Skip to content
BY 4.0 license Open Access Published by De Gruyter (O) January 20, 2022

The crystal structure of 1-(N1-benzyl-2-methyl-4-nitro-imidazol-5-yl)-4-(prop-2-yn-1-yl) piperazine, C18H21N5O2

  • Raed A. Al-Qawasmeh EMAIL logo , Sadeekah O. W. Saber ORCID logo , Yaseen A. Al-Soud and Monther A. Khanfar ORCID logo

Abstract

C18H21N5O2, monoclinic, P21/c (no. 4), a = 10.0914(6) Å, b = 11.8919(7) Å, c = 15.545(1) Å, β = 102.321(6)°, V = 1822.5(2) Å3, Z = 4, R gt (F) = 0.0503, wR ref (F 2) = 0.1419, T = 293(2) K.

CCDC no.: 2132118

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Yellow needle
Size: 0.12 × 0.08 × 0.02 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.08 mm−1
Diffractometer, scan mode: Xcalibur, ω
θ max, completeness: 29.5°, >99%
N(hkl)measured, N(hkl)unique, R int: 27,507, 4593, 0.029
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 2681
N(param)refined: 238
Programs: CrysAlisPRO [1], Olex2 [2], SHELX [3, 4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
C1 0.39788 (18) 0.85662 (14) 0.39620 (13) 0.0678 (5)
C2 0.50765 (16) 0.85408 (13) 0.52762 (11) 0.0571 (4)
C3 0.59947 (16) 0.81652 (12) 0.48078 (10) 0.0546 (4)
C4 0.2893 (3) 0.8728 (2) 0.31574 (19) 0.0961 (8)
H4A 0.275 (2) 0.801 (2) 0.2832 (15) 0.104 (7)*
H4B 0.206 (4) 0.889 (3) 0.334 (2) 0.177 (15)*
H4C 0.313 (2) 0.931 (2) 0.2772 (17) 0.124 (9)*
C5 0.5772 (2) 0.78057 (17) 0.31923 (12) 0.0787 (5)
H5A 0.6695 0.8077 0.3255 0.094*
H5B 0.5231 0.8146 0.2666 0.094*
C6 0.57666 (16) 0.65507 (15) 0.30680 (10) 0.0610 (4)
C7 0.6547 (2) 0.6106 (2) 0.25229 (14) 0.0929 (7)
H7 0.7078 0.6580 0.2260 0.111*
C8 0.6548 (3) 0.4979 (3) 0.23653 (18) 0.1177 (9)
H8 0.7054 0.4698 0.1978 0.141*
C9 0.5823 (3) 0.4256 (2) 0.27636 (17) 0.1012 (7)
H9 0.5849 0.3487 0.2663 0.121*
C10 0.5061 (2) 0.46734 (19) 0.33090 (16) 0.0926 (7)
H10 0.4561 0.4187 0.3585 0.111*
C11 0.50232 (19) 0.58224 (17) 0.34585 (14) 0.0791 (6)
H11 0.4487 0.6101 0.3828 0.095*
C12 0.83549 (17) 0.87279 (14) 0.52832 (13) 0.0686 (5)
H12A 0.8435 0.8849 0.5909 0.082*
H12B 0.8079 0.9429 0.4979 0.082*
C13 0.97004 (17) 0.83487 (14) 0.51051 (13) 0.0692 (5)
H13A 0.9623 0.8260 0.4476 0.083*
H13B 1.0385 0.8915 0.5314 0.083*
C14 0.90817 (17) 0.64230 (14) 0.52541 (13) 0.0652 (4)
H14A 0.9360 0.5726 0.5565 0.078*
H14B 0.8999 0.6287 0.4630 0.078*
C15 0.77311 (17) 0.67826 (14) 0.54216 (13) 0.0662 (5)
H15A 0.7051 0.6215 0.5204 0.079*
H15B 0.7791 0.6872 0.6049 0.079*
C16 1.14421 (18) 0.69196 (17) 0.54303 (13) 0.0743 (5)
H16A 1.1727 0.6279 0.5811 0.089*
H16B 1.2087 0.7521 0.5621 0.089*
C17 1.14980 (19) 0.66082 (16) 0.45276 (15) 0.0742 (5)
C18 1.1442 (3) 0.63501 (19) 0.37957 (18) 0.0970 (7)
H18 1.1398 0.6145 0.3213 0.116*
N1 0.38429 (14) 0.87939 (12) 0.47618 (11) 0.0666 (4)
N2 0.52531 (14) 0.81809 (11) 0.39517 (9) 0.0626 (4)
N3 0.53046 (17) 0.87016 (12) 0.62039 (10) 0.0692 (4)
N4 0.73480 (13) 0.78517 (10) 0.49693 (9) 0.0572 (3)
N5 1.01089 (13) 0.72848 (11) 0.55473 (9) 0.0609 (4)
O1 0.64251 (15) 0.84369 (13) 0.66527 (8) 0.0857 (4)
O2 0.44060 (16) 0.91050 (15) 0.65223 (10) 0.1051 (5)

