) 0.3281 (7) 0.154 (6)*
C53Ab 0.899 (2) 0.9330 (11) 0.2862 (7) 0.119 (6)*
H53Cb 0.822799 0.896754 0.259719 0.143*
H53Db 0.967856 0.954870 0.251082 0.143*
C54Ab 0.9607 (19) 0.8814 (11) 0.3443 (8) 0.105 (5)*
H54Cb 1.061262 0.894439 0.346601 0.126*
H54Db 0.936858 0.816877 0.335363 0.126*
C55Ab 0.901 (2) 0.9105 (14) 0.4155 (8) 0.117 (7)*
H55Cb 0.874376 0.858908 0.446130 0.141*
H55Db 0.967498 0.953159 0.443577 0.141*
C56Ab 0.786 (2) 0.9516 (14) 0.3899 (11) 0.153 (7)*
H56Cb 0.751199 0.988164 0.428441 0.184*
H56Db 0.711436 0.907224 0.370705 0.184*
O2c 0.3367 (10) 0.9454 (6) 0.1448 (4) 0.148 (3)*
C57c 0.4119 (19) 0.9521 (10) 0.2184 (9) 0.200 (7)*
H57Ac 0.510958 0.954579 0.211308 0.240*
H57Bc 0.395070 1.008199 0.242866 0.240*
C58c 0.3699 (18) 0.8753 (11) 0.2674 (7) 0.193 (6)*
H58Ac 0.319176 0.894256 0.309020 0.231*
H58Bc 0.449332 0.846135 0.285613 0.231*
C59c 0.2763 (16) 0.8143 (8) 0.2126 (7) 0.148 (5)*
H59Ac 0.323476 0.764040 0.195530 0.178*
H59Bc 0.190845 0.790622 0.235067 0.178*
C60c 0.2500 (12) 0.8715 (7) 0.1550 (6) 0.144 (4)*
H60Ac 0.243875 0.835788 0.109385 0.172*
H60Dc 0.158603 0.890806 0.161577 0.172*
O2Ad 0.349 (2) 0.8073 (12) 0.2464 (12) 0.233 (8)*
C57Ad 0.4670 (18) 0.8702 (14) 0.2211 (12) 0.177 (8)*
H57Cd 0.514391 0.903178 0.263318 0.212*
H57Dd 0.533198 0.836123 0.197210 0.212*
C58Ad 0.414 (3) 0.9333 (16) 0.1691 (14) 0.202 (11)*
H58Cd 0.387354 0.905034 0.120962 0.242*
H58Dd 0.479010 0.986740 0.163096 0.242*
C59Ad 0.289 (2) 0.9541 (12) 0.2105 (12) 0.172 (8)*
H59Cd 0.314680 1.001042 0.248053 0.206*
H59Dd 0.217470 0.973568 0.176886 0.206*
C60Ad 0.245 (2) 0.8729 (17) 0.2423 (17) 0.229 (12)*
H60Bd 0.162912 0.845287 0.214087 0.275*
H60Cd 0.216803 0.884981 0.292167 0.275*
  1. aOccupancy: 0.609 (12). bOccupancy: 0.391 (12). cOccupancy: 0.599 (9). dOccupancy: 0.401 (9).

Source of material

N-((Z)-amino(((E)-amino(phenylamino)methylene)amino) methylene)benzenaminium chloride (diphenylbiguanide chloride, HL+Cl) and benzo[f]isoquinolino[3,4-b][1,8]naphthyridine (anthiridine, DBA) was synthesized by following the literature procedures [4, 5]. The title compound, i.e., the cocrystal of between HL+Cl and DBA was prepared by dissolving the two compounds in THF solution in a molar ratio of 1:2. The solution was filtered to obtain a yellow clear filtrate, which was kept in a glass vial sealed with parafilm. Prism crystals with orange color were obtained with a few days.

Experimental details

A crystal of a size 0.20 × 0.20 × 0.10 mm was mounted on a glass fiber with expoxy glue. Data collection was performed on a Bruker D8 VENTURE Photon II diffractometer. Data were processed on a PC using the Bruker AXS Crystal Structure Analysis Package [1]. Data collection: Bruker APEX3; cell refinement: Bruker SAINT; Data reduction: Bruker SAINT; Structure solution: SHELXT 2014/5 [2]; Structure refinement: SHELXL-2018/3 [3]; Molecular graphics: Bruker SHELXTL [2]; Publication materials: Bruker SHELXTL [2].

