Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 27, 2021

A global random walk on grid algorithm for second order elliptic equations

  • Karl K. Sabelfeld ORCID logo EMAIL logo , Dmitry Smirnov , Ivan Dimov ORCID logo and Venelin Todorov

Abstract

In this paper we develop stochastic simulation methods for solving large systems of linear equations, and focus on two issues: (1) construction of global random walk algorithms (GRW), in particular, for solving systems of elliptic equations on a grid, and (2) development of local stochastic algorithms based on transforms to balanced transition matrix. The GRW method calculates the solution in any desired family of prescribed points of the gird in contrast to the classical stochastic differential equation based Feynman–Kac formula. The use in local random walk methods of balanced transition matrices considerably decreases the variance of the random estimators and hence decreases the computational cost in comparison with the conventional random walk on grids algorithms.

MSC 2010: 65C05; 65C20; 93B35

Award Identifier / Grant number: 20-51-18009

Award Identifier / Grant number: 19-11-00019

Award Identifier / Grant number: KP-06-M32/2-17.12.2019

Funding statement: The study on the random walk algorithms and balanced Monte Carlo methods is supported by the RFBR and NSFB, project number 20-51-18009, and by the Russian Science Foundation under Grant 19-11-00019 in the part of global random walk on grid algorithms for general elliptic equations. Venelin Todorov is supported by the Bulgarian National Science Fund under Project KP-06-M32/2-17.12.2019 “Advanced Stochastic and Deterministic Approaches for Large-Scale Problems of Computational Mathematics”.

References

[1] H. Amann, Eine Monte-Carlo-Methode mit Informationsspeicherung zur Lösung von elliptischen Randwertproblemen, Z. Wahrscheinlichkeitstheorie Verw. Gebiete 8 (1967), 117–130. 10.1007/BF00536914Search in Google Scholar

[2] H. Amann, Der Rechenaufwand bei der Monte-Carlo-Methode mit Informationsspeicherung, ZAMM Z. Angew. Math. Mech. 48 (1968), 128–131. 10.1002/zamm.19680480208Search in Google Scholar

[3] A. F. Cheshkova, Global estimate of the solution of the Dirichlet problem for the Helmholtz n-dimensional equation by the Monte Carlo method, Russian J. Numer. Anal. Math. Modelling 10 (1995), no. 6, 495–510. 10.1515/rnam.1995.10.6.495Search in Google Scholar

[4] R. Courant, K. Friedrichs and H. Lewy, Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Ann. 100 (1928), no. 1, 32–74. 10.1007/978-1-4612-5385-3_7Search in Google Scholar

[5] J. H. Curtiss, “Monte Carlo” methods for the iteration of linear operators, J. Math. Physics 32 (1954), 209–232. 10.1002/sapm1953321209Search in Google Scholar

[6] J. H. Curtiss, A theoretical comparison of the efficiencies of two classical methods and a Monte Carlo method for computing one component of the solution of a set of linear algebraic equations, Symposium on Monte Carlo Methods, John Wiley and Sons, New York (1956), 191–233. Search in Google Scholar

[7] M. Deaconu and A. Lejay, A random walk on rectangles algorithm, Methodol. Comput. Appl. Probab. 8 (2006), no. 1, 135–151. 10.1007/s11009-006-7292-3Search in Google Scholar

[8] I. T. Dimov, Minimization of the probable error for some Monte Carlo methods, Mathematical Modelling and Scientific Computations (Albena 1990), Bulgarian Academy of Sciences, Sofia (1992), 159–170. Search in Google Scholar

[9] I. T. Dimov, Monte Carlo Methods for Applied Scientists, World Scientific, Hackensack, 2008. 10.1142/2813Search in Google Scholar

[10] I. T. Dimov, B. Philippe, A. Karaivanova and C. Weihrauch, Robustness and applicability of Markov chain Monte Carlo algorithms for eigenvalue problems, Appl. Math. Model. 32 (2008), no. 8, 1511–1529. 10.1016/j.apm.2007.04.012Search in Google Scholar

[11] I. T. Dimov, S. Maire and J. M. Sellier, A new walk on equations Monte Carlo method for solving systems of linear algebraic equations, Appl. Math. Model. 39 (2015), no. 15, 4494–4510. 10.1016/j.apm.2014.12.018Search in Google Scholar

