Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 2, 2021

Effectiveness assessment of improvement measures in physical protection system monitoring center

Bewertung der Wirksamkeit von Verbesserungsmaßnahmen des Sicherheits-Überwachungssystems
  • T. Zeng EMAIL logo , X. Yang EMAIL logo , Y. Wan EMAIL logo , Y. Mao and Z. Liu
From the journal Kerntechnik

Abstract

The optimization measures in the physical protection system monitoring center of a nuclear power plant include the prioritization of alarm signals, optimization of sound and light alarm form, improvement of the layout of video monitor screen, security training, and strengthening of organizational management. Based on the fuzzy analytic hierarchy process, the influence of these factors on the probability of alert assessment and guard’s respond time in the EASI method are quantitatively analyzed. Making full use of the measures for prioritization of alarm signals can effectively promote the improvement of human-computer interaction efficiency. The degree of influence of the four factors (guarder’s status, decision strategy, guarder’s training and organization management) on guard’s decision-making is roughly the same.

Kurzfassung

Zu den Optimierungsmaßnahmen in der Überwachungszentrale des Sicherungssystems eines Kernkraftwerks gehören die Priorisierung von Alarmsignalen, die Optimierung der Ton- und Lichtalarmformen, die Verbesserung des Layouts des Videomonitorbildschirms, Sicherheitstraining und die Stärkung des Organisationsmanagements. Basierend auf dem Verfahren der unscharfen analytischen Hierarchie wird der Einfluss dieser Faktoren auf die Wahrscheinlichkeit der Alarmbewertung und die Reaktionszeit des Wachpersonals in der EASI-Methode quantitativ analysiert. Die volle Ausschöpfung der Maßnahmen zur Priorisierung von Alarmsignalen kann die Verbesserung der Effizienz der Mensch-Computer-Interaktion wirksam fördern. Der Grad des Einflusses der vier Faktoren (Status des Wächters, Entscheidungsstrategie, Ausbildung des Wächters und Organisationsmanagement) auf die Entscheidungsfindung des Wächters ist ungefähr gleich.

References

1 International Atomic Energy Agency: Nuclear Security Recommendations on Physical Protection of Nuclear Material and Nuclear Facilities. Nuclear security series no. 13. Vienna, Austria: International Atomic Energy Agency; 2015Search in Google Scholar

2 Liu, Y.; Cheng, X.: Characteristics Analysis of Physical Protection System in Nuclear Power Plant. Electrical applications 12 (2011) 62 –65Search in Google Scholar

3 Garcia, M. L.: Design and evaluation of physical protection systems. Butterworth-Heinemann, Burlington (2007) 89Search in Google Scholar

4 O’Connor, S. L.; Whitehead, D. W.; Potter III, C. S.: Nuclear power plant security assessment technical manual. Sandia National Laboratories (2007) 26, DOI:10.2172/92172210.2172/921722Search in Google Scholar

5 Garcia, M. L.: Vulnerability assessment of physical protection systems. Butterworth-Heinemann, Burlington (2005) 151–152Search in Google Scholar

6 Wadoud, A. A.; Adail, A. S.; Saleh, A. A.: Physical protection evaluation process for nuclear facility via sabotage scenarios. Alexandria Engineering Journal 57 (2018) 831–839, DOI:10.1016/j.aej.2017.01.04510.1016/j.aej.2017.01.045Search in Google Scholar

7 Bennett, H. A.: EASI approach to physical security evaluation. SAND-76–0500, Sandia National Laboratory, Albuquerque (1977)Search in Google Scholar

8 Sandia National Laboratory: SAVI: Systematic Analysis of Vulnerability to Intrusion, SAND89–0926, Sandia National Laboratory, Albuquerque (1989)Search in Google Scholar

9 Vintr, Z.; Vintr, M.; Malach, J.: Evaluation of physical protection system effectiveness, 2012 IEEE International Carnahan Conference on Security Technology (ICCST), IEEE (2012) 15–21, DOI:10.1109/CCST.2012.639353210.1109/CCST.2012.6393532Search in Google Scholar

10 Liu, Y.: Analysis and improvement of physical protection system operation of nuclear power station. Progress Report on China Nuclear Science & Technology, Vol. 4. Volume 10 of the 2015 Annual Conference of the Chinese Nuclear Society (Nuclear Safety Volume) (2015) 140–150Search in Google Scholar

11 Vaidya, O. S.; Kumar, S.: Analytic hierarchy process: An overview of applications. European Journal of operational research 169 (2006) 1–29, DOI:10.1016/j.ejor.2004.04.02810.1016/j.ejor.2004.04.028Search in Google Scholar

12 Junior, F. R. L.; Osiro, L.; Carpinetti, L. C. R.: A comparison between Fuzzy AHP and Fuzzy TOPSIS methods to supplier selection. Applied Soft Computing 21 (2014) 194–209, DOI:10.1016/j.asoc.2014.03.01410.1016/j.asoc.2014.03.014Search in Google Scholar

13 Pengcheng, L. I.; Guohua, C.; Li, Z.; et al.: Analysis of influencing factors triggering operator’s error in nuclear power plants. China Safety Science Journal (2017) 42–47Search in Google Scholar

14 Liu, P.; Zheng, M.: Analysis of human error and dynamic progressing model of human error in NPP. Nuclear Safety (Beijing) (2010) 51–58Search in Google Scholar

15 Shu-Dong, H, et al.: Quantified Decision-making for Prevention of Accident Caused by Human Factor in Nuclear Power Plant. China Safety Science Journal (2006)Search in Google Scholar

Received: 2020-02-24
Published Online: 2021-03-02

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 13.5.2024 from https://www.degruyter.com/document/doi/10.1515/KERN-2020-0026/html
Scroll to top button