Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 8, 2023

Shear strain rate sensitivity and crystallisation kinetics investigation in melt spun Cu64Zr36 binary metallic glass

  • Chetarpa Yipyintum

    Chetarpa Yipyintum is a PhD student in Advanced Material Analysis Research Unit, Department of Metallurgical Engineering, Chulalongkorn University, Bangkok, Thailand.

    , Jin-Yoo Suh

    Jin-Yoo Suh is a PI at Center for Energy Materials Research, Korea Institute of Science and Technology, Seoul, Korea.

    and Boonrat Lohwongwatana

    Boonrat Lohwongwatana is an Associate Professor in Biomedical Engineering Research Center, Chulalongkorn University, Bangkok, Thailand.

    ORCID logo EMAIL logo
From the journal Materials Testing

Abstract

Shear strain rate effect on crystallisation behaviour and characteristic temperatures of the three well-known glass formers in Cu–Zr binary amorphous system, namely Cu50Zr50, Cu56Zr44 and Cu64Zr36, were investigated. The crystallisation behaviour of Cu64Zr36 was uniquely found to be heavily dependent on shear strain rate. Crystallisation kinetics were studied through Isochronal transformation and isothermal transformation. The activation energy of crystallisation of each case was compared and contrasted. Johnson-Mehl-Avrami (JMA) analyses were also employed to study its kinetics behaviour. Finally, high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) combined with laser-assisted local electrode atom probe (LEAP) investigation revealed no detectable clustering or phase separation.


Corresponding author: Boonrat Lohwongwatana, Department of Metallurgical Engineering, Chulalongkorn University Faculty of Engineering, Bangkok, Thailand, E-mail:

Funding source: Research and Researchers for Industries

Award Identifier / Grant number: PHD56I0045

Award Identifier / Grant number: CAP-18-04-KRISS

About the authors

Chetarpa Yipyintum

Chetarpa Yipyintum is a PhD student in Advanced Material Analysis Research Unit, Department of Metallurgical Engineering, Chulalongkorn University, Bangkok, Thailand.

Jin-Yoo Suh

Jin-Yoo Suh is a PI at Center for Energy Materials Research, Korea Institute of Science and Technology, Seoul, Korea.

Boonrat Lohwongwatana

Boonrat Lohwongwatana is an Associate Professor in Biomedical Engineering Research Center, Chulalongkorn University, Bangkok, Thailand.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the Korea Institute of Science and Technology from the National Research Council of Science & Technology (NST) under grant No. CAP-18-04-KRISS, Research and Researchers for Industries (RRI) under grant PHD56I0045.

  3. Declaration of interest statement: The authors report there are no competing interests to declare.

References

[1] D. D. Wen, P. Peng, Y. Q. Jiang, Z. A. Tian, W. Li, and R. S. Liu, “Correlation of the heredity of icosahedral clusters with the glass forming ability of rapidly solidified CuxZr100−x alloys,” J. Non-Cryst. Solids, vol. 427, pp. 199–207, 2015, https://doi.org/10.1016/j.jnoncrysol.2015.07.019.Search in Google Scholar

[2] Q. Dong, et al.., “A comparative study of glass-forming ability, crystallization kinetics and mechanical properties of Zr55Co25Al20 and Zr52Co25Al23 bulk metallic glasses,” J. Alloys Compd., vol. 785, pp. 422–428, 2019, https://doi.org/10.1016/j.jallcom.2019.01.180.Search in Google Scholar

[3] M. Petrzhik, V. Molokanov, and E. Levashov, “On conditions of bulk and surface glass formation of metallic alloys,” J. Alloys Compd., vol. 707, pp. 68–72, 2017, https://doi.org/10.1016/j.jallcom.2016.12.293.Search in Google Scholar

[4] Y. Huang, Y. L. Chiu, J. Shen, J. J. J. Chen, and J. Sun, “Cooling rate effect of nanomechanical response for a Ti-based bulk metallic glass,” J. Non-Cryst. Solids, vol. 356, no. 20, pp. 966–970, 2010, https://doi.org/10.1016/j.jnoncrysol.2010.02.002.Search in Google Scholar

[5] S. Neubert, A. Pittner, and M. Rethmeier, “Strain-rate controlled Gleeble experiments to determine the stress-strain behavior of HSLA steel S960QL,” Mater. Test., vol. 60, nos 7–8, pp. 733–748, 2018, https://doi.org/10.3139/120.111208.Search in Google Scholar

