Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 23, 2016

Role of porous silicon/hydrogel composites on drug delivery

  • Denisse Rocha-García , Antonio Guerra-Contreras , Sergio Rosales-Mendoza and Gabriela Palestino
From the journal Open Material Sciences

Abstract

Nanomaterials are applied with great success in biomedical applications as templates for the development of new generation devices, which can be used to solve current health problems. These new nanoscale systems are designed with multifunctions to perform specific and selective tasks. One of the most important applications of this new nanotechnology; focuses on developing new systems for the controlled release of drugs, mainly due to their capability to improve the temporal and spatial presentation of drugs in the body and their ability to protect them from physiological degradation or elimination. Hydrogels, porous silicon (PSi), and PSi-composites have been widely adopted in this field due to their biological, morphological, and physicochemical properties; which can be tuned to obtain sensitive responses to physiological stimuli. Despite the fact that some recent academic papers have shown the benefits of these nanomaterials in a wide range of biological applications, more in vivo studies are needed to take these hybrid systems towards clinical trials. In this mini-review some of the hydrogels, PSi, and PSi-composites latest applications and prospects in this field of science are presented.

References

[1] Hamidi, M., Azadi, A., Rafiei, P., Hydrogel nanoparticles in drug delivery. Adv. Drug Deliv. Rev., 2008. 60 (15): p. 1638–1649. 10.1016/j.addr.2008.08.002Search in Google Scholar PubMed

[2] Joye, I. J., McClements, D. J. Biopolymer-based nanoparticles and microparticles: fabrication, characterization, and application. Curr. Opin. Colloid Interface Sci., 2014. 19(5): p. 417-427. Search in Google Scholar

[3] Wu, B. C., McClements, D. J. Functional hydrogel microspheres: Parameters affecting electrostatic assembly of biopolymer particles fabricated from gelatin and pectin. Food Res Int., 2015. 72: p. 231-240. 10.1016/j.foodres.2015.02.028Search in Google Scholar

[4] Bae, K. H.,Wang, L. S., & Kurisawa, M. Injectable biodegradable hydrogels: progress and challenges. J. Mater. Chem. B., 2013. 1(40): p. 5371-5388. Search in Google Scholar

[5] Steichen, S. D., Caldorera-Moore, M., Peppas, N. A. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. ur. J. Pharm. Sci., 2013. 48(3): p. 416-427. Search in Google Scholar

[6] Mura, S., Nicolas, J., Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater., 2013. 12(11): p. 991-1003. Search in Google Scholar

[7] Fleige, E., Quadir, M. A., Haag, R. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv. Drug Deliv. Rev., 2012. 64(9): p. 866-884. Search in Google Scholar

[8] Uhrich, K. E., Cannizzaro, S. M., Langer, R. S., Shakesheff, K. M., Polymeric systems for controlled drug release. Chemical reviews, 1999. 99(11): p. 3181-3198. 10.1021/cr940351uSearch in Google Scholar PubMed

[9] Anselmo, A. C., Mitragotri, S., An overview of clinical and commercial impact of drug delivery systems. J. Control. Release. 2014. 190: p. 15-28. 10.1016/j.jconrel.2014.03.053Search in Google Scholar PubMed PubMed Central

[10] Perez, R. A., Kim, H. W. Core–shell designed scaffolds for drug delivery and tissue engineering. Acta Biomater., 2015. 21: p. 2- 19. 10.1016/j.actbio.2015.03.013Search in Google Scholar PubMed

[11] Dowling, M. B., Bagal, A. S., Raghavan, S. R. Self-destructing “mothership” capsules for timed release of encapsulated contents. Langmuir, 2013. 29(25): p. 7993-7998. 10.1021/la400883kSearch in Google Scholar PubMed

[12] Gaharwar, A.K., Peppas, N.A., Khademhosseini, A., Nanocomposite hydrogels for biomedical applications. Biotechnol. Bioeng., 2014. 111 (3): p. 441–453. 10.1002/bit.25160Search in Google Scholar PubMed PubMed Central

[13] Kumar, D. S., Banji, D., Madhavi, B., Bodanapu, V., Dondapati, S., Sri, A. P., Nanostructured porous silicon—a novel biomaterial for drug delivery. Int J Pharm Pharm Sci, 2009. 1(2): p. 8-16. Search in Google Scholar