The H-atoms on N-atoms were located from the difference-Fourier maps, and refined without any constraints. All other H-atoms were placed geometrically and refined using a riding model with common isotropic displacement factors U iso(H) = 1.2 U eq(parent C-atom). The two THF molecules were disordered.

Comment

The simplest biguanide, 2-carbamimidoylguanidine, was synthesized by Rathke in 1879 [6]. 50 years later, some biguanide derivatives, including metformin (3-(diaminomethylene)-1,1-dimethylguanidine) were found to be able to lower the blood glucose in animals [7, 8]. However, due to their side effects and the availability of insulin, metformin did not receive too much attention until its introduction into USA by FDA in 1995 [9]. Currently, metformin is the first-line therapy for treatment of type 2 diabetes. In addition, metformin and its analogues have found a variety of therapeutic applications, such as, polycystic ovary syndrome [10], cardiovascular disease [11], anti-aging [12] and even COVID-19 [13]. Meanwhile, biguanides also have demonstrated potential applications in the development of highly efficient solar cells recently, due to its capability for hydrogen bonding formation [14, 15].

Crystal engineering is the science to build crystalline materials of specific characteristics or physicochemical properties through intermolecular interactions. Hydrogen bonding, especially multi-hydrogen bonding, is very important for crystal engineering and plays important roles on structure stability, directionality and physicochemical properties [16], [17], [18].

With a structure characterized with multiple –NH, it is reasonable to assume that HL+Cl can behave as an multi-hydrogen bond donor, which can form multi-hydrogen bonds with hydrogen bond acceptors to form multi-hydrogen bond pairs, such as DD…AA or DDD…AAA. DBA, as we can see from its structure, is a planar hydrogen bond acceptor, i.e., AAA. We have found that the packing of DBA molecules in a crystal can be tuned through crystal engineering, which alters the way of the ππ stacking of the DBA molecules and leads to the change of electroconductivity of the crystals. Here we report the structure of a novel co-crystal between HL+Cl and two DBA, with the one HL+ hydrogen bonded to two DBA through two sets of DD…AA and each Cl is hydrogen bonded to two DBA through two triple C–H…Cl hydrogen bonds and to two HL+ through two double N–H…Cl hydrogen bonds. All nitrogen containing species are connected to each other or form a hydrogen bond to the chloride anion. The disordered THF molecules fill the gaps between the hydrogen bonded molecules and ions. Bond lengths are all in the expected ranges [19, 20].


Corresponding author: Ruiyao Wang, Wisdom Lake Academy of Pharmacy, Xi’an Jiaotong–Liverpool University, 111 Ren’ai Road, Suzhou, Jiangsu 215123, P. R. China, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work is supported by Key Program Special Fund of XJTLU (Research Project No. KSF-E-06).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. Apex3, Saint; Bruker AXS Inc.: Madison, Wisconsin, USA, 2016.Search in Google Scholar

2. Sheldrick, G. M. Crystal structure refinement with Shelxl. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

3. SHELDRICK, G. M. Shelxtl – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar PubMed PubMed Central

4. McMorran, D. A., McAdam, C. J., van der Salm, H., Gordon, K. C. 1,5-Diarylbiguanides and their nickel(ii) complexes. Dalton Trans. 2013, 42, 2948–2962; https://doi.org/10.1039/c2dt32483k.Search in Google Scholar PubMed

5. Blight, B. A., Camara-Campos, A., Djurdjevic, S., Kaller, M., Leigh, D. A., McMillan, F. M., McNab, H., Slawin, A. M. Z. AAA–DDD Triple hydrogen bond complexes. J. Am. Chem. Soc. 2009, 131, 14116–14122; https://doi.org/10.1021/ja906061v.Search in Google Scholar PubMed

6. Rathke, B. U. Biguanid. Ber. Dtsch. Chem. Ges. 1879, 12, 776–784; https://doi.org/10.1002/cber.187901201219.Search in Google Scholar

7. Slotta, K. H., Tschesche, R., Über Biguanide, II Die blutzucker-senkende Wirkung der Biguanide. Ber. Dtsch. Chem. Ges. (A and B Series) 1929, 62, 1398–1405; https://doi.org/10.1002/cber.19290620605.Search in Google Scholar

8. Hesse, E., Taubmann, G. Die Wirkung des Biguanids und seiner Derivate auf den Zuckerstoffwechsel. Naunyn–Schmiedebergs Arch. Exp. Pathol. Pharmakol. 1929, 142, 290–308; https://doi.org/10.1007/bf02000097.Search in Google Scholar