[6] W. Grellmann and K. Reincke, “Quality improvement of elastomers: application of instrumented notched tensile-impact testing for assessment of toughness,” Mater. Test., vol. 46, no. 4, pp. 168–175, 2004, https://doi.org/10.3139/120.100575.Search in Google Scholar

[7] M. Tao, A. H. Chokshi, R. D. Conner, G. Ravichandran, and W. L. Johnson, “Deformation and crystallization of Zr-based amorphous alloys in homogeneous flow regime,” J. Mater. Res., vol. 25, no. 6, pp. 1137–1148, 2010, https://doi.org/10.1557/JMR.2010.0134.Search in Google Scholar

[8] J. Lu, G. Ravichandran, and W. L. Johnson, “Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures,” Acta Mater., vol. 51, no. 12, pp. 3429–3443, 2003, https://doi.org/10.1016/S1359-6454(03)00164-2.Search in Google Scholar

[9] G. Y. Wang, P. K. Liaw, Y. Yokoyama, M. Freels, and A. Inoue, “The influence of Pd on tension–tension fatigue behavior of Zr-based bulk-metallic glasses,” Int. J. Fatigue, vol. 32, no. 3, pp. 599–604, 2010, https://doi.org/10.1016/j.ijfatigue.2009.04.009.Search in Google Scholar

[10] S. González, G. Q. Xie, D. V. Louzguine-Luzgin, J. H. Perepezko, and A. Inoue, “Deformation and strain rate sensitivity of a Zr–Cu–Fe–Al metallic glass,” Mater. Sci. Eng.: A, vol. 528, no. 9, pp. 3506–3512, 2011, https://doi.org/10.1016/j.msea.2011.01.049.Search in Google Scholar

[11] L. Mihaylov, A. Inoue, L. Lyubenova, D. Nihtianova, and T. Spassov, “Nanoporous metallic structures by de-alloying bulk glass forming Zr-based alloys,” Intermetallics, vol. 98, pp. 148–153, 2018, https://doi.org/10.1016/j.intermet.2018.05.002.Search in Google Scholar

[12] S. Zhu, G. Xie, H. Wang, X. Yang, Z. Cui, and A. Inoue, “Zr-based bulk metallic glass composite with in situ precipitated nanocrystals,” J. Alloys Compd., vol. 586, pp. 155–158, 2014, https://doi.org/10.1016/j.jallcom.2013.10.050.Search in Google Scholar

[13] D. Xu, B. Lohwongwatana, G. Duan, W. L. Johnson, and C. Garland, “Bulk metallic glass formation in binary Cu-rich alloy series – Cu100−xZrx (x = 34, 36, 38.2, 40 at.%) and mechanical properties of bulk Cu64Zr36 glass,” Acta Mater., vol. 52, no. 9, pp. 2621–2624, 2004, https://doi.org/10.1016/j.actamat.2004.02.009.Search in Google Scholar

[14] D. Wang, H. Tan, and Y. Li, “Pinpoint the best glass forming alloy by microstructure study in Cu8Zr3-Cu10Zr7 eutectic system of Cu-Zr binary system,” J. Metastable Nanocrystall. Mater., vol. 24, no. 25, pp. 287–290, 2005, https://doi.org/10.4028/www.scientific.net/JMNM.24-25.287.Search in Google Scholar

[15] S. Zhang, S. Ye, and P. Yu, “Novel dealloying structures and ageing behaviors of Cu-Zr metallic glass ribbons,” J. Non-Cryst. Solids, vol. 458, pp. 61–64, 2017, https://doi.org/10.1016/j.jnoncrysol.2016.12.016.Search in Google Scholar

[16] O. J. Kwon, Y. C. Kim, K. B. Kim, Y. K. Lee, and E. Fleury, “Formation of amorphous phase in the binary Cu–Zr alloy system,” Metals Mater. Inter., vol. 12, no. 3, pp. 207–212, 2006, https://doi.org/10.1007/BF03027532.Search in Google Scholar

[17] Y. Liu, S. Liu, C. Zhang, Y. Du, J. Wang, and Y. Li, “Experimental investigation and thermodynamic description of the Cu-Zr system,” J. Phase Equilib. Diffus., vol. 38, no. 2, pp. 121–134, 2017, https://doi.org/10.1007/s11669-017-0522-2.Search in Google Scholar

[18] D. Dong and C. Dong, “Composition interpretation procedures of bulk metallic glasses via example of Cu64Zr36,” J. Non-Cryst. Solids, vol. 460, pp. 125–129, 2017, https://doi.org/10.1016/j.jnoncrysol.2017.01.035.Search in Google Scholar