Source of materials

The commercially available 2-methyl-4-nitro-1H-imidazole was reacted with benzyl chloride to produced 1-benzyl-2-methyl-4-nitro-1H-imidazole 1 [5]. Bromination of 1 with liquid bromine in DMF, in the presence potassium carbonate as a base afforded 1-benzyl-5-bromo-2-methyl-4-nitro-1H-imidazole 2 [5]. Reaction of 2 with piperazine using isopropanol as solvent gave 1-(1-benzyl-2-methyl-4-nitro-1H-imidazol-5-yl)piperazine 3 [5]. The title compound 4 has been prepared via reaction of the piperazine derivative 3 with propargyl bromide using NaH as base to produce the new compound 1-(N1-benzyl-2-methyl-4-nitro-imidazol-5-yl)-4-(prop-2-yn-1-yl) piperazine 4 as yellow flakes in 82% yield. M.p. = 122–124°. HRMS-ESI m/z: 362.15719 (M + Na)+. 1H NMR (500 MHz, DMSO-d 6, 298 K): δ 2.25 (s, 3H, H–C4); 2.46 (br.s, 4H, H–C13, H–C14); 2.99 (br.s, 4H, H–C12, H–C15); 3.17 (t, 1H, J = 2.2, H–C18); 3.28 (d, 2H, J = 2.2, H–C16); 5.17 (s, 2H, H–C5); 7.12 (d, 2H, J = 7.4 Hz, H–C7, H–C11); 7.32 (t, 1H, J = 7.3 Hz, H–C9); 7.39 (pseudo t, 2H, H–C8, H–C10). 13C NMR (125 MHz, DMSO-d 6, 298 K): δ 14.1 (C4); 46.2 (C5); 46.4 (C16); 48.5 (C12, C15); 51.4 (C13, C14); 76.3 (C17); 79.6 (C18); 126.9 (C7, C11); 128.1 (C9); 129.4 (C8, C10); 136.6 (C6); 138.8 (C2); 140.2 (C1); 140.9 (C3).

The chemicals were purchased from Aldrich (Germany), Fluka (Switzerland), and Scharlau; they were used without further purification. The NMR spectra were recorded on a Bruker Avance III-(500 MHz) spectrometer with tetramethylsilane (TMS) as an internal standard. 1H NMR (500 MHz), 13C-NMR (125 MHz), and 2D were recorded in Dimethylsulfoxide (DMSO-d 6). The following abbreviations are used to describe peak patterns: s = singlet, t = triplet, br.s = broad singlet. High-resolution mass spectra (HRMS) were measured (in positive/or negative ion mode) using the electrospray ion trap (ESI pos low mass) technique by collision-induced dissociation on a Bruker APEX-IV (7 Tesla) instrument. Melting points were determined on a Stuart (SMP-10) melting point apparatus.

Single crystal of C18H21N5O2 was obtained through crystallization of the pure compound from CHCl3/Et2O.