[14] Viseras, C., Aguzzi, C., Cerezo, P., Bedmar, M. C. Biopolymer– clay nanocomposites for controlled drug delivery. Mater. Sci. Tech., 2008. 24(9): p. 1020-1026. Search in Google Scholar

[15] Viseras, C., Cerezo, P., Sanchez, R., Salcedo, I., Aguzzi, C. Current challenges in clay minerals for drug delivery. Appl Clay Sci., 2010. 48(3): p. 291-295. 10.1016/j.clay.2010.01.007Search in Google Scholar

[16] Slowing, I. I., Vivero-Escoto, J. L., Wu, C. W., Lin, V. S. Y. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev., 2008. 60(11): p. 1278-1288. Search in Google Scholar

[17] Song, B., Wu, C., Chang, J. Dual drug release from electrospun poly (lactic-co-glycolic acid)/mesoporous silica nanoparticles composite mats with distinct release profiles. Acta Biomater., 2012. 8(5): p. 1901-1907. 10.1016/j.actbio.2012.01.020Search in Google Scholar PubMed

[18] Goenka, S., Sant, V., Sant, S. Graphene-based nanomaterials for drug delivery and tissue engineering. J. Control. Release, 2014. 173: p. 75-88. 10.1016/j.jconrel.2013.10.017Search in Google Scholar PubMed

[19] Das, T. K., Prusty, S. Graphene-based polymer composites and their applications. PolymPlast Technol Eng., 2013. 52(4): p. 319- 331. 10.1080/03602559.2012.751410Search in Google Scholar

[20] Cirillo, G., Hampel, S., Spizzirri, U. G., Parisi, O. I., Picci, N., Iemma, F. Carbon nanotubes hybrid hydrogels in drug delivery: a perspective review. Biomed Res Int., 2014. 10.1155/2014/825017Search in Google Scholar

[21] Low, S.P., Williams, K.A., Canham, L.T., Voelcker, N.H., Evaluation of mammalian cell adhesion on surface-modified porous silicon. Biomaterials, 2006. 27 (26): p. 4538–4546. 10.1016/j.biomaterials.2006.04.015Search in Google Scholar

[22] DeLouise, L.A., Fauchet, P.M., Miller, B.L., Pentland, A.A., Hydrogel-Supported Optical-Microcavity Sensors. Adv. Mater., 2005. 17 (18): p. 2199–2203. 10.1002/adma.200500261Search in Google Scholar

[23] Hernandez-Montelongo, J., Naveas, N., Degoutin, S., Tabary, N., Chai, F., Spampinato, V., Martel, B., Porous silicon-cyclodextrin based polymer composites for drug delivery applications. Carbohydr. Polym., 2014. 110: p. 238–52. Search in Google Scholar

[24] Anirudhan, T., Parvathy, J., Nair, A., A novel composite matrix based on polymeric micelle and hydrogel as a drug carrier for the controlled release of dual drugs. Carbohydr. Polym., 2016. 136: p. 1118-1127. 10.1016/j.carbpol.2015.10.019Search in Google Scholar

[25] Jia, X., Kiick, K.L., Hybrid multicomponent hydrogels for tissue engineering. Macromol. Biosci., 2009. 9 (2): p. 140–156. 10.1002/mabi.200800284Search in Google Scholar

[26] Anglin, E.J., Cheng, L., Freeman, W.R., Sailor, M.J., Porous silicon in drug delivery devices and materials. Adv. Drug Deliv. Rev., 2008. 60 (11): p. 1266–1277. 10.1016/j.addr.2008.03.017Search in Google Scholar

[27] Peppas, N., Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm., 2000. 50 (1): p. 27–46. 10.1016/S0939-6411(00)00090-4Search in Google Scholar

[28] Hoffman, A.S., Hydrogels for biomedical applications. Adv. Drug Deliv. Rev., 2012. 64: p. 18–23. Search in Google Scholar

[29] Patil, J. S., Hydrogel System: An Approach for Drug Delivery Modulation. Adv. Pharmacoepidemiol. Drug Saf., 2015. 4 (5). Search in Google Scholar