[19] M. C. Weinberg, “A test of the johnson-mehl-avrami equation,” J. Cryst. Growth, vol. 82, no. 4, pp. 779–780, 1987, https://doi.org/10.1016/S0022-0248(87)80025-8.Search in Google Scholar

[20] E. B. Peixoto, E. C. Mendonça, S. G. Mercena et al.., “Study of the dynamic of crystallization of an amorphous Fe40Ni40P14B6 ribbon through Johnson-Mehl-Avrami model,” J. Alloys Compd., vol. 731, pp. 1275–1279, 2018, https://doi.org/10.1016/j.jallcom.2017.10.062.Search in Google Scholar

[21] V. Keryvin, M.-L. Vaillant, T. Rouxel, M. Huger, T. Gloriant, and Y. Kawamura, “Thermal stability and crystallisation of a Zr55Cu30Al10Ni5 bulk metallic glass studied by in situ ultrasonic echography,” Intermetallics, vol. 10, no. 11, pp. 1289–1296, 2002, https://doi.org/10.1016/S0966-9795(02)00150-4.Search in Google Scholar

[22] F. Y. Küçükakarsu, İ. İ. Ayhan, E. Alan, D. Taştemür, and S. Gündüz, “Effect of hot rolling process parameters on the microstructure and mechanical properties of continuously cooled low-carbon high-strength low-alloy (HSLA) steel,” Mater. Test., vol. 64, no. 8, pp. 1136–1149, 2022, https://doi.org/10.1515/mt-2021-2220.Search in Google Scholar

[23] N. Mattern, A. Schöps, U. Kühn, J. Acker, O. Khvostikova, and J. Eckert, “Structural behavior of CuxZr100−x metallic glass (x = 35−70),” J. Non-Cryst. Solids, vol. 354, no. 10, pp. 1054–1060, 2008, https://doi.org/10.1016/j.jnoncrysol.2007.08.035.Search in Google Scholar

[24] R. L. Freed and J. B. Vander Sande, “A study of the crystallization of two non-crystalline CuZr alloys,” J. Non-Cryst. Solids, vol. 27, no. 1, pp. 9–28, 1978, https://doi.org/10.1016/0022-3093(78)90032-7.Search in Google Scholar

[25] X. Wu, S. Lan, Z. Wu et al.., “Multiscale structures of Zr-based binary metallic glasses and the correlation with glass forming ability,” Prog. Nat. Sci., vol. 27, no. 4, pp. 482–486, 2017, https://doi.org/10.1016/j.pnsc.2017.08.008.Search in Google Scholar

[26] J. O. Fadonougbo, J.-Y. Suh, C.-H. Shim, G.-H. Kim, E. Fleury, and Y. W. Cho, “Nanometer-scale phase separation and formation of delta ZrH2 in Cu-Zr binary amorphous alloys,” J. Alloys Compd., vol. 721, pp. 646–652, 2017, https://doi.org/10.1016/j.jallcom.2017.06.012.Search in Google Scholar

[27] R. L. Freed and J. B. Vander Sande, “The metallic glass Cu56Zr44: devitrification and the effects of devitrification on mechanical properties,” Acta. Metall., vol. 28, no. 1, pp. 103–121, 1980, https://doi.org/10.1016/0001-6160(80)90044-9.Search in Google Scholar

[28] T. Cullinan, I. Kalay, Y. E. Kalay, M. Kramer, and R. Napolitano, “Kinetics and mechanisms of isothermal devitrification in amorphous Cu50Zr50,” Metall. Mater. Trans. A, vol. 46, no. 2, pp. 600–613, 2015, https://doi.org/10.1007/s11661-014-2661-y.Search in Google Scholar

[29] E. A. Theisen, M. J. Davis, S. J. Weinstein, and P. H. Steen, “Transient behavior of the planar-flow melt spinning process,” Chem. Eng. Sci., vol. 65, no. 10, pp. 3249–3259, 2010, https://doi.org/10.1016/j.ces.2010.02.018.Search in Google Scholar

[30] K. Thompson, D. Lawrence, D. J. Larson, J. D. Olson, T. F. Kelly, and B. Gorman, “In situ site-specific specimen preparation for atom probe tomography,” Ultramicroscopy, vol. 107, no. 2, pp. 131–139, 2007, https://doi.org/10.1016/j.ultramic.2006.06.008.Search in Google Scholar PubMed

[31] L. Li and W. H. de Jeu, “Shear-induced smectic ordering in the melt of isotactic polypropylene,” Phys. Rev. Lett., vol. 92, no. 7, p. 075506, 2004, https://doi.org/10.1103/PhysRevLett.92.075506.Search in Google Scholar PubMed