Experimental details

A suitable crystal was selected and mounted on a Xcalibur, Eos diffractometer. The crystal was kept at 293(2) K during data collection. Using Olex2 [2], the structure was solved with the ShelXT [3] structure solution program using Intrinsic Phasing and refined with the ShelXL [4] refinement package. All H atoms bonded to C atoms were refined as riding, with C–H distances of 0.93 Å (for aromatic ring).

Comment

Imidazole is an important nucleus with diverse biological properties. The high therapeutic properties of the imidazole-related drugs have encouraged medicinal chemists to design and synthesize a large number of novel chemotherapeutic agents like Pantoprazole [6] (a proton pump inhibitor used for treatment of gastroesophageal reflux disease), Trifenagrel [7] (a potent arachidonate cyclooxygenase inhibitor), Eprosartan [8] (an angiotensin II receptor antagonist), and Cimetidine [9] (a histamine H2 receptor antagonist that inhibits stomach acid production). In view of the interest in the activity spectrum and profile of the nitroimidazoles and in continuation of our research on the synthesis and biological evaluation of imidazole analogs [10], [11], [12], [13], [14], [15], [16], [17], we here present the imidazolyl containing title structure. Herein, the propargyl bromide was couples with imidazole ring to produce the target compound.

This title crystal structure consists of the C18H21N5O2 molecules, in which all bond lengths are in normal ranges. The crystal is stabilized via CH⃛O (H18⃛O1 = 2.482(1) Å) and CH⃛O (H4A⃛O1 = 2.66(3) Å). The average plane of imidazole ring is perpendicular (90.17(7)°) to the average plane of the methylene groups of piperazine (C12–C13–C14–C15). A further intramolecular CH⃛O interactions can be also seen (H12A⃛O1 = 2.586(1) Å) and (H15B⃛O1 = 2.607(1) Å).


Corresponding author: Raed A. Al-Qawasmeh, Department of Chemistry, Pure and Applied Chemistry Group, College of Sciences, University of Sharjah, Sharjah 27272, UAE; and Department of Chemistry, The University of Jordan, Amman 11942, Jordan, E-mail:

Funding source: Ministry of Higher Education, Jordan

Award Identifier / Grant number: Bas 1/1/2017

Acknowledgments

Part of this work has been carried out during sabbatical leave granted to RAA from the University of Jordan during the academic year 2020–2021.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This study was financially supported by Scientific Research Support Fund/Ministry of Higher Education, Jordan (grant no. Bas 1/1/2017).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Rigaku Oxford Diffraction. CrysAlisPRO; Yarnton: England, 2015.Search in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

3. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar

4. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

5. Al-Soud, Y. A., Al-Ahmad, A. H., Abu-Qatouseh, L., Shtaiwi, A., Alhelal, K. A. S., Al-Suod, H. H., Alsawakhneh, S. O., Al-Qawasmeh, R. A. Nitroimidazoles Part 9. Synthesis, molecular docking, and anticancer evaluations of piperazine-tagged imidazole derivatives. Z. Naturforsch., B: Chem. Sci. 2021, B72, 293–302; https://doi.org/10.1515/znb-2020-0200.Search in Google Scholar

6. Senn-Bilfiger, J., Sturn, E. The development of a new proton-pump inhibitor: the case history of pantoprazole. In Analogue-Based Drug Discovery; Fischer, J., Ganellin, C. R., Eds. Wiley-VCH: Weinheim, 2006, pp. 115–136.10.1002/3527608001.ch6Search in Google Scholar

7. Abrahams, S. L., Hazen, R. J., Batson, A. G., Phillips, A. P. Trifenagrel:a chemically novel platelet aggregation inhibitor. J. Pharmacol. Exp. Therapeut. 1989, 249, 359–365.Search in Google Scholar

8. Grange, R. L., Ziogas, J., North, A. J., Angus, J. A., Schiesser, C. H. Selenosartans: novel selenophene analogues of milfasartan and eprosartan. Bioorg. Med. Chem. Lett 2008, 18, 1241–1244.https://doi.org/10.1016/j.bmcl.2007.11.136.Search in Google Scholar