[12] I. G. Djadkin and V. N. Starikov, A possible way of economizing computer time in the solution of the Laplace equation by the Monte-Carlo method, Ž. Vyčisl. Mat i Mat. Fiz. 5 (1965), 936–938. 10.1016/0041-5553(65)90018-2Search in Google Scholar

[13] E. B. Dynkin, Theory of Markov Processes, Dover, Mineola, 2006. Search in Google Scholar

[14] B. S. Elepov, A. A. Kronberg, G. A. Mihaĭlov and K. K. Sabelfeld, Solution of Boundary Value Problems by the Monte Carlo Methods (in Russian), Nauka, Novosibirsk, 1980. Search in Google Scholar

[15] B. S. Elepov and G. A. Mihaĭlov, olution of the Dirichlet problem for the equation Δ u - c u = g by a model of “walks on spheres”, USSR Comput. Math. Math. Phys. 9 (1969), no. 3, 194–204. 10.1016/0041-5553(69)90070-6Search in Google Scholar

[16] S. M. Ermakov, V. V. Nekrutkin and A. S. Sipin, Random Processes for Classical Equations of Mathematical Physics, Kluwer Academic, Dordrecht, 1989. 10.1007/978-94-009-2243-3Search in Google Scholar

[17] S. M. Ermakov and A. S. Sipin, The “walk in hemispheres” process and its applications to solving boundary value problems, Vestnik St. Petersburg Univ. Math. 42 (2009), no. 3, 155–163. 10.3103/S1063454109030029Search in Google Scholar

[18] A. Haji-Sheikh and E. M. Sparrow, The floating random walk and its application to Monte Carlo solutions of heat equations, SIAM J. Appl. Math. 14 (1966), 370–389. 10.1137/0114031Search in Google Scholar

[19] J. H. Halton, Sequential Monte Carlo, Proc. Cambridge Philos. Soc. 58 (1962), 57–78. 10.1017/S0305004100036227Search in Google Scholar

[20] J. H. Halton, Sequential Monte Carlo, Technical Summary Report No. 816, University of Wisconsin, Madison, 1967. Search in Google Scholar

[21] J. H. Halton, Sequential Monte Carlo for linear systems—A practical summary, Monte Carlo Methods Appl. 14 (2008), no. 1, 1–27. 10.1515/MCMA.2008.001Search in Google Scholar

[22] J. H. Halton and E. A. Zeidman, Monte Carlo integration with sequential stratification, Technical Report No. 61, University of Wisconsin, Madison, 1969. Search in Google Scholar

[23] K. Itô and H. P. McKean, Jr., Diffusion Processes and Their Sample Paths, Springer, Berlin, 1965. Search in Google Scholar

[24] M. Kac, On some connections between probability theory and differential and integral equations, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, University of California, Berkeley (1951), 189–215. Search in Google Scholar

[25] V. M. Kaganer, J. Lähnemann, C. Pfüller, K. K. Sabelfeld, A. E. Kireeva and O. Brandt, Determination of the carrier diffusion length in GaN from cathodoluminescence maps around threading dislocations: Fallacies and opportunities, Phys. Rev. Appl. 12 (2019), no. 5, Article ID 054023. 10.1103/PhysRevApplied.12.054038Search in Google Scholar

[26] S. Maire, Reducing variance using iterated control variates, J. Stat. Comput. Simul. 73 (2003), no. 1, 1–29. 10.1080/00949650215726Search in Google Scholar

[27] G. A. Mikhaĭlov and A. F. Cheshkova, Solution of the Dirichlet difference problem for the multidimensional Helmholtz equation by the Monte Carlo method, J. Comput. Math. Math. Phys. 38 (1998), no. 1, 99–106. Search in Google Scholar

[28] M. E. Muller, Some continuous Monte Carlo methods for the Dirichlet problem, Ann. Math. Statist. 27 (1956), 569–589. 10.1214/aoms/1177728169Search in Google Scholar

[29] I. Petrowsky, Über das Irrfahrtproblem, Math. Ann. 109 (1934), no. 1, 425–444. 10.1007/BF01449148Search in Google Scholar