[32] Y. L. Wu, D. Derks, A. van Blaaderen, and A. Imhof, “Melting and crystallization of colloidal hard-sphere suspensions under shear,” Proc. Natl. Acad. Sci. U S A, vol. 106, no. 26, p. 10569, 2009, https://doi.org/10.1073/pnas.0812519106.Search in Google Scholar PubMed PubMed Central

[33] B. Lohwongwatana, J. Schroers, and W. L. Johnson, “Strain rate induced crystallization in bulk metallic glass-forming liquid,” Phys. Rev. Lett., vol. 96, no. 7, p. 075503, 2006, https://doi.org/10.1103/PhysRevLett.96.075503.Search in Google Scholar PubMed

[34] N. Mattern, U. Vainio, B. Schwarz, J. M. Park, D. H. Kim, and J. Eckert, “Phase separation in Ni70Nb30−xYx glasses,” Intermetallics, vol. 18, no. 10, pp. 1842–1845, 2010, https://doi.org/10.1016/j.intermet.2010.02.035.Search in Google Scholar

[35] R. A. Gray, P. B. Warren, S. Chynoweth, Y. Michopoulos, and G. S. Pawley, “Crystallization of molecular liquids through shear-induced nucleation,” Proc. R. Soc. Lond A Math. Phys. Sci., vol. 448, no. 1932, pp. 113–120, 1995, https://doi.org/10.1098/rspa.1995.0008.Search in Google Scholar

[36] A. Onuki, “Phase transitions of fluids in shear flow,” J. Phys.: Condens. Matter, vol. 9, no. 29, pp. 6119–6157, 1997, https://doi.org/10.1088/0953-8984/9/29/001.Search in Google Scholar

[37] J. Schroers, B. Lohwongwatana, W. L. Johnson, and A. Peker, “Gold based bulk metallic glass,” Appl. Phys. Lett., vol. 87, no. 6, p. 061912, 2005, https://doi.org/10.1063/1.2008374.Search in Google Scholar

[38] C. Way, T. Shaw, P. Wadhwa, and R. Busch, “Shear rate dependence of viscosity and configurational entropy of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 metallic glass forming liquid,” J. Alloys Compd., vol. 434, no. 435, pp. 88–91, 2007, https://doi.org/10.1016/j.jallcom.2006.08.116.Search in Google Scholar

[39] C.-W. Chen and W.-S. Hwang, “A three-dimensional fluid flow model for puddle formation in the single-roll rapid solidification process,” Appl. Math. Model., vol. 19, no. 12, pp. 704–712, 1995, https://doi.org/10.1016/0307-904X(95)00089-3.Search in Google Scholar

[40] R. C. Budhani, T. C. Goel, and K. L. Chopra, “Melt-spinning technique for preparation of metallic glasses,” Bull. Mater. Sci., vol. 4, no. 5, pp. 549–561, 1982, https://doi.org/10.1007/BF02824962.Search in Google Scholar

[41] X. D. Hui, Y. S. Yang, X. M. Chen, and Z. Q. Hu, “Transient heat transfer and fluid dynamics during the melt spinning process of Fe78Si9B12Mo amorphous alloy,” Sci. Technol. Adv. Mater., vol. 2, no. 1, pp. 265–270, 2001, https://doi.org/10.1016/S1468-6996(01)00067-5.Search in Google Scholar

[42] Z. Sun and H. A. Davies, “Computer modelling of ribbon formation in the melt spinning of crystalline metals,” Mater. Sci. Eng., vol. 98, pp. 71–74, 1988, https://doi.org/10.1016/0025-5416(88)90129-2.Search in Google Scholar

[43] J. M. Kim, J. S. Lee, D. M. Shin, H. W. Jung, and J. C. Hyun, “Transient solutions of the dynamics of film casting process using a 2-D viscoelastic model,” J. Non-Newtonian Fluid Mech., vol. 132, no. 1, pp. 53–60, 2005, https://doi.org/10.1016/j.jnnfm.2005.10.002.Search in Google Scholar

[44] H. E. Kissinger, “Reaction kinetics in differential thermal analysis,” Anal. Chem., vol. 29, no. 11, pp. 1702–1706, 1957, https://doi.org/10.1021/ac60131a045.Search in Google Scholar

[45] G. Ruitenberg, “Applying Kissinger analysis to the glass transition peak in amorphous metals,” Thermochim. Acta, vol. 404, no. 1, pp. 207–211, 2003, https://doi.org/10.1016/S0040-6031(03)00142-4.Search in Google Scholar

