Skip to content
BY 4.0 license Open Access Published by De Gruyter (O) July 18, 2020

Crystal structure of tert-butyl 2-(hydroxymethyl)-5-{4-[(methoxycarbonyl)amino]phenyl}-2,5-dihydro-1H-pyrrole-1-carboxylate, C18H24N2O5

  • Ignez Caracelli EMAIL logo , Julio Zukerman-Schpector , Ariel L. Llanes Garcia , Edson R. Costenaro , Carlos Roque D. Correia and Edward R.T. Tiekink ORCID logo EMAIL logo

Abstract

C18H24N2O5, monoclinic, P21/c (no. 14), a = 11.4784(7) Å, b = 9.0180(8) Å, c = 17.9483(17) Å, β = 92.823(7)°, V = 1855.6(3) Å3, Z = 4, Rgt(F) = 0.0505, wRref(F2) = 0.1611, T = 293 K.

CCDC no.: 2015454

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Colourless irregular
Size:0.33 × 0.19 × 0.16 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:0.09 mm−1
Diffractometer, scan mode:Enraf Nonius TurboCAD4, ω
θmax, completeness:27.4°, >99%
N(hkl)measured, N(hkl)unique, Rint:4328, 4192, 0.029
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 1916
N(param)refined:236
Programs:CAD4 [1], [2], SIR2014 [3], SHELX [4], WinGX/ORTEP [5]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
O10.40740(14)0.4263(2)0.89707(10)0.0718(6)
O20.22115(13)0.49783(19)0.86865(9)0.0584(5)
O30.57622(14)0.2889(3)0.83031(12)0.0791(6)
H3O0.534(3)0.330(4)0.8605(16)0.119*
O4−0.17268(16)−0.0935(3)0.95758(12)0.0842(7)
O5−0.36070(14)−0.0287(2)0.93977(11)0.0702(6)
N10.29677(14)0.3181(2)0.80397(11)0.0480(5)
N2−0.22909(15)0.1053(2)0.88628(12)0.0521(5)
H2N−0.2897(15)0.154(3)0.8705(13)0.062*
C10.3831(2)0.2056(3)0.78279(16)0.0595(7)
H10.3912250.1300300.8219270.071*
C20.3208(3)0.1408(4)0.71529(17)0.0740(9)
H20.3521990.0663170.6865300.089*
C30.2191(2)0.1984(3)0.70084(14)0.0642(8)
H30.1709390.1730380.6596030.077*
C40.18744(18)0.3104(3)0.75792(13)0.0492(6)
H40.1724240.4062780.7336380.059*
C50.3154(2)0.4160(3)0.85961(14)0.0503(6)
C60.2129(2)0.6061(3)0.93005(16)0.0672(8)
C70.0871(3)0.6531(4)0.9217(2)0.0978(11)
H7A0.0706560.6898500.8721180.147*
H7B0.0726350.7297430.9571840.147*
H7C0.0377850.5695280.9305250.147*
C80.2918(3)0.7349(4)0.9140(2)0.1128(13)
H8A0.2778160.7661390.8632300.169*
H8B0.3716960.7047800.9217080.169*
H8C0.2760380.8155930.9469010.169*
C90.2398(3)0.5328(4)1.00428(17)0.0999(12)
H9A0.1994530.4396901.0059600.150*
H9B0.2148180.5958751.0435180.150*
H9C0.3222740.5160901.0106980.150*
C100.5012(2)0.2641(4)0.76614(17)0.0752(9)
H10A0.5384300.1942000.7338000.090*
H10B0.4915020.3566830.7390530.090*
C110.08093(18)0.2628(3)0.79833(13)0.0451(6)
C120.08481(19)0.1542(3)0.85220(14)0.0526(6)
H120.1568050.1147350.8677740.063*
C13−0.01405(18)0.1017(3)0.88400(14)0.0520(6)
H13−0.0081710.0299240.9212040.062*
C14−0.12217(18)0.1567(3)0.86006(12)0.0432(6)
C15−0.12706(19)0.2691(3)0.80824(14)0.0559(7)
H15−0.1988410.3099180.7932470.067*
C16−0.0268(2)0.3222(3)0.77818(14)0.0575(7)
H16−0.0319360.3993190.7437650.069*
C17−0.2457(2)−0.0129(3)0.93032(14)0.0548(7)
C18−0.3915(3)−0.1509(4)0.9867(2)0.0932(11)
H18A−0.388302−0.2417930.9589900.140*
H18B−0.469038−0.1365821.0030840.140*
H18C−0.337591−0.1558681.0292600.140*

Source of material

The synthesis and characterisation of (I) are as described in ref. [6], with crystals for the X-ray study being obtained from recrystallisation from an ethanol solution of (I).

