Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter (O) April 12, 2016

Crystal structure of N-(2-(2-oxoindolin-4-yl)ethyl)-N-propylpropan-1-aminium tetraphenylborate, C40H45BN2O

  • Hazem A. Ghabbour , Abdulrahman Al-Majed , Obaid S. Alruqi and Gamal A. E. Mostafa EMAIL logo

Abstract

C40H45BN2O, monoclinic, P21/c (No. 14), a = 14.4148(6) Å, b = 16.7684(7) Å, c = 13.7178(5), β = 102.791(1)°, V = 3233.5(2) Å3, Z = 4, Rgt(F) = 0.0424, wRref(F2) = 0.1128, T = 100 K.

CCDC no.:: 1444752

The asymmetric unit of the title crystal structure is shown in the figure. Tables 1 and 2 contain details of the measurement method and a list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Colourless blocks size 0.57×0.25×0.23 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ0.7 cm−1
Diffractometer, scan mode:Bruker ApexII, φ and ω scans
2θmax, completeness:49.994°, >99 %
N(hkl)measured, N(hkl)unique, Rint:31822, 5679, 0.0602
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 4344
N(param)refined:407
Programs:SHELX [11], Bruker programs [12]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
B10.75591(13)0.49037(12)0.72637(14)0.0172(4)
O10.64976(8)0.40570(7)0.28578(8)0.0226(3)
N10.77405(9)0.05203(8)0.67722(10)0.0178(3)
N20.52943(10)0.36155(9)0.35663(10)0.0181(3)
C10.77478(13)−0.17446(11)0.63361(14)0.0278(4)
H1A0.7816−0.20810.57720.042*
H1B0.7143−0.18650.65180.042*
H1C0.8274−0.18500.69090.042*
C20.77641(16)−0.08713(11)0.60396(15)0.0362(5)
H2A0.8396−0.07350.59150.043*
H2B0.7280−0.07750.54170.043*
C30.75607(12)−0.03578(10)0.68633(13)0.0208(4)
H3A0.7955−0.05490.75060.025*
H3B0.6886−0.04320.68920.025*
C40.87633(11)0.07283(11)0.68335(13)0.0240(4)
H4A0.88260.13160.68150.029*
H4B0.89600.05080.62410.029*
C50.94260(12)0.04132(12)0.77689(13)0.0294(4)
H5A1.00800.05950.77750.035*
H5B0.9425−0.01770.77410.035*
C60.91705(14)0.06715(12)0.87365(14)0.0353(5)
H6A0.96850.05230.93030.053*
H6B0.85800.04070.88010.053*
H6C0.90810.12510.87310.053*
C70.70886(12)0.08930(10)0.58817(12)0.0201(4)
H7A0.64340.06890.58260.024*
H7B0.72970.07410.52660.024*
C80.70888(11)0.18043(10)0.59741(13)0.0212(4)
H8A0.72460.19530.66900.025*
H8B0.75880.20280.56610.025*
C90.61391(11)0.21658(10)0.54826(12)0.0183(4)
C100.53076(11)0.19616(10)0.57997(12)0.0202(4)
H10A0.53400.15750.63130.024*
C110.44415(11)0.23133(10)0.53774(12)0.0204(4)
H11A0.38920.21620.56070.024*
C120.43590(11)0.28817(10)0.46253(12)0.0178(4)
H12A0.37670.31260.43380.021*
C130.51779(11)0.30720(9)0.43169(11)0.0166(4)
C140.60579(11)0.27268(10)0.47293(12)0.0163(4)
C150.67863(11)0.30712(10)0.42169(12)0.0194(4)
H15A0.70810.26500.38790.023*
H15B0.72910.33560.46970.023*
C160.62077(11)0.36404(10)0.34682(12)0.0180(4)
C170.93567(12)0.33014(11)0.65796(16)0.0318(5)
H17A0.96480.31910.60370.038*
C180.95644(12)0.28317(11)0.74296(16)0.0350(5)
H18A1.00070.24050.74830.042*
C190.91164(13)0.29944(11)0.81988(15)0.0324(5)
H19A0.92450.26740.87850.039*
C200.84792(12)0.36236(11)0.81190(13)0.0250(4)
H20A0.81740.37170.86550.030*
C210.82645(11)0.41280(10)0.72844(12)0.0190(4)
C220.87226(11)0.39350(10)0.65159(13)0.0228(4)
H22A0.85950.42500.59260.027*
C230.72769(11)0.52700(10)0.61237(11)0.0157(4)
C240.64354(11)0.51030(10)0.54204(12)0.0169(4)
H24A0.59810.47590.56080.020*
C250.62380(12)0.54193(10)0.44609(12)0.0198(4)
H25A0.56520.52970.40130.024*
C260.68872(12)0.59098(10)0.41547(12)0.0201(4)
H26A0.67540.61280.34990.024*
C270.77368(11)0.60788(10)0.48188(12)0.0214(4)
H27A0.81970.64060.46150.026*
C280.79163(11)0.57717(10)0.57789(12)0.0202(4)
H28A0.84990.59060.62250.024*
C290.81020(11)0.56043(10)0.80204(12)0.0170(4)
C300.77297(12)0.63812(10)0.79610(12)0.0220(4)
H30A0.71750.64930.74610.026*
C310.81293(13)0.69904(11)0.85934(13)0.0249(4)
H31A0.78430.75040.85280.030*
C320.89480(12)0.68545(10)0.93252(12)0.0226(4)
H32A0.92300.72710.97610.027*
C330.93421(12)0.61016(11)0.94042(12)0.0223(4)
H33A0.99040.59980.98980.027*
C340.89252(11)0.54931(10)0.87686(12)0.0197(4)
H34A0.92110.49800.88450.024*
C350.66057(11)0.46053(10)0.76453(11)0.0164(4)
C360.61816(11)0.50384(10)0.83018(12)0.0199(4)
H36A0.64290.55500.85170.024*
C370.54082(12)0.47482(11)0.86528(12)0.0238(4)
H37A0.51410.50620.90980.029*
C380.50299(12)0.40098(11)0.83585(13)0.0250(4)
H38A0.45160.38040.86120.030*
C390.54129(12)0.35729(11)0.76862(12)0.0233(4)
H39A0.51490.30690.74610.028*
C400.61785(11)0.38670(10)0.73413(12)0.0197(4)
H40A0.64260.35560.68790.024*
H1N20.4834(14)0.3927(12)0.3228(15)0.035(6)*
H1N10.7547(13)0.0746(12)0.7338(15)0.031(5)*