[46] Y. J. Yang, D. W. Xing, J. Shen et al.., “Crystallization kinetics of a bulk amorphous Cu–Ti–Zr–Ni alloy investigated by differential scanning calorimetry,” J. Alloys Compd., vol. 415, no. 1, pp. 106–110, 2006, https://doi.org/10.1016/j.jallcom.2005.07.062.Search in Google Scholar

[47] F. Liu, H. Nitsche, F. Sommer, and E. J. Mittemeijer, “Nucleation, growth and impingement modes deduced from isothermally and isochronally conducted phase transformations: calorimetric analysis of the crystallization of amorphous Zr50Al10Ni40,” Acta Mater., vol. 58, no. 19, pp. 6542–6553, 2010, https://doi.org/10.1016/j.actamat.2010.08.019.Search in Google Scholar

[48] J. C. Qiao and J. M. Pelletier, “Crystallization kinetics in Cu46Zr45Al7Y2 bulk metallic glass by differential scanning calorimetry (DSC),” J. Non-Cryst. Solids, vol. 357, no. 14, pp. 2590–2594, 2011, https://doi.org/10.1016/j.jnoncrysol.2010.12.071.Search in Google Scholar

[49] C. Peng, Z. H. Chen, X. Y. Zhao, A. L. Zhang, L. K. Zhang, and D. Chen, “Crystallization kinetics of Zr60Cu25Fe5Al10 bulk metallic glass,” J. Non-Cryst. Solids, vol. 405, pp. 7–11, 2014, https://doi.org/10.1016/j.jnoncrysol.2014.08.030.Search in Google Scholar

[50] S. Cheng, C. Wang, M. Ma, D. Shan, and B. Guo, “Non-isothermal crystallization kinetics of Zr41.2Ti13.8Cu12.5Ni10Be22.5 amorphous alloy,” Thermochim. Acta, vol. 587, pp. 11–17, 2014, https://doi.org/10.1016/j.tca.2014.04.009.Search in Google Scholar

[51] N. Wang, C. Li, Z. Du, F. Wang, and W. Zhang, “The thermodynamic re-assessment of the Cu–Zr system,” Calphad, vol. 30, no. 4, pp. 461–469, 2006, https://doi.org/10.1016/j.calphad.2006.06.002.Search in Google Scholar

[52] S. H. Zhou and R. E. Napolitano, “Phase stability for the Cu–Zr system: first-principles, experiments and solution-based modeling,” Acta Mater., vol. 58, no. 6, pp. 2186–2196, 2010, https://doi.org/10.1016/j.actamat.2009.12.004.Search in Google Scholar

[53] X. Cui, F. Q. Zu, W. J. Zhang, Z. Z. Wang, and X. Y. Li, “Phase competition of Cu64Zr36 and its effect on glass forming ability of the alloy,” Cryst. Res. Technol., vol. 48, no. 1, pp. 11–15, 2013, https://doi.org/10.1002/crat.201200337.Search in Google Scholar

[54] S. Mridha, D. L. Jaeger, H. Singh Arora, R. Banerjee, and S. Mukherjee, “Evolution of atomic distribution during devitrification of bulk metallic glass investigated by atom probe microscopy,” Mater. Lett., vol. 158, pp. 99–103, 2015, https://doi.org/10.1016/j.matlet.2015.05.034.Search in Google Scholar

[55] S. W. Sohn, W. Yook, W. T. Kim, and D. H. Kim, “Phase separation in bulk-type Gd–Zr–Al–Ni metallic glass,” Intermetallics, vol. 23, pp. 57–62, 2012, https://doi.org/10.1016/j.intermet.2011.12.021.Search in Google Scholar

[56] L. E. Tanner and R. Ray, “Phase separation in Zr–Ti–Be metallic glasses,” Scr. Metal., vol. 14, no. 6, pp. 657–662, 1980, https://doi.org/10.1016/0036-9748(80)90018-6.Search in Google Scholar

[57] Y. L. Ren, R. L. Zhu, J. Sun, J. H. You, and K. Q. Qiu, “Phase separation and plastic deformation in an Mg-based bulk metallic glass,” J. Alloys Compd., vol. 493, no. 1, pp. L42–L46, 2010, https://doi.org/10.1016/j.jallcom.2009.12.195.Search in Google Scholar

Published Online: 2023-03-08
Published in Print: 2023-03-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.6.2024 from https://www.degruyter.com/document/doi/10.1515/mt-2022-0451/html
Scroll to top button