[30] Dwivedi, S., Hydrogel-A conceptual overview. Int. J. Pharm. Biol. Sci. Arch., 2011. 2(6). Search in Google Scholar

[31] Qiu, Y., and Park, K., Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev., 2012. 64: p. 49–60. Search in Google Scholar

[32] Koetting, M. C., Peters, J. T., Steichen, S. D., Peppas, N. A., Stimulus-responsive hydrogels: Theory, modern advances, and applications. Mater. Sci., 2015. 93: p. 1-49. Search in Google Scholar

[33] Peppas, N.A., Huang, Y., Torres-Lugo, M., Ward, J. H., Zhang, J., Physicochemical Foundations and Structural Design of Hydrogels in Medicine and Biology. Annu. Rev. Biomed. Eng., 2000. 2: p. 9–29. Search in Google Scholar

[34] Acharya, G., Park, K. Mechanisms of controlled drug release from drug-eluting stents. Adv. Drug Deliv. Rev, 2006. 58(3): p. 387-401. Search in Google Scholar

[35] Canal, T., Peppas, N.A., Correlation between mesh size and equilibrium degree of swelling of polymeric networks. J. Biomed. Mater. Res., 1989. 23 (10): p. 1183–1193. 10.1002/jbm.820231007Search in Google Scholar

[36] Drury, J.L., Mooney, D.J., Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials, 2003. 24: p. 4337–4351. 10.1016/S0142-9612(03)00340-5Search in Google Scholar

[37] Hu, X., Hao, L., Wang, H., Yang, X., Zhang, G., Wang, G., Zhang, X. Hydrogel contact lens for extended delivery of ophthalmic drugs. Int J Polym Sci., 2011. 2011: p. 1-9. 10.1155/2011/814163Search in Google Scholar

[38] Venkatesh, S., Sizemore, S. P., Byrne, M. E. Biomimetic hydrogels for enhanced loading and extended release of ocular therapeutics. Biomaterials, 2007. 28(4): p. 717-724. 10.1016/j.biomaterials.2006.09.007Search in Google Scholar

[39] Cervidil website. www.cervidil.com Search in Google Scholar

[accessed October 2016]. Search in Google Scholar

[40] Park, K., Enzyme-digestible swelling hydrogels as platforms for long-term oral drug delivery: synthesis and characterization. Biomaterials, 1988. 9 (5): p. 435–441. 10.1016/0142-9612(88)90009-9Search in Google Scholar

[41] Chen, J., Park, K., Synthesis and characterization of superporous hydrogel composites. J. Control. Release, 2000. 65 (1): p. 73–82. 10.1016/S0168-3659(99)00238-2Search in Google Scholar

[42] Caló, E., Khutoryanskiy, V. V., Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J., 2015. 65: p. 252–267. 10.1016/j.eurpolymj.2014.11.024Search in Google Scholar

[43] Vashist, A., Vashist, A., Gupta, Y.K.,Ahmad, S., Recent advances in hydrogel based drug delivery systems for the human body. J. Mater. Chem. B, 2014. 2 (2): p. 147. 10.1039/C3TB21016BSearch in Google Scholar

[44] Elvira, C., Mano, J.F., San Román, J., Reis, R.L., Starch-based biodegradable hydrogels with potential biomedical applications as drug delivery systems. Biomaterials, 2002. 23 (9): p. 1955–1966. 10.1016/S0142-9612(01)00322-2Search in Google Scholar

[45] Palestino, G., Agarwal, V., Aulombard, R., Perez, E., Gergely, C., Biosensing and protein fluorescence enhancement by functionalized porous silicon devices. Langmuir., 2008. 24(23): p. 13765-13771. 10.1021/la8015707Search in Google Scholar PubMed

[46] Donnorso, M. P., Miele, E., De Angelis, F., La Rocca, R., Limongi, T., Zanacchi, F. C., Di Fabrizio, E., Nanoporous silicon nanoparticles for drug delivery applications. Microelectron. Eng., 2012. 98: p. 626–629. Search in Google Scholar