9. Beggs, W. H., Andrews, F. A., Sarosi, G. A. Action of imidazole-containing antifungal drugs. Life Sci. 1981, 28, 111–118; https://doi.org/10.1016/0024-3205(81)90542-7.Search in Google Scholar

10. Al-Masoudi, N. A., Al-Soud, Y. A., Kalogerakisa, A., Pannecouquec, C., De Clercqc, E. Nitroimidazoles part 2. Synthesis, antiviral and antitumor activity of new 4-nitroimidazoles. Chem. Biodivers. 2006, 3, 515–526; https://doi.org/10.1002/cbdv.200690055.Search in Google Scholar PubMed

11. Al-Soud, Y. A., Al-Sa’doni, H., Amajaour, H. A. S., Al-Masoudi, N. A. Nitroimidazole part 3. Synthesis and anti-HIV activity of new N-alkyl 4-nitroimidazoles, bearing benzothiazole and benzoxazole backbones. Z. Naturforsch., B: Chem. Sci. 2007, B62, 523–528; https://doi.org/10.1515/znb-2007-0406.Search in Google Scholar

12. Al-Soud, Y. A., Al-Masoudi, N. A., De Clercqc, E., Pannecouquec, C. Nitroimidazoles part 4. Synthesis and anti-HIV activity of new 5-alkylsulfanyl and 5-(4′-arylsulphonyl) piperazine 4-nitroimidazole derivatives. Heteroat. Chem. 2007, 18, 333–340; https://doi.org/10.1002/hc.20301.Search in Google Scholar

13. Al-Soud, Y. A., Al-Masoudi, N. A., Hassan, H., De Clercq, E., Pannecouque, C. Nitroimidazoles v. Synthesis and anti-HIV evaluation of new 5-substituted piperazinyl-4-nitroimidazole derivatives. Acta Pharm. 2007, 57, 379–393; https://doi.org/10.2478/v10007-007-0031-7.Search in Google Scholar PubMed

14. Al-Masoudi, N. A., Al-Soud, Y. A., De Clercq, E., Pannecouque, C. Nitroimidazoles part 6. Synthesis, structure and in vitro anti-HIV activity of new 5-substituted piperazinyl-4-nitroimidazole derivatives. Antiviral Chem. Chemother. 2007, 18, 191–200; https://doi.org/10.1177/095632020701800403.Search in Google Scholar PubMed

15. Al-Soud, Y. A., Al-Masoudi, N. A., Al-Suod, H. H., Pannecouque, C. Nitroimidazoles part 8. Synthesis and anti-HIV activity of new 4-nitroimidazole derivatives using the suzuki cross-coupling reaction. Z. Naturforsch., B: Chem. Sci. 2012, B67, 925–934; https://doi.org/10.5560/znb.2012-0185.Search in Google Scholar

16. Al-Soud, Y. A., Alhelal, K. A. S., Bahjat, A. S., Abu-Qatouseh, L., Al-Suod, H. H., Al-Ahmad, A. H., Al-Masoudi, N. A., Al-Qawasmeh, R. A. Synthesis, anticancer activity and molecular docking studies of new 4-nitroimidazole derivatives. Arkivoc 2021, viii, 296–309; https://doi.org/10.24820/ark.5550190.p011.479.Search in Google Scholar

17. Huesca, M., Al-Qawasmeh, R. A., Young, A. H., Lee, Y. Aryl Imidazoles and Their Use as Anti-cancer Agents. U.S. Patent, 2015; p. 8969372.Search in Google Scholar

Received: 2021-11-22
Accepted: 2022-01-03
Published Online: 2022-01-20
Published in Print: 2022-04-26

© 2021 Raed A. Al-Qawasmeh et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 30.5.2024 from https://www.degruyter.com/document/doi/10.1515/ncrs-2021-0447/html
Scroll to top button