[30] K. K. Sabelfeld, Monte Carlo Methods in Boundary Value Problems, Springer, Berlin, 1991. 10.1007/978-3-642-75977-2Search in Google Scholar

[31] K. K. Sabelfeld, Random walk on semi-cylinders for diffusion problems with mixed Dirichlet–Robin boundary conditions, Monte Carlo Methods Appl. 22 (2016), no. 2, 117–131. 10.1515/mcma-2016-0108Search in Google Scholar

[32] K. K. Sabelfeld, Random walk on spheres method for solving drift-diffusion problems, Monte Carlo Methods Appl. 22 (2016), no. 4, 265–275. 10.1515/mcma-2016-0118Search in Google Scholar

[33] K. K. Sabelfeld, A mesh free floating random walk method for solving diffusion imaging problems, Statist. Probab. Lett. 121 (2017), 6–11. 10.1016/j.spl.2016.10.006Search in Google Scholar

[34] K. K. Sabelfeld, Random walk on spheres algorithm for solving transient drift-diffusion-reaction problems, Monte Carlo Methods Appl. 23 (2017), no. 3, 189–212. 10.1515/mcma-2017-0113Search in Google Scholar

[35] K. K. Sabelfeld, A global random walk on spheres algorithm for transient heat equation and some extensions, Monte Carlo Methods Appl. 25 (2019), no. 1, 85–96. 10.1515/mcma-2019-2032Search in Google Scholar

[36] K. K. Sabelfeld, V. Kaganer, C. Pfueller and O. Brandt, Dislocation contrast in cathodoluminescence and electron-beam induced current maps on GaN(0001), J. Phys. D 50 (2017), no. 40, Article ID 405101. 10.1088/1361-6463/aa85c8Search in Google Scholar

[37] K. K. Sabelfeld and A. Kireeva, A new Global Random Walk algorithm for calculation of the solution and its derivatives of elliptic equations with constant coefficients in an arbitrary set of points, Appl. Math. Lett. 107 (2020), Article ID 106466. 10.1016/j.aml.2020.106466Search in Google Scholar

[38] K. K. Sabelfeld and A. Kireeva, Stochastic simulation algorithms for solving a nonlinear system of drift-diffusion-Poisson equations of semiconductors, Phys. A 556 (2020), Article ID 124800. 10.1016/j.physa.2020.124800Search in Google Scholar

[39] K. K. Sabelfeld and I. A. Shalimova, Spherical and Plane Integral Operators for PDEs: Construction, Analysis, and Applications, De Gruyter, Berlin, 2013. 10.1515/9783110315332Search in Google Scholar

[40] K. K. Sabelfeld and N. A. Simonov, Stochastic Methods for Boundary Value Problems. Numerics for High-Dimensional PDEs and Applications, De Gruyter, Berlin, 2016. 10.1515/9783110479454Search in Google Scholar

[41] K. K. Sabelfeld and D. Smirnov, A global random walk on grid algorithm for second order elliptic equations, Monte Carlo Methods Appl. 27 (2021), no. 3, 211–225. 10.1515/mcma-2021-2092Search in Google Scholar

[42] I. Shalimova and K. K. Sabelfeld, A random walk on small spheres method for solving transient anisotropic diffusion problems, Monte Carlo Methods Appl. 25 (2019), no. 3, 271–282. 10.1515/mcma-2019-2047Search in Google Scholar

[43] I. Shalimova and K. K. Sabelfeld, Random walk on ellipsoids method for solving elliptic and parabolic equations, Monte Carlo Methods Appl. 26 (2020), no. 4, 335–353. 10.1515/mcma-2020-2078Search in Google Scholar

[44] N. A. Simonov, Walk-on-spheres algorithm for solving third boundary value problem, Appl. Math. Lett. 64 (2017), 156–161. 10.1016/j.aml.2016.09.008Search in Google Scholar

[45] I. M. Sobol, Monte Carlo Numerical Methods, Nauka, Moscow, 1973. Search in Google Scholar

Received: 2021-04-11
Revised: 2021-10-14
Accepted: 2021-10-17
Published Online: 2021-10-27
Published in Print: 2021-12-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.6.2024 from https://www.degruyter.com/document/doi/10.1515/mcma-2021-2097/html
Scroll to top button