9. Bailey, C. J. Metformin: historical overview. Diabetologia 2017, 60, 1566–1576; https://doi.org/10.1007/s00125-017-4318-z.Search in Google Scholar PubMed

10. Kathuria, D., Raul, A. D., Wanjari, P., Bharatam, P. V. Biguanides: species with versatile therapeutic applications. Eur. J. Med. Chem. 2021, 219, 113378; https://doi.org/10.1016/j.ejmech.2021.113378.Search in Google Scholar PubMed

11. Top, W. M. C., Kooy, A., Stehouwer, C. D. A. Metformin: a narrative review of its potential benefits for cardiovascular disease, cancer and dementia. Pharmaceuticals 2022, 15, 312; https://doi.org/10.3390/ph15030312.Search in Google Scholar PubMed PubMed Central

12. Hu, D., Xie, F., Xiao, Y., Lu, C., Zhong, J., Huang, D., Chen, J., Wei, J., Jiang, Y., Zhong, T. Metformin: a potential candidate for targeting aging mechanisms. Aging Dis. 2021, 12, 480–493; https://doi.org/10.14336/ad.2020.0702.Search in Google Scholar PubMed PubMed Central

13. Bailey, C. J., Gwilt, M. Diabetes, metformin and the clinical course of Covid-19: outcomes, mechanisms and suggestions on the therapeutic use of metformin. Front. Pharmacol. 2022, 13, 784459; https://doi.org/10.3389/fphar.2022.784459.Search in Google Scholar PubMed PubMed Central

14. Xiong, Z., Chen, X., Zhang, B., Odunmbaku, G. O., Ou, Z., Guo, B., Yang, K., Kan, Z., Lu, S., Chen, S., Ouedraogo, N. A. N., Cho, Y., Yang, C., Chen, J., Sun, K. Simultaneous interfacial modification and crystallization control by biguanide hydrochloride for stable perovskite solar cells with PCE of 24.4%. Adv. Mater. 2022, 34, 2106118; https://doi.org/10.1002/adma.202106118.Search in Google Scholar PubMed

15. Wu, Y., Han, M., Wang, Y., Hou, M., Huang, Q., Li, Y., Ding, Y., Luo, J., Hou, G., Zhao, Y., Zhang, X. Interface engineering utilizing bifunctional metformin for high performance inverted perovskite solar cells. Org. Electron. 2022, 106, 106525; https://doi.org/10.1016/j.orgel.2022.106525.Search in Google Scholar

16. Petty, I A. J., Ai, Q., Sorli, J. C., Haneef, H. F., Purdum, G. E., Boehm, A., Granger, D. B., Gu, K., Rubinger, C. P. L., Parkin, S. R., Graham, K. R., Jurchescu, O. D., Loo, Y. L., Risko, C., Anthony, J. E. Computationally aided design of a high-performance organic semiconductor: the development of a universal crystal engineering core. Chem. Sci. 2019, 10, 10543–10549; https://doi.org/10.1039/c9sc02930c.Search in Google Scholar PubMed PubMed Central

17. Sun, L., Zhu, W., Zhang, X., Li, L., Dong, H., Hu, W. Creating organic functional materials beyond chemical bond synthesis by organic cocrystal engineering. J. Am. Chem. Soc. 2021, 143, 19243–19256; https://doi.org/10.1021/jacs.1c07678.Search in Google Scholar PubMed

18. Desiraju, G. R. Crystal engineering: a holistic view. Angew. Chem. Int. Ed. 2007, 46, 8342–8356; https://doi.org/10.1002/anie.200700534.Search in Google Scholar PubMed

19. LeBel, O., Maris, T., Duval, H., Wuest, J. D. A practical guide to arylbiguanides – synthesis and structural characterization. Can. J. Chem. 2005, 83, 615; https://doi.org/10.1139/v05-093.Search in Google Scholar

20. Carvalho, S. P., Wang, R., Wang, H., Ball, B., Lebel, O. The Brønsted–Lowry reaction revisited: glass-forming properties of salts of 1,5-dimexylbiguanide. Cryst. Growth Des. 2010, 10, 2734–2745; https://doi.org/10.1021/cg1002435.Search in Google Scholar

Received: 2022-05-19
Accepted: 2022-07-04
Published Online: 2022-07-14
Published in Print: 2022-10-26

© 2022 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 2.5.2024 from https://www.degruyter.com/document/doi/10.1515/ncrs-2022-0259/html
Scroll to top button