Skip to content
BY 4.0 license Open Access Published by De Gruyter (O) September 15, 2020

Crystal structure of chlorido-(η5-pentamethylcyclopentadienyl)-(4-chloro-4-pyridyl-2,2′:6′,2′′-terpyridine-κ2N,N′) rhodium(III) hexaflourophosphate, C31H29Cl2F6N3PRh

  • Joel M. Gichumbi , Sizwe J. Zamisa ORCID logo EMAIL logo and Holger B. Friedrich

Abstract

C31H29Cl2F6N3PRh, monoclinic, P21/c (no. 14), a = 7.4069(7) Å, b = 13.245(1) Å, c = 32.141(3) Å, β = 93.924(2)°, V = 3145.8(5) Å3, Z = 4, Rgt(F) = 0.0386, wRref(F2) = 0.0962, T = 123.15 K.

CCDC no.: 2020520

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Red block
Size:0.17 × 0.14 × 0.01 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:0.83 mm−1
Diffractometer, scan mode:Bruker D8 Venture, φ and ω
θmax, completeness:28.4°, >99%
N(hkl)measured, N(hkl)unique, Rint:106148, 7840, 0.086
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 6280
N(param)refined:462
Programs:Bruker [1], SHELX [2], [3], Mercury [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
Rh10.35399(3)0.61736(2)0.17484(2)0.02190(7)
Cl10.64792(9)0.54011(6)0.18257(2)0.03255(16)
Cl20.16921(14)1.21428(8)−0.05374(3)0.0578(3)
N10.4818(3)0.74575(17)0.19989(7)0.0249(5)
N20.3991(3)0.70877(18)0.11964(7)0.0249(5)
N30.2482(4)0.5638(2)0.02937(8)0.0380(6)
C10.5551(4)0.7531(2)0.23915(9)0.0310(6)
H10.5512440.6960730.2569870.037*
C20.6353(4)0.8402(2)0.25443(10)0.0342(7)
H20.6843970.8436510.2824840.041*
C30.6436(4)0.9228(2)0.22838(10)0.0340(7)
H30.6977330.9840750.2382950.041*
C40.5720(4)0.9149(2)0.18768(9)0.0313(6)
H40.5780980.9704870.1691480.038*
C50.4912(4)0.8254(2)0.17406(8)0.0251(6)
C60.4212(4)0.8075(2)0.13068(8)0.0257(6)
C70.3852(4)0.8861(2)0.10347(9)0.0305(6)
H70.4020800.9537600.1127510.037*
C80.3237(4)0.8667(2)0.06226(9)0.0305(6)
C90.3142(4)0.7658(2)0.05017(9)0.0323(6)
H90.2790750.7491860.0220170.039*
C100.3553(4)0.6890(2)0.07882(9)0.0281(6)
C110.2771(4)0.9506(2)0.03298(9)0.0320(6)
C120.2161(5)1.0424(3)0.04783(11)0.0418(8)
H120.1990481.0496330.0767030.050*
C130.1801(5)1.1229(3)0.02143(11)0.0443(8)
H130.1379951.1851600.0318240.053*
C140.2063(4)1.1115(3)−0.02037(10)0.0393(7)
C150.2620(5)1.0215(3)−0.03637(10)0.0412(8)
H150.2763581.014631−0.0653780.049*
C160.2970(4)0.9408(3)−0.00958(10)0.0361(7)