[47] Anglin, E. J., Schwartz, M. P., Ng, V. P., Perelman, L. A., Sailor, M. J., Engineering the chemistry and nanostructure of porous silicon Fabry-Pérot films for loading and release of a steroid. Langmuir, 2004. 20 (25): p. 11264–9. 10.1021/la048105tSearch in Google Scholar PubMed

[48] Martin-Palma, R.J., Biomedical applications of nanostructured porous silicon: a review. J. Nanophotonics, 2010. 4 (1): p. 42502. 10.1117/1.3496303Search in Google Scholar

[49] Jarvis, K.L., Barnes, T.J., Prestidge, C.A., Surface chemistry of porous silicon and implications for drug encapsulation and delivery applications. Adv. Colloid Interface Sci., 2012. 175: p. 25– 38. 10.1016/j.cis.2012.03.006Search in Google Scholar PubMed

[50] Salonen, J., Laitinen, L., Kaukonen, A. M., Tuura, J., Björkqvist, M., Heikkilä, T., Lehto, V. P., Mesoporous silicon microparticles for oral drug delivery: loading and release of five model drugs. J. Control. Release, 2005. 108 (2): p. 362–374. 10.1016/j.jconrel.2005.08.017Search in Google Scholar PubMed

[51] Salonen, J., Lehto, V.P., Fabrication and chemical surface modification of mesoporous silicon for biomedical applications. Chem. Eng. J., 2008.137 (1): p. 162–172. 10.1016/j.cej.2007.09.001Search in Google Scholar

[52] Sarparanta, M., Mäkilä, E., Heikkila¨, T., Salonen, J., Kukk, E., Lehto, V. P., Airaksinen, A. J., 18F-labeled modified porous silicon particles for investigation of drug delivery carrier distribution in vivo with positron emission tomography. Mol. Pharm., 2011. 8 (5): p. 1799–1806. 10.1021/mp2001654Search in Google Scholar PubMed

[53] Bimbo, L. M., Sarparanta, M., Santos, H. A., Airaksinen, A. J., Mäkilä, E., Laaksonen, T., Salonen, J., Biocompatibility of thermally hydrocarbonized porous silicon nanoparticles and their biodistribution in rats. ACS Nano, 2010. 4 (6): p. 3023–3032. 10.1021/nn901657wSearch in Google Scholar PubMed

[54] Kilpeläinen, M., Mönkäre, J., Vlasova, M. A., Riikonen, J., Lehto, V. P., Salonen, J., Herzig, K. H., Nanostructured porous silicon microparticles enable sustained peptide (Melanotan II) delivery. Eur. J. Pharm. Biopharm., 2011. 77 (1): p. 20–25. 10.1016/j.ejpb.2010.10.004Search in Google Scholar PubMed

[55] Sarparanta, M. P., Bimbo, L. M., Mäkilä, E. M., Salonen, J. J., Laaksonen, P. H., Helariutta, A. K., Airaksinen, A. J., The mucoadhesive and gastroretentive properties of hydrophobin-coated porous silicon nanoparticle oral drug delivery systems. Biomaterials, 2012. 33 (11): p. 3353–3362. 10.1016/j.biomaterials.2012.01.029Search in Google Scholar PubMed

[56] Vaccari, L., Canton, D., Zaffaroni, N., Villa, R., Tormen, M., di Fabrizio, E., Porous silicon as drug carrier for controlled delivery of doxorubicin anticancer agent. Microelectron. Eng., 2006. 83 (4): p. 1598–1601. 10.1016/j.mee.2006.01.113Search in Google Scholar

[57] Haidary, S. M., Córcoles, E. P., Ali, N. K., Nanoporous silicon as drug delivery systems for cancer therapies. J. Nanomater., 2012. p. 18. 10.1155/2012/830503Search in Google Scholar

[58] Santos, H. A., Mäkilä, E., Airaksinen, A. J., Bimbo, L. M., Hirvonen, J., Porous silicon nanoparticles for nanomedicine: preparation and biomedical applications. Nanomedicine, 2014. 9 (4): p. 535–554. 10.2217/nnm.13.223Search in Google Scholar PubMed