Source of material

To a solution of 4-[2-(dipropylamino) ethyl]-1,3-dihydro-2H-indol-2-one (0.26g, 1 mmol) in deionized water (25 mL) a solution of sodium tetraphenylborate (0.34 g, 1 mmol) in deionized water (25 mL) was added. A greenish precipitate was formed and filtered off, washed with cold water. The precipitate was dried under vacuum to give the title salt. Recrystallization from ethanol gave a yield of 74%.

Experimental details

All carbon-bound hydrogen atoms were placed in calculated positions. The coordinates and the Uiso values of the nitrogen-bound were refined freely.

Discussion

Ropinirole is a non-ergoline dopamine D2 receptor agonist, used to treat Parkinson's disease and restless leg syndrome [14]. Ropinirole is the first drug approved by the FDA for the treatment of the restless legs syndrome [5]. Sodium tetraphenylborate is used in inorganic and organometallic chemistry as a precipitating reagent [6]. It is also used for the formation of sensing material in polyvinyl chloride sensors [710].

In this study we report the synthesis and X-ray crystal structure of the tetraphenylborate salt of ropinirole. The packing in the crystal structure is stabilized via one intermolecular classical hydrogen bond, of which O1 work as hydrogen bond acceptor and N1 work as hydrogen bond donor. The distance of the interaction between N1—N1H1⋯O1i is 1.839(19) Å, and the angle is 142.8(17) Å. Symmetry codes: (i) x, −y+1/2, z+1/2. All bond lengths and angles are in the normal ranges.