H160.3350440.878083−0.0203750.043*
C170.3606(4)0.5836(2)0.06309(9)0.0304(6)
C180.4811(4)0.5137(2)0.08066(10)0.0365(7)
H180.5591170.5308430.1043040.044*
C190.4865(5)0.4182(3)0.06322(12)0.0477(9)
H190.5691070.3688170.0744950.057*
C200.3701(6)0.3962(3)0.02935(12)0.0494(9)
H200.3689580.3309790.0170360.059*
C210.2552(5)0.4704(3)0.01360(11)0.0474(9)
H210.1757540.454511−0.0099410.057*
C220.0676(4)0.6341(2)0.17758(10)0.0310(6)
C230.1452(4)0.6142(2)0.21877(9)0.0286(6)
C240.2377(4)0.5199(2)0.21831(9)0.0270(6)
C250.2054(4)0.4766(2)0.17706(9)0.0293(6)
C260.0969(4)0.5454(2)0.15284(9)0.0304(6)
C27−0.0390(4)0.7258(3)0.16382(12)0.0475(9)
H27A−0.1681450.7129080.1661940.071*
H27B−0.0175150.7412020.1347480.071*
H27C−0.0009700.7832630.1815310.071*
C280.1291(5)0.6799(3)0.25585(11)0.0428(8)
H28A0.0141930.6660360.2681510.064*
H28B0.1327880.7508830.2473680.064*
H28C0.2297020.6660330.2764660.064*
C290.3392(4)0.4705(3)0.25474(10)0.0380(7)
H29A0.3799340.5221180.2751270.057*
H29B0.4444080.4346660.2451490.057*
H29C0.2597520.4224850.2677640.057*
C300.2692(5)0.3753(2)0.16410(12)0.0430(8)
H30A0.1940660.3227430.1756810.065*
H30B0.3955430.3657820.1745120.065*
H30C0.2599750.3706620.1335970.065*
C310.0121(5)0.5271(3)0.10996(11)0.0504(10)
H31A0.0813490.4755220.0960570.076*
H31B0.0118960.5899360.0938940.076*
H31C−0.1126690.5036950.1118280.076*
P1Aa−0.1674(6)1.1542(3)0.14000(11)0.0354(8)
F1Aa−0.1339(10)1.0388(4)0.1372(2)0.0486(15)
F2Aa−0.2191(8)1.2758(4)0.1437(2)0.0547(15)
F3Aa0.0245(8)1.1699(6)0.1625(2)0.0577(16)
F4Aa−0.0949(7)1.1756(6)0.09570(17)0.0494(14)
F5Aa−0.2394(10)1.1303(6)0.1850(2)0.0497(15)
F6Aa−0.3768(10)1.1419(5)0.1174(3)0.0699(18)
P1Bb−0.1878(12)1.1753(6)0.1362(3)0.059(2)
F1Bb−0.2047(14)1.0555(7)0.1301(3)0.0765(9)
F2Bb−0.3482(12)1.1829(8)0.1015(3)0.0765(9)
F3Bb−0.3210(14)1.1649(9)0.1734(3)0.0765(9)
F4Bb−0.1669(15)1.2924(7)0.1428(4)0.0765(9)
F5Bb−0.0387(14)1.1821(9)0.1024(3)0.0765(9)
F6Bb−0.0200(15)1.1704(10)0.1715(3)0.0765(9)
P1Cb−0.2175(7)1.1704(5)0.13740(17)0.0328(12)
F1Cb−0.1132(18)1.0631(8)0.1302(4)0.0765(9)
F2Cb−0.1752(14)1.2003(8)0.0922(3)0.0765(9)
F3Cb−0.3785(15)1.1065(8)0.1213(4)0.0765(9)
F4Cb−0.279(2)1.1430(13)0.1826(4)0.0765(9)
F5Cb−0.0336(13)1.2123(8)0.1593(3)0.0765(9)
F6Cb−0.3080(13)1.2728(7)0.1445(3)0.0765(9)
  1. aOccupancy: 0.4, bOccupancy: 0.3.