[59] Hou, H., Nieto, A., Ma, F., Freeman, W. R., Sailor, M. J., Cheng, L., Tunable sustained intravitreal drug delivery system for daunorubicin using oxidized porous silicon. J. Control. Release, 2014. 178: p. 46–54. 10.1016/j.jconrel.2014.01.003Search in Google Scholar PubMed PubMed Central

[60] Maniya, N.H., Patel, S.R., Murthy, Z.V.P., Fabrication and application of porous silicon multilayered microparticles in sustained drug delivery. Superlattices Microstruct., 2015. 85: p. 34–42. 10.1016/j.spmi.2015.05.017Search in Google Scholar

[61] Wang, C. F., Mäkilä, E. M., Kaasalainen, M. H., Hagström, M. V., Salonen, J. J., Hirvonen, J. T., Santos, H. A., Dual-drug delivery by porous silicon nanoparticles for improved cellular uptake, sustained release, and combination therapy. Acta Biomater., 2015. 16 (1): p. 206–214. 10.1016/j.actbio.2015.01.021Search in Google Scholar PubMed

[62] Korhonen, E., Rönkkö, S., Hillebrand, S., Riikonen, J., Xu, W., Järvinen, K., Kauppinen, A., Cytotoxicity assessment of porous silicon microparticles for ocular drug delivery. Eur. J. Pharm. Biopharm., 2016. 100: 1–8. 10.1016/j.ejpb.2015.11.020Search in Google Scholar PubMed

[63] Wang, M., Hartman, P. S., Loni, A., Canham, L. T., Coffer, J. L., Stain Etched Nanostructured Porous Silicon: The Role of Morphology on Antibacterial Drug Loading and Release. Silicon. 2016. p. 1-7. 10.1007/s12633-015-9397-1Search in Google Scholar

[64] Tölli, M. A., Ferreira, M. P., Kinnunen, S. M., Rysä, J., Mäkilä, E. M., Szabó, Z., Salonen, J. J., In vivo biocompatibility of poroussilicon biomaterials for drug delivery to the heart. Biomaterials, 2014. 35 (29): p. 8394–8405. 10.1016/j.biomaterials.2014.05.078Search in Google Scholar PubMed

[65] Liu, D., Mäkilä, E., Zhang, H., Herranz, B., Kaasalainen, M., Kinnari, P., Santos, H. A., Nanostructured porous silicon-solid lipid nanocomposite: Towards enhanced cytocompatibility and stability, reduced cellular association, and prolonged drug release. Adv. Funct. Mater., 2013. 23 (15): p. 1893–1902. 10.1002/adfm.201202491Search in Google Scholar

[66] Fu, S. Y., Feng, X. Q. Lauke, B., Mai, Y. W. Effect of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites, Compos. Part B, 2008. 39: p. 933–961. 10.1016/j.compositesb.2008.01.002Search in Google Scholar

[67] Maniya, N.H., Patel, S.R., Murthy, Z.V.P., Development and in vitro evaluation of acyclovir delivery system using nanostructured porous silicon carriers. Chem. Eng. Res. Des., 2015. 104: p. 551–557. Search in Google Scholar

[68] Bonanno, L. M., Segal, E. Nanostructured porous silicon– polymer-based hybrids: from biosensing to drug delivery. Nanomedicine, 2011. 6(10): p. 1755-1770. 10.2217/nnm.11.153Search in Google Scholar PubMed

[69] Liu, D., Zhang, H., Herranz-Blanco, B., Mäkilä, E., Lehto, V. P., Salonen, J., Santos, H. A. Microfluidic Assembly of Monodisperse Multistage pH-Responsive Polymer/Porous Silicon Composites for Precisely Controlled Multi-Drug Delivery. Small, 2014. 10(10): p. 2029-2038. 10.1002/smll.201303740Search in Google Scholar PubMed

[70] McInnes, S. J., Irani, Y.,Williams, K. A., Voelcker, N. H. Controlled drug delivery from composites of nanostructured porous silicon and poly (L-lactide). Nanomedicine, 2012. 7(7): p. 995-1016. 10.2217/nnm.11.176Search in Google Scholar PubMed

[71] Nan, K., Ma, F., Hou, H., Freeman, W. R., Sailor, M. J., Cheng, L. Porous silicon oxide–PLGA composite microspheres for sustained ocular delivery of daunorubicin. Acta Biomater., 2014. 10(8): p. 3505-3512. 10.1016/j.actbio.2014.04.024Search in Google Scholar PubMed PubMed Central