Experimental details

The C-bound H atoms were geometrically placed (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The O- and N-bound H atoms were refined with O—H = 0.82 ± 0.01 Å and N—H = 0.86 ± 0.01 Å, and with Uiso(H) = 1.5Ueq(O) or 1.2Ueq(N).

Comment

The Heck-Matsuda arylation reaction is a valuable and versatile synthetic procedure for carbon-carbon bond formation, being based on the coupling of an olefin with an arenediazonium salt in the presence of a zerovalent organopalladium species [7]. This technology was employed [6] to synthesise molecules containing an α-aryl heterocyclic framework in the core structure as precursors to pharmacologically-important species such as Schramm’s potent antiprotozoan C-azanucleoside [8] and the non-peptide cholecystokinin antagonist (+)-RP 66803 [9]. The title compound (I) was investigated crystallographically in the context of the characterisation of key intermediates of Heck-Matsuda arylation reactions [10], [11].

The molecular structure of (I) is shown in the figure (35% displacement ellipsoids) and is constructed about a tri-substituted, five-membered pyrrole ring. The latter is approximately planar, exhibiting a r.m.s. deviation = 0.0291 Å with maximum deviations to either side of the plane being 0.0391(15) and 0.0387(14) Å for the N1 and C4 atoms, respectively. The dihedral angle between the five-membered ring and the appended carboxylate (CO2) residue and phenyl rings are 5.1(5) and 85.09(8)°, indicating almost co-planar and orthogonal dispositions, respectively. The O3-hydroxyl group is orientated towards the O1-carbonyl atom enabling the formation of an intramolecular hydroxyl-O3—H⋯O1(carbonyl) hydrogen bond [O3—H3o⋯O1: H3o⋯O1 = 1.84(3) Å, O3⋯O1 = 2.637(3) Å with angle at H3o = 160(3)°] which closes a S(6) loop. The configurations at the C1 and C4 atoms are each S. However, the centrosymmetric structure contains equal numbers of both enantiomers. Finally, the terminal (methoxycarbonyl)amino residue is planar (r.m.s. deviation for C2NO2 = 0.0033 Å) and forms a dihedral angle of 7.46(16)° with the phenyl ring to which it is connected, indicating a small twist between the residues.

There is no direct literature precedent for pyrrole (I) with the most closely related structure being a salt with a N1-bound 6-methylpyridinium substituent and flanked on either side by 2-(1,3-benzodioxol-5-yl) and piperidin-1-ylcarbonyl groups [12]. For the pyrrolidine analogue of (I), the most closely related structure is one where the once double bond of (I) is now saturated with each carbon atom bearing a hydroxyl substituent [13]; the ring is twisted about the C(OH)—C(OH) bond.

The most notable feature of the molecular packing is the presence of amino-N2—H⋯.O3(hydroxyl) hydrogen bonding [N2—H2n⋯O3i: H2n⋯O3i = 2.07(2) Å, N2⋯O3i = 2.919(3) Å with the angle at H2n = 174(2)° for symmetry operation (i): −1 + x, y, z] which leads to linear supramolecular chains along the a-axis.

In the absence of additional atom-to-atom points of contact between chains, additional insight into the molecular packing of (I) was achieved by an analysis of the calculated Hirshfeld surfaces and of the full and delineated two-dimensional fingerprint plots employing Crystal Explorer 17 [14] and literature procedures [15]. This analysis confirms the dominance of H⋯H contacts to the surface, contributing 64.8%. Next most prominent are H⋯O/O⋯H contacts at 20.2%, with distinctive spikes correlating with the aforementioned hydrogen bonding, and then H⋯C/C⋯H contacts at 12.2%. The only other contacts of note are H⋯N/N⋯H contacts, at 2.2%.

Acknowledgements

The Brazilian agencies Coordination for the Improvement of Higher Education Personnel, CAPES, Finance Code 001 and the National Council for Scientific and Technological Development (CNPq) are acknowledged for grants (312210/2019–1, 433957/2018–2 and 406273/2015–4) to IC and for a fellowship (303207/2017–5) to JZS. Sunway University Sdn Bhd is thanked for financial support of this work through Grant No. STR-RCTR-RCCM-001–2019.