Source of material

The title compound was synthesized using a mixture of the rhodium dimer [Cp*RhCl]2 precursor (0.055 mmol), the terpyridine ligand (0.110 mmol) and NH4PF6 (0.110 mmol) which was stirred in a mixture of methanol (10 mL) and acetone (10 mL) for six hours, where upon the orange yellow product separated out. The product was filtered, washed with diethyl ether and dried under vacuum. 1H NMR (400 MHz, d6-DMSO): δ = 1.14 ppm (s, 15 H, C5Me5), 7.23–7.74 ppm (m, 2H), 8.52–8.55 ppm (m, 2H), 9.14–9.16 ppm (m, 2H), 9.17–9.18 ppm (m.2H), 13C NMR (400 MHz, d6-DMSO): δ = 156.0 ppm, 155.0 ppm 140.4 ppm, 138.0, 135.0 ppm, 129.0 ppm, 124.0 ppm, 121.0 ppm, 117.0, 95.36 ppm.

Experimental details

Crystal evaluation and data collection were done on a Bruker Smart APEX2 diffractometer [1]. The structure was solved by the direct method using the SHELXS [2] program and refined (SHELXL) [3]. The visual crystal structure information was performed using MERCURY [4] system software. All C—Haromatic and C—Hmethyl bond distances were restrained to 0.95 Å, 0.98 Å with Uiso(Haromatic) = 1.2Ueq and Uiso(Hmethyl) = 1.5Ueq of parent atom, respectively. The PF6- anion was found to be disordered over three parts with the major component having 40% site occupancy.

Comment

The pentamethyl cyclopentadienyl ligand has a wide application in organometallic chemistry. The η5-pentamethylcyclopentadienyl rhodium complexes have found utility in coordination chemistry and catalysis [5], [6], [7]. The reactions of the chloride-bridged rhodium dimer [Cp* RhCl2]2 with a variety of ligands to form monomeric complexes via cleavage of the bridging species readily incorporate many diffent ligands [5], [6], [7]. One of the most commonly used ligands are the nitrogen containing ligands. In organometallic chemistry, nitrogen containing ligands can coordinate with various transition metals because of the inherent lone pair of electrons [8], [9], [10], [11], [12], [13]. Thus N-containing ligands are a crucial component in coordination chemistry. Among the ligand systems the 2,2′:6′,2′′-terpyridine is one fascinating ligand. As an N-,N′-N′′- tridentate ligand the 2,2′:6′,2′′-terpyridine ligand plays an important role in coordination chemistry with three coordination sites and low LUMO. Terpyridine and its derivatives are among the typical pincer ligands and/or non-innocent ligands in transition metal catalysis [8], [9], [10], [11], [12], [13]. The multidentate terpyridine based ligands have been extensively investigated, modified and utilized in various works in organic and inorganic supramolecular chemistry [8], [9], [10], [11], [12], [13]. This is due to the relative ease of synthesizing and modifying the terpyridine moiety, with π-stacking ability, directional hydrogen-bonding, conjugated aromatic cores and coordination properties amongst other structural features [8], [9], [10], [11], [12], [13].

In the title compound, the rhodium metal centre is coordinated via the nitrogen atoms of the ligand, five carbon atoms of the Cp* moiety and Cl of the metal centre. This gives the pseudo-octahedral piano-stool conformation around the rhodium centres in the complex. The N–Rh–N angle is 76.80(8)° and is in agreement with related complexes reported in the literature [5], [7], [14], [15], [16]. The N–Rh–N bite angle is 84.36° which is similar to those reported for other Rh complexes with N-N-bidentate ligands [5], [7], [14], [15], [16]. The Rh–N distances in the complex are 2.1082(2) and 2.192(2) Å and they are comparable to those previously reported in the literature [5], [7], [14], [15], [16]. The Rh–Cl bond length for this complex is 2.4028(5) Å which is comparable to the Rh—Cl bond length of related complexes with N—N- bidentate ligands [5], [7], [14], [15], [16]. Non-classical, intermolecular C—H⋯Cl and C—H⋯F hydrogen bonds were observed in the crystal packing of the title compound.

Acknowledgements

We wish to extend our sincere thanks to the NRF, THRIP (Grant no. Tp 1208035643) and UKZN (URF) for financial support. Gichumbi, M.Joel thanks Chuka University for his support.

References

1. Bruker. APEXII. Bruker AXS Inc, Madison, WI, USA (2009).Search in Google Scholar

2. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.10.1107/S0108767307043930Search in Google Scholar PubMed

3. Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.10.1107/S2053229614024218Search in Google Scholar PubMed PubMed Central

4. Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A.: Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 41 (2008) 466–470.10.1107/S0021889807067908Search in Google Scholar

5. Thangavel, S.; Boopathi, S.; Mahadevaiah, N.; Kolandaivel, P.; Pansuriya, P. B.; Friedrich, H. B.: Catalytic oxidation of primary aromatic alcohols using half sandwich Ir(III), Rh(III) and Ru(II) complexes: a practical and theoretical study. J. Mol. Catal. A: Chem. 423 (2016) 160–171.10.1016/j.molcata.2016.06.017Search in Google Scholar