[72] Coffer, J. L., Whitehead, M. A., Nagesha, D. K., Mukherjee, P., Akkaraju, G., Totolici, M., Canham, L. T. Porous silicon-based scaffolds for tissue engineering and other biomedical applications Phys. Status Solidi (a), 2005. 202(8): p. 1451-1455. 10.1002/pssa.200461134Search in Google Scholar

[73] Bonanno, L. M., Segal, E. Nanostructured porous silicon– polymer-based hybrids: from biosensing to drug delivery. Nanomedicine ,2011. 6(10): p. 1755-1770. 10.2217/nnm.11.153Search in Google Scholar PubMed

[74] McInnes, S., Voelcker, N., Silicon-polymer hybrid materials for drug delivery. Future Med. Chem.2009. 1(6): p. 1051-1074. 10.4155/fmc.09.90Search in Google Scholar PubMed

[75] Segal, E., Krepker, M., Polymer-porous silicon composites. Handb. Porous Silicon. 2014. p. 187-198. 10.1007/978-3-319-05744-6_18Search in Google Scholar

[76] Yoon, M., Ahn, K., Cheung, R., Sohn, H., Covalent crosslinking of 1-D photonic crystals of microporous Si by hydrosilylation and ring-opening metathesis polymerization. Chemical. 2003. 6: p. 680-681. 10.1039/b300937hSearch in Google Scholar PubMed

[77] Li, Y. Y., Cunin, F., Link, J. R., Gao, T., Betts, R. E., Reiver, S. H., Sailor, M. J., Polymer replicas of photonic porous silicon for sensing and drug delivery applications. Science, 2003. 299(5615): p. 2045-2047. 10.1126/science.1081298Search in Google Scholar PubMed

[78] Liu, D., Zhang, H., Herranz-Blanco, B.,Mäkilä, E., Lehto, V. P., Salonen, J., Santos, H. A., Microfluidic Assembly of Monodisperse Multistage pH-Responsive Polymer/Porous Silicon Composites for Precisely Controlled Multi-Drug Delivery. Small, 2014. 10 (10): p. 2029–2038. 10.1002/smll.201303740Search in Google Scholar PubMed

[79] Vasani, R. B., McInnes, S. J., Cole, M. A., Jani, A. M. M., Ellis, A. V., Voelcker, N. H., Stimulus-responsiveness and drug release from porous silicon films ATRP-grafted with poly (Nisopropylacrylamide). Langmuir. 2011. 27(12): p. 7843-7853 10.1021/la200551gSearch in Google Scholar PubMed

[80] Wang, J., Gan, D., Lyon, L. A., El-Sayed, M. A., Temperature-jump investigations of the kinetics of hydrogel nanoparticle volume phase transitions. J. Am. Chem. Soc., 2011. 123(45): p. 11284- 11289. Search in Google Scholar

[81] Jones, C. D., & Lyon, L. A., Shell-Restricted Swelling and Core Compression in Poly(N-isopropylacrylamide) Core−Shell Microgels. Macromolecules, 2003. 36(6): p. 1988-1993. 10.1021/ma021079qSearch in Google Scholar

[82] Wiedemair, J., Serpe, M. J., Kim, J., Masson, J. F., Lyon, L. A., Mizaikoff, B., Kranz, C., In-Situ AFM Studies of the Phase- Transition Behavior of Single Thermoresponsive Hydrogel Particles. Langmuir, 2007. 23(1): p. 130-137. 10.1021/la061288uSearch in Google Scholar

[83] Shawgo, R. S., Grayson, A. C. R., Li, Y., Cima, M. J. BioMEMS for drug delivery. Curr Opin Solid State Mater Sci., 2002. 6(4): p. 329-334. 10.1016/S1359-0286(02)00032-3Search in Google Scholar

Received: 2016-10-6
Accepted: 2016-11-15
Published Online: 2016-12-23

© 2016 Rocha-García Denisse et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 21.5.2024 from https://www.degruyter.com/document/doi/10.1515/mesbi-2016-0011/html
Scroll to top button