References

1. CAD4 Express Software. Enraf-Nonius, Delft, The Netherlands (1994).Search in Google Scholar

2. Harms, K.; Wocadlo, S.: XCAD4 – CAD4 Data Reduction. Program for Processing CAD-4 Diffractometer Data. University of Marburg, Germany (1995).Search in Google Scholar

3. Burla, M. C.; Caliandro, R.; Carrozzini, B.; Cascarano, G. L.; Cuocci, C.; Giacovazzo, C.; Mallamo, M.; Mazzone, A.; Polidori, G.: Crystal structure determination and refinement via SIR2014. J. Appl. Crystallogr. 48 (2015) 306–309.10.1107/S1600576715001132Search in Google Scholar

4. Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.10.1107/S2053229614024218Search in Google Scholar

5. Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 45 (2012) 849–854.10.1107/S0021889812029111Search in Google Scholar

6. Severino, E. A.; Costenaro, E. R.; Garcia, A. L. L.; Correia, C. R. D.: Probing the stereoselectivity of the Heck arylation of endocyclic enecarbamates with diazonium salts. concise syntheses of (2S,5R)-phenylproline methyl ester and Schramm’s C-azanucleoside. Org. Lett. 5 (2003) 305–308.10.1021/ol027268aSearch in Google Scholar

7. Mo, F.; Dong, G.; Zhang, Y.; Wang, J.: Recent applications of arene diazonium salts in organic synthesis. Org. Biomol. Chem. 11 (2013) 1582–1593.10.1039/c3ob27366kSearch in Google Scholar

8. Miles, R. W.; Tyler, P. C.; Evans, G. B.; Furneaux, R. H.; Parkin, D. W.; Schramm, V. L.: Iminoribitol transition state analogue inhibitors of protozoan nucleoside hydrolases. Biochemistry 38 (1999) 13147–13154.10.1021/bi990829uSearch in Google Scholar

9. Manfré, F.; Pulicani, P.: Enantiospecific synthesis and absolute configuration of (+)-RP 66803 a new non-peptide CCK antagonist. Tetrahedron: Asymmetry 5 (1994) 235–238.10.1016/S0957-4166(00)86178-9Search in Google Scholar

10. Pedroso, S. D.; Caracelli, I.; Zukerman-Schpector, J.; Soto-Monsalve, M.; Santos, R. H. De A.; Correia, C. R. D.; Garcia, A. L. L.; Kwong, C. H.; Tiekink, E. R. T.: 1-Ethyl 2-methyl 3,4-bis(acetyloxy)pyrrolidine-1,2-dicarboxylate: crystal structure, Hirshfeld surface analysis and computational chemistry. Acta Crystallogr. E76 (2020) 967–972.10.1107/S205698902000701XSearch in Google Scholar

11. Pedroso, S. D.; Caracelli, I.; Zukerman-Schpector, J.; Soto-Monsalve, M.; Santos, R. H. De A.; Correia, C. R. D.; Garcia, A. L. L.; Kwong, C. H.; Tiekink, E. R. T.: 4-Nitrobenzyl 3,4-bis(acetyloxy)-2-(4-methoxyphenyl) pyrrolidine-1-carboxylate: crystal structure, Hirshfeld surface analysis and computational chemistry. Acta Crystalllogr. E76 (2020) 1080–1086.10.1107/S2056989020007914Search in Google Scholar

12. Krchňák, V.; Waring, K. R.; Noll, B. C.; Moellmann, U.; Dahse, H.-M.; Miller, M. J.: Evolution of natural product scaffolds by acyl- and arylnitroso hetero-Diels-Alder reactions: new chemistry on piperine. J. Org. Chem. 73 (2008) 4559–4567.10.1021/jo8004827Search in Google Scholar PubMed

13. Zukerman-Schpector, J.; Caracelli, I.; Teijido, M. V.; Garcia, A. L. L.; Costenaro, E. R.; Correia, C. R. D.: Molecular structure of two C-aryl-iminocyclitols studied by X-ray and ab initio calculations. Z. Kristallogr. Cryst. Mater. 220 (2005) 45–49.10.1524/zkri.220.1.45.58888Search in Google Scholar

14. Turner, M. J.; Mckinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A.: Crystal Explorer v17. The University of Western Australia, Australia (2017).Search in Google Scholar

15. Tan, S. L.; Jotani, M. M.; Tiekink, E. R. T.: Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr. E75 (2019) 308–318.10.1107/S2056989019001129Search in Google Scholar PubMed PubMed Central

Received: 2020-06-21
Accepted: 2020-07-10
Published Online: 2020-07-18
Published in Print: 2020-08-26

©2020 Ignez Caracelli et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 2.6.2024 from https://www.degruyter.com/document/doi/10.1515/ncrs-2020-0305/html
Scroll to top button