6. Thangavel, S.; Paulpandi, M.; Friedrich, H. B.; Murugan, K.; Kalva, S.; Skelton, A. A.: Synthesis, characterization, antiproliferative and molecular docking study of new half sandwich Ir(III), Rh(III) and Ru(II) complexes. J. Inorg. Biochem. 159 (2016) 50–61.10.1016/j.jinorgbio.2016.02.006Search in Google Scholar PubMed

7. Thangavel, S.; Friedrich, H. B.; Omondi, B.: Syntheses and structural investigations of new half sandwich Ir(III) and Rh(III) amine compounds and their catalytic transfer hydrogenation of aromatic ketones and aldehydes in water. Mol. Catal. 429 (2017) 27–42.10.1016/j.molcata.2016.12.002Search in Google Scholar

8. Wei, C.; He, Y.; Shi, Y.; Song, Z.: Terpyridine-metal complexes: applications in catalysis and supramolecular chemistry. Coord. Chem. Rev. 385 (2019) 1–19.10.1016/j.ccr.2019.01.005Search in Google Scholar PubMed PubMed Central

9. Husson, J.; Guyard, L.: 4,4′-Dichloro-4′-(2-thienyl)-2,2′:6′,2′′-terpyridine. Molbank 2019 (2019) 1–5.10.3390/M1071Search in Google Scholar

10. Njogu, E. M.; Martincigh, B. S.; Omondi, B.; Nyamori, V. O.: Synthesis, characterization, antimicrobial screening and DNA binding of novel silver(I)-thienylterpyridine and silver(I)-furylterpyridine complexes. Appl. Organometal. Chem. 32 (2018) 1–14.10.1002/aoc.4554Search in Google Scholar

11. Njogu, E. M.; Nyamori, V. O.; Omondi, B.: Concomitant and conformational polymorphism in 4′-(isoquinolyl-2,2′:6′,2′′-terpyridine and 4′-(4-quinolyl)-2,2′:6′,2′′-terpyridine. J. Mol. Struct. 1153 (2018) 202–211.10.1016/j.molstruc.2017.09.072Search in Google Scholar

12. Naseri, Z.; Kharat, A. N.; Banavand, A.; Bakhoda, A.; Foroutannejad, S.: First row transition metal complexes of thienyl substituted terpyridine: structural, photophysical and biological studies. Polyhedron 33 (2012) 396–403.10.1016/j.poly.2011.11.060Search in Google Scholar

13. Gichumbi, J.; Friedrich, H.; Omondi, B.; Lazarus, G. G.: Synthesis, characterization, anticancer and antimicrobial study of arene ruthenium(II) complexes with 1,2,4-triazole ligands containing an a-diimine moiety. Z. Naturforsch. B: Chem. Sci. 73 (2018) 167–178.10.1515/znb-2017-0145Search in Google Scholar

14. Kennedy, D. F.; Messerle, B. A.; Smith, M. K.: Synthesis of Cp* iridium and rhodium complexes containing bidentate sp2-N-donor ligands and counter-anions [Cp*MCl3]. Eur. J. Inorg. Chem. 2007 (2007) 80–89.10.1002/ejic.200600735Search in Google Scholar

15. Gichumbi, J. M.; Zamisa, S. J.; Friedrich, H. B.: Crystal structure of chlorido-(η5-pentamethylcyclopentadienyl)-((bis-pyrazol-1-yl)methane-κ2N,N′) rhodium(III) hexafluorophosphate, (C17H23ClN4RhF6P). Z. Kristallogr. NCS. 235 (2020) 391–398.10.1515/ncrs-2019-0692Search in Google Scholar

16. Govindaswamy, P.; Mozharivskyj, Y. A.; Kollipara, M. R.: Syntheses, spectral and structural studies of Schiff base complexes of η5-pentamethylcyclopentadienyl rhodium and iridium. Polyhedron 24 (2005) 1710–1716.10.1016/j.poly.2005.04.034Search in Google Scholar

Received: 2020-07-08
Accepted: 2020-08-02
Published Online: 2020-09-15
Published in Print: 2020-10-27

©2020 Joel M. Gichumbi et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 12.6.2024 from https://www.degruyter.com/document/doi/10.1515/ncrs-2020-0337/html
Scroll to top button