Funding source: King Saud University

Award Identifier / Grant number: RG-1436–024

Funding statement: The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding of this research through the Research Group Project no. RG-1436–024.

Acknowledgements:

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding of this research through the Research Group Project no. RG-1436–024.

References

1. Kaye, C. M.; Nicholls, B.: Clinical pharmacokinetics of ropinirole. Clin. Pharmacokinet. 39 (2000) 243–254.10.2165/00003088-200039040-00001Search in Google Scholar

2. Matheson, A. J.; Spencer, C. M.: Ropinirole. Drugs 60 (2000) 115–137.10.2165/00003495-200060010-00007Search in Google Scholar

3. Hauser, R. A.; Reichmann, H.; Lew, M.; Asgharian, A.; Makumi, C.; Shulman, K. J.: Long-term, open-label study of once-daily ropinirole prolonged release in early Parkinson's disease. Int. J. Neurosci. 121 (2011) 246–253.10.3109/00207454.2010.546538Search in Google Scholar

4. Fabrizio, S.; Giorgi, L.; Hunter, B.; Schapira, A. H. V.: PREPARED: comparison of prolonged and immediate release ropinirole in advanced Parkinson's disease. Mov. Disord. 26 (2011) 1259–1265.10.1002/mds.23498Search in Google Scholar

5. Kushida, C. A.: Ropinirole for the treatment of restless legs syndrome. Neuropsychiatr. Dis. Treat. 2 (2006) 407–419.10.2147/nedt.2006.2.4.407Search in Google Scholar

6. Christopoulos, T.; Diamandis, E.; Hadjiioannou, T.: Potentiometric titration of organic cations with sodium tetraphenylborate and a liquid-membrane tetraphenylborate ion-selective electrode. Anal. Chim. Acta 143 (1982) 143–151.10.1016/S0003-2670(01)95494-7Search in Google Scholar

7. Khalil, M. M.; Issa, Y. M.; El Sayed, G. A.: Modified carbon paste and polymeric membrane electrodes for determination of hydroxychloroquine sulfate in pharmaceutical preparations and human urine. RSC Adv. 5 (2015) 83657–83667.10.1039/C5RA16250ESearch in Google Scholar

8. Ren, L. Y.; Xu, G.: Development and application of cetirizine hydrochloride drug sensor. Mater. Res. Innov. 19 (2015) 474–476.10.1179/1432891714Z.0000000001134Search in Google Scholar

9. Hefnawy, M. M.; Homoda, A. M.; Abounassif, M. A.; Alanazi, A. M.; Al-Majed, A.; Mostafa, G. A.: Potentiometric determination of moxifloxacin in some pharmaceutical formulation using PVC membrane sensors. Chem. Cent. J. 8 (2014) 59.10.1186/s13065-014-0059-ySearch in Google Scholar PubMed PubMed Central

10. Zhang, J.; Liu, C.; Yue, J.; Chen, L.; Donghui Li, D.: Application of graphene/tetraphenylboron-dopamine modified graphite electrode for selective determination of dopamine. Asian. J. Chem. 26 (2014) 5951–5954.10.14233/ajchem.2014.16344Search in Google Scholar

11. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.10.1107/S0108767307043930Search in Google Scholar PubMed

12. Brucker. APEX2, SAINT and SADABS. Brucker AXS Inc., Madison, Wisconsin, USA, 2009.Search in Google Scholar

Received: 2016-1-3
Accepted: 2016-3-10
Published Online: 2016-4-12
Published in Print: 2016-9-1

©2016 Hazem A. Ghabbour et al., published by De Gruyter.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 27.5.2024 from https://www.degruyter.com/document/doi/10.1515/ncrs-2016-0007/html
Scroll to top button